
Heliyon 5 (2019) e01882
Contents lists available at ScienceDirect

Heliyon

journal homepage: www.heliyon.com
Development of a predictive model for estimating the specific heat capacity
of metallic oxides/ethylene glycol-based nanofluids using support
vector regression

Ibrahim Olanrewaju Alade a, Mohd Amiruddin Abd Rahman a,*, Aliyu Bagudu b, Zulkifly Abbas a,
Yazid Yaakob a, Tawfik A. Saleh c,*

a Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Malaysia
b AiFi Technologies LLC, Abu Dhabi, United Arab Emirates
c Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
A R T I C L E I N F O

Keywords:
Materials science
Nanotechnology
Thermodynamics
* Corresponding authors.
E-mail addresses: mohdamir@upm.edu.my (M.A

https://doi.org/10.1016/j.heliyon.2019.e01882
Received 16 November 2018; Received in revised f
2405-8440/© 2019 The Authors. Published by Else
nc-nd/4.0/).
A B S T R A C T

The specific heat capacity of nanofluids ðCPnf Þ is a fundamental thermophysical property that measures the heat
storage capacity of the nanofluids. CPnf is usually determined through experimental measurement. As it is known,
experimental procedures are characterised with some complexities, which include, the challenge of preparing
stable nanofluids and relatively long periods to conduct experiments. So far, two correlations have been devel-
oped to estimate the CPnf : The accuracies of these models are still subject to further improvement for many
nanofluid compositions. This study presents a four-input support vector regression (SVR) model hybridized with a
Bayesian algorithm to predict the specific heat capacity of metallic oxides/ethylene glycol-based nanofluids. The
bayesian algorithm was used to obtain the optimum SVR hyperparameters. 189 experimental data collected from
published literature was used for the model development. The proposed model exhibits low average absolute
relative deviation (AARD) and a high correlation coefficient (r) of 0.40 and 99.53 %, respectively. In addition, we
analysed the accuracies of the existing analytical models on the considered nanofluid compositions. The model
based on the thermal equilibrium between the nanoparticles and base fluid (model II) show good agreement with
experimental results while the model based on simple mixing rule (model I) overestimated the specific heat
capacity of the nanofluids. To further validate the superiority of the proposed technique over the existing
analytical models, we compared various statistical errors for the three models. The AARD for the BSVR, model II,
and model I are 0.40, 0.82 and 4.97, respectively. This clearly shows that the model developed has much better
prediction accuracy than existing models in predicting the specific heat capacity of metallic oxides/ethylene
glycol-based nanofluids. We believe the presented model will be important in the design of nanofluid-based
applications due to its improved accuracy.
1. Introduction

Recently, there has been an exponential growth in the number of
studies conducted on nanofluids as a result of their enhanced heat
transfer potential which makes them suitable for several energy-saving
applications [1, 2]. Nanofluid based technologies can reduce the cost
of energy to the tune of billions of dollars. In fact, it is estimated that the
global market size of nanofluid heat transfer applications is above 2
billion dollars per year [3]. For instance, an improvement in chiller ef-
ficiency by 1% due to the usage of nanofluids is estimated to produce a
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saving of about 320 billion kWh of electricity, corresponding to 5.5
million barrels of oil per year [3]. Due to the significance of nanofluid in
effective energy management and ability to increase systems’ efficiency,
nanofluids have evolved as important materials that have profound po-
tential in mitigating global challenges such as global warming and energy
crisis [2].

Basically, nanofluids are suspensions of nanometer-sized particles in
conventional cooling fluids such as ethylene glycol, engine oil, water,
ethanol, and R11 refrigerant, etc [4]. Typically the nanoparticles are less
than 100 nm in size and are made up of several classes of metallic,
du.sa (T.A. Saleh).
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non-metallic, oxides and other compounds [5]. The presence of nano-
particles in conventional fluids affects the thermophysical properties of
the conventional coolants. Examples of areas where nanofluids are used
include solar, biomedical applications, microelectronics, microfluidics
applications [6, 7]. It is expected that the modern technological need for
nanofluids will continue to rise in the future [8].

The most important nanofluids properties that are investigated for
heat transfer applications include thermal conductivity, viscosity, ther-
mal diffusivity, and specific heat capacity. Majority of the studies have
been devoted to nanofluids’ thermal conductivity enhancement. More-
over, around 5 percent of the literature is centered on other thermo-
physical properties (viscosity, thermal diffusivity, and specific heat
capacity) [9]. No doubt, this amount of attention is clearly inadequate
because other thermophysical properties equally play significant roles in
many engineering applications. In particular, for the specific heat ca-
pacity of nanofluids, the literature survey suggests that limited efforts
have been devoted to estimating the specific heat capacity of nanofluids.

Here, we briefly examine the relevance of the specific heat capacity of
nanofluids. First, the specific heat capacity of nanofluid is a measure of
the heat retention capacity of the nanofluid, and also one of the funda-
mental thermophysical properties that are used to characterize thermal
fluids [9]. The evaluation of the heat equation and thermal diffusivity
depends on the accurate determination of specific heat capacity values
according to the Eqs. (1) and (2) shown below [9].

dT
dt

¼ αr2T (1)

Where T, t and α refer to the temperature, time and thermal diffu-
sivity, respectively. The thermal diffusivity is related to the specific heat
capacity through Eq. (2)

α ¼ k
ρ:CP

(2)

Where k stands for thermal conductivity, ρ and Cp refers to density and
specific heat capacity, respectively [9]. In other words, accurate values of
the specific heat capacity is required to evaluate fluid properties such as
thermal diffusivity, dimensionless Prandtl number, and the pumping
power [5, 10, 11].

So far, two main analytical models have been used in the literature to
estimate the specific heat capacity of nanofluids. The first model, often
referred to as model I is based on the idea of mixing theory for ideal gas
mixtures, which is described by Eq. (3);

CPnf ¼φCPn þ ð1�φÞCPbf (3)

Where CPnf , CPn and CPbf refers to the specific heat capacities of the
nanofluid, nanoparticles and basefluid, respectively [9]. The subscripts
nf ; bf and n; represent the nanofluid, base fluid and nanoparticles,
respectively.

The second model (model II) is based on the assumption that both the
nanoparticles and base fluids are in thermal equilibrium. It is expressed
as shown in Eq. (4);

CPnf ¼
φρnCPn þ ð1� φÞρbf CPbf

φρn þ ð1� φÞρbf
(4)

Eq. (4) has been applied in several studies in predicting the specific
heat capacity of nanofluids [9]. Earlier studies have demonstrated that
model II has a much closer agreement with experimental results
compared to model I. In fact, most of the studies concluded that model I is
inadequate in predicting the specific heat capacity of nanofluids [10, 12].
For instance, Le-Ping et al [13], measured the specific heat capacity of
CuO/ethylene glycol nanofluid and their experiments revealed that
Model II has good agreement with the experimental data while model I
fails to predict the experimental data. Using molecular dynamics (MD)
simulations approach, Ali Rajabpour [14] et al investigated the specific
2

heat capacity of CuO/Water nanofluids. Their results also revealed that
model I is not sufficient for predicting specific heat capacity of nano-
fluids, however, there is an agreement between molecular dynamics
(MD) simulations approach and Model II. Also, Sheng-Qi et al [15]
measured the specific heat capacity of aluminum oxide/water nanofluid,
then compared the experimental results with existing models. Their
experimental results agreed with model II while model I fails to predict
the specific heat capacity of the aluminum oxide/water nanofluid. Harry
O'Hanley et al [16] measured the specific heat capacity of various water
based-nanofluids. Their study revealed that model II has good agreement
with experiments while model I shows a significant deviation from it. As
indicated above, previous studies established that model II has good
agreement with experimental data while model I is incapable of accurate
estimation of specific heat capacity of nanofluid for most compositions.
Critical examination of model II revealed that there is still room for
improvement as far as its accuracy is concerned. This fact serves as the
main motivation for our present study.

Quite recently, there has been growing interest in using machine
learning approach for solving problems across diverse disciplines [17, 18,
19, 20]. In this respect, various machine learning techniques have been
successfully applied in the study of thermophysical properties of nano-
fluids [4, 21, 22]. It is worthy to note that only a few studies have
considered these techniques in predicting the specific heat capacity of
nanofluids [23]. In this work, we developed a support vector regression
model hybridized with Bayesian optimization for estimating the specific
heat capacity of metallic oxides/ethylene glycol-based nanofluids. Due to
the limited experimental data on the specific heat capacity of metallic
oxides, the model was built using experimental data of Al2O3 and CuO
nanoparticles only. It is remarkable to state that the developed model
exhibits a better accuracy compared to the other existing analytical
models.

2. Methodology

2.1. Support vector machine (SVM)

SVM is a robust supervised machine learning technique originally
developed for classification problems then later extended to regression
tasks. Support Vector Regression (SVR) is an offshoot of SVM that is
specifically used for regression tasks [21]. It is founded on the statistical
learning theory proposed by Vapnik [24, 25, 26]. The main concept in
SVR is mapping input data into higher dimensional feature space, then
constructing a kernel function that permits the problem to be solved by
linear regression function. SVR has a unique advantage over an artificial
neural network (ANN) because it is less prone to overfitting problems due
to the fact that its objective function is convex, hence global optimum is
often reached [27]. Consequently, SVR results are consistent and repro-
ducible, unlike ANN that may suffer from prediction uncertainties [28].
The solution to the non-linear regression problem consists of obtaining an
appropriate function f (x) that describes the output response to a
d-dimensional input vector [18]. To keep this work concise, we have not
detailed the underlying mathematical formulation for SVR. This has been
presented in the literature which interested readers can refer to [4, 23,
29, 30, 31].

The main objective in SVR is to obtain a regression function fðxÞ
defined as in Eq. (5):

fðxÞ¼
Xl

i¼1

�
∝�

i � ∝i

�
: φðxiÞ;φ

�
xj
�þ b (5)

Where φðxiÞ;φðxjÞ is the inner product of vectors in the feature space
which can be represented with a kernel function as shown in Eq. (6).

fðxÞ¼
Xl

i¼1

�
∝�

i � ∝i

�
: K

�
xi; xj

�þ b; where K
�
xi; xj

� ¼ φðxiÞ;φ
�
xj
�

(6)
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where l refers to the number of support vectors, ð∝�
i &∝iÞ are the

Lagrange multipliers, b is the bias term and Kðxi; xjÞ is the kernel
parameter.
2.2. Parameters search: bayesian optimization (BO) strategy

Generally, the prediction performance of machine learning tech-
niques relies on the accurate determination of its turning hyper-
parameters [32]. In the case of SVR, these parameters are; regularization
factor (C), kernel parameter (γ) and epsilon ðεÞ: As a result of the high
computational cost or limitation of naïve techniques such as grid search
or manual search, there has recently been strong interest in more so-
phisticated hyperparameter optimization techniques [21].

BO framework is an efficient parameter-searching tool used in a wide
range of applications [33, 34]. BO seeks to find the global minimum of an
unknown function f(x) described mathematically as in Eq. (7):

x � ¼ arg min f ðxÞ
x2 χ (7)

where Х is defined as a compact subset of Rd and f (x) is an unknown
function whose gradients are undefined [35].

For the implementation of Bayesian optimization, two essential fac-
tors are to be determined. The first is a selection of a prior function that
will capture our belief in the function to be optimized. For this purpose,
the Gaussian function was selected due to its accuracy, analytic tracta-
bility, and robustness [36]. Second is the selection of an acquisition
function used to create a utility function from the model posterior. The
acquisition function provides insight as to where next to evaluate [33,
37]. The acquisition function is cheaper to evaluate compared with the
unknown function which makes the optimization process easier and less
computationally demanding.

In summary, a BO algorithm is shown in Table 1.
Steps 2–5 are repeated for 100 iterations in this study. Further in-

formation on details of the Bayesian optimization process can be ob-
tained in the references [32, 37, 38].

3. Analysis

Generally, several factors influence the thermophysical properties of
nanofluids. To develop an accurate predictive model, it is essential that
only relevant factors that describe the thermophysical property to be
investigated should be used in the development of the model. Such de-
scriptors should uniquely characterize the material under investigation.
In this study, the descriptors contained in the existing analytic models for
specific heat capacity were selected as input variables for training the
model [39]. The experimental data used in this study were gathered from
published literature [39, 40]. The BSVR model proposed was developed
using the following inputs as the descriptors;

(i) The specific heat capacity of Al2O3 and CuO nanoparticles.
Table 1
Bayesian optimization of an unknown objective function [32].

Input: Input space Do; GP prior μo, σ2t
1: for t ¼ 1,2,3……. do;
2: Select next point to evaluate xtþ1 through the optimization of the acquisition
function α

X tþ1 ¼ argmax α ðx; DtÞ
x 2 Dt

3: Evaluate the objective function to obtain ynþ1

4: Augment the data observed Dtþ1 ¼ {Dt, (xtþ1, ytþ1)
5: update the Gaussian process model using μtþ1

6: end
Result: Optimize the Gaussian process mean to find an optimized solution.
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(ii) The specific heat capacity of ethylene glycol.
(iii) Volume fractions of Al2O3 and CuO nanoparticles
(iv) The temperature.

Table 2 describes the relationships that exist between the descriptors
and the specific heat capacity of nanofluids (target) in terms of Pearson's
correlation coefficients (r). The results indicate that there is a significant
relationship between the descriptors and target at 95% confidence level
with the exception of the specific heat capacity of nanoparticles. It is
important to note that the presence of a significant relationship between
descriptors and target may suggest that the descriptors could be used to
build an effective machine learning model. Since the specific heat ca-
pacity of the nanoparticles influences that of the nanofluids, it is expected
that the specific heat capacity of the nanoparticles has some weight in
predicting the specific heat capacity of nanofluids. Hence, it was included
as fourth inputs even though correlation coefficients (r) and its p-value
indicate that it is statistically insignificant as a predictor based on
experimental data used in this study. Table 3 shows the basic statistical
descriptions of the experimental data used in this study. As shown, the
data used for the model development comprises of 189 datasets with the
volume fractions ranging from 0.4 to 8.1 %.

4. Model

The computational work in this study was carried out in Matlab
2018b environment. The support vector regression algorithm randomizes
and segments the experimental data into training and testing dataset in
ratio 8:2, respectively. The training dataset was used for learning the
connections between the various inputs and the corresponding outputs.
Prior to the training process, the experimental data were normalized to
enhance the computational efficiency of the algorithm. This learning
process was achieved by automatic searching of the SVR hyper-
parameters space with the aid of the Bayesian optimization algorithm
described in section 2.2. The optimal values of these parameters were
achieved through the minimization of cross-validation error on the
training dataset. The flowchart for the proposed model is shown in Fig. 1.
After the training of the dataset, the new data set (test dataset) which has
not been seen by the model during the training phase was used to vali-
date the model predictive accuracy. The optimized SVR hyperparameters
obtained are presented in Table 4. In achieving the optimal parameters,
the model tried all possible kernel types. The kernel that returns the best
result in this experiment is the Gaussian kernel. This result can be used
for prediction of future dataset similar to the one investigated in this
study.

5. Results and discussion

The effectiveness of the proposed model in predicting the specific
heat capacity of metallic oxides/ethylene glycol-based nanofluids was
evaluated using various statistical measures such as root mean square
error (RMSE), mean average error (MAE), mean relative average error
(MRAE), average absolute relative deviation (AARD) and correlation
Table 2
Pearson Correlation between the input features and specific heat capacity
nanofluids.

The relationship between each descriptor and the
target

The coefficient of
correlation (r)

p-
value

The specific heat capacity of ethylene glycol vs the
specific heat capacity of the nanofluids

0.488 0.000

The volume fractions of the nanoparticles vs the
specific heat capacity of the nanofluids

-0.807 0.000

The temperature of the Ethylene glycol base fluid
vs the specific heat capacity of the nanofluids

0.498 0.000

The specific heat capacity of the nanoparticles vs
the specific heat capacity of the nanofluids

0.139 0.056



Table 3
Basic Statistical description of the experimental dataset used for the development of the BSVR model proposed for metallic/ethylene glycol-based nanofluids.

Items Variable Count Mean Standard Deviation Minimum Maximum Range

Input features Temperature (K) 189 316.79 13.39 296.31 337.43 41.12
Specific heat capacity of nanoparticles (J/K.g) 189 13.02 83.89 0.53 0.58 0.08
Specific heat capacity of ethylene glycol ((J/K.g) 189 2.51 0.06 2.41 2.60 0.20
Volume fraction of the nanoparticles (%) 189 3.02 2.47 0.40 8.10 7.70

Target Specific heat capacity of the nanofluids system ((J/K.g) 189 2.33 0.13 2.05 2.58 0.53

Fig. 1. Flowchart for proposed Bayesian-support vector algorithm [38].

Table 4
Optimised parameters for the proposed SVR model.

Optimized SVR parameters Values

C 369.0036
Epsilon 0.0013
Kernel function Gaussian
Kernel scale 15.9637

I.O. Alade et al. Heliyon 5 (2019) e01882
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coefficient (r). The mathematical representations for these error esti-
mates are given below as in Eqs. (8), (9), (10), (11), and (12):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

(Xn

i

�
CPðprÞ � CpðexÞ

�2)vuut (8)



Table 5
Comparing the accuracies of the proposed and existing analytic models for
estimating the specific heat capacity of metallic oxide/ethylene glycol
nanofluids.

Statistics BSVR model proposed Model I Model II

Training Testing

RMSE 0.0087 0.0127 0.1267 0.0228
MAE 0.0054 0.0093 0.1120 0.0184
MRAE 0.0024 0.004 0.0497 0.0082
AARD 0.2350 0.4043 4.9673 0.8157
r 0.9975 0.9953 0.9200 0.9964

Fig. 2. Graphical representation of various errors obtained from our model and
the existing analytic model.

Fig. 3. Comparison of the average absolute relative deviation (AARD) obtained
from our model and existing analytic models.

Fig. 4. Relationship between the predicted and experimental values of the
specific heat capacity of metallic oxides/ethylene glycol-based nanofluids for
training data.

Fig. 5. Relationship between the predicted and experimental values of the
specific heat capacity of metallic oxides/ethylene glycol-based nanofluids for
testing data.

I.O. Alade et al. Heliyon 5 (2019) e01882
MAE ¼
n
i
�CPðprÞ � CPðexÞ�

n
(9)
Fig. 6. Relative error distributions over the predicted values of specific heat
capacity of metallic oxides/ethylene glycol-based nanofluids for the
training dataset.
P � �

MRAE ¼
Xn

i

���� CPðprÞ � CPðexÞ
CPðprÞ*� Cp ðexÞ

����� 100% (10)

AARD %¼
Xn

i

����CPðprÞ � CPðexÞ
CPðprÞ

����� 100% (11)
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r ¼
Pn

i CpðexÞ � CpðexÞ CpðprÞ � CpðprÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir (12)
� �� �
Pn

i

�
CpðexÞ � CpðexÞ

�2 �
CpðprÞ � CpðprÞ

�2



Fig. 7. Relative error distributions over the predicted values ofspecific heat
capacity of metallic oxides/ethylene glycol-based nanofluids for the
testing dataset.

Fig. 8. Comparison of the specific heat capacity of metallic oxides/ethylene
glycol-based nanofluids using the training dataset:(a) BSVR model prediction (b)
Experimental values.

Fig. 9. Comparison of the specific heat capacity of metallic oxides/ethylene
glycol-based nanofluids using the testing dataset:(a) BSVR model prediction (b)
Experimental values.

Fig. 10. Comparison of the specific heat capacity of metallic oxides/ethylene
glycol-based nanofluids using the testing dataset:(a)Experimental values (b)
BSVR model prediction (c) Model II prediction (d) Model I prediction.

I.O. Alade et al. Heliyon 5 (2019) e01882
where n is the total number of the dataset. CpðexÞ and CPðprÞ refers to the
experimental and the.

predicted values of specific heat capacity the nanofluid, respectively.
While CpðexÞ and CpðprÞ refer to their respective mean. CPðprÞ* is the esti-
mated values of the reference model.

A reliable model should have a low value of errors (RMSE, MAE,
6

AARD) and a near unity value for the correlation coefficient. Table 5
reflects the training and testing results (actual performance) of the pro-
posed machine learning model alongside the computed results of the
existing analytic models. These results clearly show that the proposed
model has better accuracy as the errors were much lower than those of
the existing models. The improvement in the accuracy of the proposed
model is seen more clearly in Figs. 2 and 3. Figs. 2 and 3 depict the
comparison of the predictive ability of the proposed BSVR and existing
models. It is obvious that Model I has the lowest accuracy while the ac-
curacy of our proposed model is twice better than Model II.

Figs. 4 and 5 show the cross plot between the predicted and the
experimental data of the specific heat capacity of the nanofluids for the
training and testing data, respectively. Our model has near unity corre-
lation coefficients (Pearson’s) with the experimental data during the
training and the testing phase. Figs. 6 and 7 reflect the residue analyses
for the training and testing results, respectively. The relative errors were
evenly distributed around the axis origin which thus further affirms the
reliability of the proposed scheme. Furthermore, in order to show the
degree of agreement between the proposed model and the experimental
values, we superimposed the result of our model on the experimental
data as shown in Figs. 8 and 9. The proposed model shows excellent
agreement with measured results during the training and testing phases.
It is important to states that given the accuracy obtained for the testing
dataset, we believe the model proposed is better for predicting the spe-
cific heat capacity of the nanofluid compositions under consideration.
Furthermore, Fig. 10 shows the comparison of our model in relation to
the analytic models on a single plot. There is a significant discrepancy
between model I and the experimental data while model II exhibits a
good agreement with the experimental data. These observations are
consistent with previous studies mentioned in the literature. Critical
examination of Fig. 9 clearly shows that the proposed model yielded a
much better accuracy than model II in a fashion consistent with other
errors analysis discussed above. This performance is attributed to the
wide generalization ability of the SVR algorithm, the efficiency of the
Bayesian optimization technique and also the right selection of de-
scriptors used in model development.

6. Conclusion

In this work, a four-input Bayesian support vector regression (BSVR)
model has been successfully developed to estimate the specific heat ca-
pacity of metallic oxides/ethylene glycol-based nanofluids. The SVR
parameters were optimized with Bayesian optimization technique and
the model was built using as inputs; the volume fractions of metallic
oxide nanoparticles (CuO & Al2O3), the specific heat capacities of the
nanoparticles, specific heat capacity of ethylene glycol and temperature.
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Themodel was trained on 151 experimental datasets (80% of the dataset)
and the remaining 38 experimental datasets (20% of the dataset) for
testing the generalizability of the SVR model proposed. The model pro-
posed has a high correlation coefficient and low root-mean-square error
of 99.53 % and 0.0127, respectively. Furthermore, we applied the
existing analytic model to predict the specific heat capacity of the
nanofluids. It was revealed that the model based on the thermal equi-
librium between the nanoparticles and base fluid (Model II) has good
agreement with experimental data while the model based on simple
mixing rule overestimated the values of the specific heat capacity of the
nanofluids. The significance of our results was highlighted by comparing
it to the analytical models. Remarkably, the proposed model was twice
more accurate than model II as seen from the AARD values of 0.4043 and
0.8157 for the BSVR and model II, respectively.
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