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Abstract

Phenotypic differentiation is often interpreted as a result of local adaptation of

individuals to their environment. Here, we investigated the skull morphological

differentiation in 11 populations of the white-footed mouse (Peromyscus leuc-

opus). These populations were sampled in an agricultural landscape in the

Mont�er�egie region (Qu�ebec, Canada), at the northern edge of the distribution

of the white-footed mouse. We found a strong pattern of phenotypic differenti-

ation matching the genetic structure across these populations. Landscape frag-

mentation and the presence of geographic barriers, in particular north–south
oriented rivers, contribute to this differentiation and modulate the pattern of

rapid ongoing northward range expansion of the white-footed mouse in

response to climate warming. We conclude that while large rivers and postgla-

cial recolonization routes have shaped the current pattern of distribution and

differentiation of white-footed mouse populations, further local differentiation

is occurring, at the scale of the landscape. We posit that the northern expansion

of the white-footed mouse is achieved through successive independent founder

events in a fragmented landscape at the northern range edge of the species. The

phenotypic differentiation we observe is thus a result of a number of mecha-

nisms operating at different spatial and temporal scales.

Introduction

Patterns of geographic variation in morphological and

genetic diversity of a species reflect both past history and

recent evolutionary processes. In a context of environ-

mental change, organisms can either adapt locally,

migrate, or become extinct (Davis et al. 2005). In the past

decades, the ability of organisms to respond to drastic

and rapid climate change has been challenged (e.g.,

Hughes et al. 2003; Ryan and Cunningham 2012; Vavrus

et al. 2012). Overall, models predict a global increase of

up to 4°C by the end of the XXIst century (New et al.

2011). However, if an increase in average temperature can

have dramatic impacts on cold-adapted species (Derocher

et al. 2013), it can also favor the expansion of temperate

ones (Parmesan 2006; Berteaux et al. 2010).

The effects of environmental changes on organisms can

be detected at different temporal scales (Millien et al.

2006; Teplitsky and Millien In press). The influence of

long-term climatic trends has been investigated in a num-

ber of phylogeographic studies, an approach helpful at

identifying glacial refugia and postglacial recolonization

routes (e.g., Avise et al. 1987; Taberlet et al. 1998). For

example, we have a good understanding of the impact of

the last glaciation, about 20,000 years ago, on many Euro-

pean and North American species in these regions (e.g.,

Deffontaine et al. 2005; Koblm€uller et al. 2012). There is

an increasing number of studies in which morphological

and genetic variation are integrated (e.g., DeLeon et al.

2012). Congruent patterns of variation at the phenotypic

and molecular levels have been reported, both reflecting

postglacial history of the species (e.g., G€und€uz et al. 2007;

Deffontaine et al. 2009; Ledevin et al. 2010). While

distinct patterns of phenotypic and molecular variability

hint toward the effect of selection on the phenotypic trait

studied, such consistent patterns can result from either

selection or stochastic events (Xu et al. 2010; Teplitsky and

Millien In press). An integrative approach combining
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molecular and morphological data can thus help better

identifying and understanding the mechanisms shaping

species differentiation.

In the current context of rapid environmental change

coupled with increasing landscape modifications due to

human activities, it has become critical to better estimate

the ability of species to respond to these changes on a

very short-time scale. There is growing evidence that

rapid morphological changes are expected as a response

to recent global change (Berteaux et al. 2004; Bradshaw

and Holzapfel 2006; Sheridan and Bickford 2011). For

example, rapid morphological changes correlated with

climatic changes over several years were reported for two

heteromyid rodents (Wolf et al. 2009), Soya sheep (Ozgul

et al. 2009), yellow-bellied marmots (Ozgul et al. 2010),

or barn swallow (Møller and Sz�ep 2005).

To investigate the influence of long- and short-term

climatic changes on morphology, we used the white-

footed mouse (Peromyscus leucopus Rafinesque, 1818) as a

model and quantified the skull shape of specimens

trapped in southern Qu�ebec, Canada. Peromyscus leucopus

is a temperate generalist rodent found in diverse habitats,

with a preference for forests (Desrosiers et al. 2002). The

white-footed mouse population structure is affected by

landscape modifications and habitat fragmentation in

southern Qu�ebec (Rogic et al. 2013; R. R. Marrotte,

A. Gonzalez, and V. Millien, unpubl. data). In addition,

its distribution has expanded northward in the region, at

a rate estimated at 10 km per year (E. Roy-Dufresne,

L. Travis, J. A. Simon, G. L. Chmura, and V. Millien,

unpubl. data). Our sampling sites are also located at a

crossroad between different postglacial recolonization

pathways for the species, out of at least two distinct refu-

gia (Rowe et al. 2006; J. Fiset, N. Tessier, V. Millien, and

F. -J. Lapointe, unpubl. data). The study of white-footed

mice populations in southern Qu�ebec therefore provides

an excellent opportunity to evaluate the relative and com-

bined effects of recent and past climate change combined

with alterations of the landscape on species phenotypic

differentiation.

We performed a morphometric analysis of the skull of

P. leucopus individuals from 11 populations in a frag-

mented landscape to assess the pattern of morphological

differentiation across this landscape and compare the

genetic structure of these populations with this pattern of

morphological differentiation. We first investigated the

role played by natural (i.e., rivers) and anthropogenic

(i.e., roads) landscape features that have been shown to

be efficient barriers to dispersal for the white-footed

mouse in our study area (Rogic et al. 2013; R. R. Mar-

rotte, A. Gonzalez, and V. Millien, unpubl. data). We

then discuss whether the observed pattern of phenotypic

variation has been shaped by short-term environmental

changes (anthropic effect), historical processes (the recent

northern expansion of the mouse), long-term changes

(Quaternary glaciations), or a combination of them. More

specifically, we addressed the hypotheses that: (1) there is

a congruent pattern of differentiation among the white-

footed mouse populations at the genetic and phenotypic

levels; (2) landscape fragmentation (i.e., presence of riv-

ers, roads or agricultural matrix), recent northern range

shift of P. leucopus and its postglacial pattern of recolon-

ization all contributed to the observed pattern of

morphological differentiation; and (3) local habitat frag-

mentation is preventing the occurrence of a continuous

front of colonization, and the northern expansion of the

white-footed mouse is achieved by successive independent

founding events.

Materials and Methods

Specimens and study sites

We used a total of 332 specimens of white-footed mouse

(P. leucopus), trapped between 2007 and 2011 at 11 locali-

ties from the Mont�er�egie region, southern Qu�ebec (Fig. 1,

Table 1). The study area covers 634 km2, and among the

11 localities, four are part of the Monteregian Hills while

other localities are forest fragments around these hills.

Only adult specimens with the third molar erupted were

considered.

The population genetic structure of these populations

was previously described using 11 microsatellites loci

(Rogic et al. 2013). The same localities and specimens

were used here to quantify the morphological differentia-

tion, depending on the state of preservation of the skulls

(broken skulls were removed from the morphological

dataset), allowing the comparison of phenotypic and

genetic patterns of variation across these populations.

Several geographic barriers to gene flow were identified in

the study area (Rogic et al. 2013; Marrotte R. R., Gonza-

lez, A. and Millien, V., unpubl. data), that may promote

morphological differentiation across populations. Here,

we focus on the effect of two rivers (the Richelieu and

Yamaska rivers) and two roads (H112 and H10).

Shape analysis

A set of 35 landmarks was used to describe the ventral

view of the cranium (Fig. 2). All specimens were mea-

sured by the same operator (RL). The original coordinates

were standardized for size, positioning in space and skull

orientation using a generalized Procrustes analysis (Rohlf

and Slice 1990). Size information was retained as centroid

size (CS), the square root of the sum of squared distances

between each landmark and the centroid of the landmark
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configuration. We used the thin plate spline algorithm

(TPS: Bookstein 1991) to visualize shape differences, and

computed deformation grids using the least bending

energy criterion between the consensus and target land-

mark configurations.

Statistical analyses

We investigated size differences using univariate statistics.

No sexual dimorphism in size or significant relation

between size and environmental variables was detected;

thus, only shape was considered in further analyses.

Multivariate statistics were used to investigate shape dif-

ferentiation of the skull. We first tested for the influence of

allometry in our data using a multivariate regression

between the CS and the shape variables. We found a signif-

icant allometric effect (P < 0.001) and thus used the resid-

uals of the regression as a new set of “allometry-free”

variables. We first tested for the effect of sexual dimor-

phism on shape with a multivariate analysis of variance

(MANOVA). We then performed a between-group Princi-

pal Component Analysis (PCA) on the residuals of the

regression (gpPCA [Boulesteix 2004; Mitteroecker and

Bookstein 2011]), using the major geographic groups iden-

tified genetically as a grouping variable (Table 1). The

gpPCA provides an alternative to the linear discriminant
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Figure 1. Sampling localities and main

landscape characteristics in the study area. The

Monteregian Hills are Mont Saint Bruno (H),

Mont Saint Hilaire (K), Mont Rougemont (G),

and Mont Yamaska (J). Groups of localities

were defined from the genetic structure of the

populations from Rogic et al. (2013) as follow:

central (A, B, G, I, K), south (E, F), west (D, H)

and east (C, J).

Table 1. Sampling localities with the total number of Peromyscus

leucopus as well as the number of males and females at each site.

The group variable was defined from the genetic structure of the pop-

ulations from Rogic et al. (2013).

Site Group M F Ntot.

A Center 23 10 33

B Center 16 14 30

C East 19 14 33

D West 13 15 28

E South 15 17 32

F South 19 14 33

G Center 27 5 32

H West 24 9 33

I Center 17 14 31

J East 10 4 14

K Center 28 5 33
Figure 2. Landmark configuration on the ventral side of the white-

footed mouse’s skull. (1) Mid-point on premaxilla, between anterior

part of the incisors; (2–3) Upper lateral extremity of the incisor

alveolus; (4–5) Anterior extremity of the incisive foramen; (6–7)

Lateral extremity of the premaxilla-maxilla suture; (8–9) Angle

inflexion on the maxillary arm; (10–11) Insertion of the maxillary arm

on the rostrum; (12–13) Posterior extremity of the incisive foramen;

(14–15) Anterior extremity of the dental tooth row; (16–17) Labial-

side point between first and second upper molars; (18–19) Posterior

palatine foramen; (20–21) Posterior extremity of the dental tooth

row; (22) Median point on the posterior margin of the palate; (23–24)

Anterior maximum of curvature of the squamosal; (25–26) Foramen

ovale; (27–28) Meeting point between the basisphenoid, basioccipital

and tympanic bulla; (29) Mid-point of the basioccipital–basisphenoid

suture; (30–31) Posterior tip of the external auditory meatus; (32)

Mid-basioccipital point; (33) Basion; (34–35) Internal flexion of the

occipital condyle.
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analysis (LDA), a method widely questioned in morpho-

metrics (e.g., Klingenberg & Monteiro, 2005; Mitteroecker

and Bookstein 2011). The Procrustes geometry is not pre-

served in canonical variate analyses (CVA) ordinations

used to estimate the discriminant functions. Instead, the

gpPCA, using projection of the data onto the principal

components of the group means, keeps the axes orthogonal

and thus allows interpretations of shape variation along

the axes in a biologically meaningful way. A MANOVA

was performed to evaluate the overall intergroup differenti-

ation, and permutations tests were used to test for pairwise

group divergence.

A matrix of pairwise distances was then calculated from

the shape coordinates and compared with the matrix of

genetic distances (Fst) from Rogic et al. (2013), using a

Mantel test with 1000 permutations (Mantel 1967).

Phenetic relationships were investigated through cluster

analysis performed on the matrix of Mahalanobis dis-

tances using an UPGMA method and the nearest neigh-

bor clustering algorithm in the cluster package in R

(R Development Core Team 2013).

We carried out a multiple regression on distance matri-

ces (MRM as described in Legendre and Legendre 1998;

Lichstein 2006) using the ecodist package in R (R Devel-

opment Core Team 2013) to evaluate the effect of rivers

and roads on the morphological structure. Series of

dummy variables [0, 1] were used to characterize whether

sampling localities were on one side or the other of each

barrier. Distance matrices were then computed from these

data and compared with the matrix of morphological

Mahalanobis distances.

Results

Sexual dimorphism

No sexual dimorphism was detected for skull shape, and

the interaction between sex and localities was not signifi-

cant (Table 2). Males and females were thus pooled

together in further analyses.

Interpopulations shape differentiation

A gpPCA performed on the allometry-free shape variables

with the four clusters identified in Rogic et al. (2013) as

groups (Table 1) revealed that the skull morphology dif-

fered significantly between these groups (Wilks’

k = 0.338, P < 0.001). The most divergent populations

were sites D and H (Table 3), which were located on the

western side of the Richelieu River and differentiated

along the first axis gpPC1 (49.1% of total variance). The

skull shape reconstructions showed an elongation of the

rostrum and a broadening of the neurocranium along this

axis (Fig. 3).

The second axis gpPC2 (30.6% of total variance)

mostly reflected the differentiation between the eastern

(positive values) and central (negative values) groups

(Fig. 3), these two groups being significantly different

(Table 3). Southern localities (sites E and F) were inter-

mediate on gpPC2 axis, between the eastern and central

ones. The deformation grids revealed small and localized

changes along this axis, mostly around the palatal area,

which is more extended in eastern populations (Fig. 3).

The southern group differentiated from other groups

along the third axis gpPC3 (20.3% of total variance),

although the differentiation along this axis was the least

significant (Table 3). A narrowing of the neurocranium

and a broadening of the rostrum was observed from

negative to positive values along this axis (Fig. 3).

We compared the matrix of shape distances based on

Mahalanobis distances calculated from the shape coordi-

nates with a matrix of geographic distances and found a

significant pattern of isolation by distance among the 11

populations (Mantel r = 0.594, P < 0.001). We then

performed a MRM and found a significant pattern of

isolation by barrier in our data (R2 = 0.566, P = 0.009).

The largest river (the Richelieu) had the strongest effect

on the morphological differentiation, followed by the

Yamaska River (Table 4). We did not detect any signifi-

cant effect of the roads H112 and H10 with this analysis,

although permutation tests indicated a differentiation of

populations south of H112 from all other populations

(Table 3).

Morphology versus genetic differentiation

We compared the average shape differentiation of the

populations with Fst values from Rogic et al. (2013) to

Table 2. Multivariate analysis of variance analysis testing for the

effect of sexual dimorphism and sampling site on the skull shape.

Wilks’ k Pr(>F)

Sex 0.917 0.166

Locality 0.252 <2e-16

Sex*locality 0.493 0.224

Table 3. Matrix of P-values for pairwise comparisons between groups

using permutation tests on the Euclidian distances between group

means.

Central East South

East 0.002

South 0.020 0.038

West 0.001 0.001 0.001

ª 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 4175

R. Ledevin & V. Millien Differentiation, Range Shift and Fragmentation



evaluate the congruence of the pairwise morphological

and genetic differentiation between our populations. The

phenotypic and genetic distance matrices were signifi-

cantly correlated (Mantel r = 0.39, P = 0.01).

A cluster analysis was then performed to compare the

patterns of interpopulations differentiation based on

Mahalanobis shape distances and Fst values (Fig. 4), and

we obtained very similar topologies. In both phenotypic

and genetic trees, the western localities branched deep in

the tree, confirming the key role played by the Richelieu

River as a geographic barrier enhancing differentiation.

The second diverging group was the eastern one, isolated

from the other groups by the Yamaska River. The south-

ern and central groups were the most closely related, pre-

senting low phenotypic and genetic differentiation.

Discussion

Despite the small geographic extent of our study, we

detected a significant morphological structure across

Monteregie populations, matching the genetic differentia-

tion observed in these populations (Rogic et al. 2013).

Most morphological differentiation was through an elon-

gation of the rostrum and a broadening of the skull in

the two populations west of the Richelieu River. Further

changes in the palatal area differentiated the populations

east of the Yamaska River from populations south of

Highway 10 and the central populations. Such changes in

the relative length of the rostrum and the palatal area or

changes in the width of the braincase are likely related

with feeding or sensory functions. However, we cannot

establish that selection is actually driving the morphologi-

cal differentiation in our white-footed mouse populations,

and no further conclusions can be drawn on the func-

tional meaning of the morphological changes we

observed. Yet, it remains that populations that were simi-

lar in their genetic composition were also more similar in

the shape of the skull. Such high congruence between

phenotypic traits and microsatellites has not often been

reported. When discrepancies between the two were

observed, the phenotypic divergence was usually attrib-

uted to variations in the local environment or food avail-

ability (Lalis et al. 2009; DeLeon et al. 2012; Sistrom

et al. 2012). Divergent patterns of phenotypic and geno-

typic differentiation suggest that the phenotypic trait

studied is under selection. Alternatively, similar patterns

of molecular and phenotypic differentiation have been

related both to random genetic drift or natural selection

experienced by geographically separated populations

(Smith et al. 2005; Mil�a et al. 2009; Ortego et al. 2011).

The comparison of Qst and Fst values could be used to

Table 4. Results of the multiple regression on distance matrices per-

formed on morphological distances with the barrier matrices as

explanatory variables.

Barrier Estimate P value

Richelieu river 1.21E-05 0.0001

Yamaska river 3.30E-05 0.0085

Highway 10 �1.40E-05 0.2003

Highway 112 1.85E-05 0.0839
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Figure 3. Scatterplot of the between-groups

principal component analysis. The first three
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they explain are indicated. Each symbol

corresponds to the mean by locality, and the
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the three axes are represented using thin plate
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detect the effect of selection on individuals (but see Whit-

lock 2008), but it requires a study design (i.e., common

garden experimental setting) that is not readily available

when studying historical patterns of differentiation from

museum specimens. Instead, an approach integrating sev-

eral distinct levels of differentiation, both morphological

and molecular, can hint toward the mechanism driving

differentiation in the study samples. Here, we suggest that

local differentiation is the result of successive independent

founder events (Bell 2013), a mechanism especially rele-

vant in a context of range expansion. The congruence

observed in P. leucopus between nuclear markers and the

phenotype is likely related with habitat fragmentation in

the region (as seen in Dujardin 2008), as well as larger

scale responses to environmental change.

Effect of geographic barriers

Geographic barriers such as the Richelieu and the

Yamaska rivers play a major role in the population spatial

differentiation. The white-footed mouse is able to swim,

but not very efficiently (Klee et al. 2004), and there is no

evidence that large rivers can be crossed by mice. Follow-

ing the Horton–Strahler stream ordering (Horton 1945;

Strahler 1952; Peckham and Gupta 1999), the Richelieu

River is estimated to be of fifth order or higher, and the

Yamaska River to be at least of fourth order. Although

smaller than the Richelieu, the Yamaska River is wide

enough to constitute a significant barrier to dispersal for

the mouse. The differentiations we observed between the

western and central groups and between the eastern and

central groups are hence interpreted as the result of these

two strong geographic barriers oriented south–north.
Frequently evidenced as efficient barriers, especially in

low-mobility species such as amphibians (Baur and Baur

1989), roads have also proven to affect bigger animals

such as the Eurasian lynx (Kramer-Schadt et al. 2004),

bobcats or coyotes (Riley et al. 2006). Contrary to rivers,

roads did not appear to be as strong barriers to dispersal

for P. leucopus. Southern populations diverged in their

skull morphology from other groups, but this difference

was not large. Such a small barrier effect was also found

for highway H112 using microsatellites (Rogic et al.

2013). Supporting these results, (McGregor et al. 2007)

evidenced that small mammals tends to avoid roads,

although some individuals are able to cross highways.

Similarly, in our study system, roads thus tend to impede

dispersal in P. leucopus, but not as strongly as rivers.

Effect of the connectivity of the habitat

We found that southern populations were intermediate in

their morphology between Eastern and central ones. This

pattern can be explained by the presence of numerous

forest patches south of our study area, creating an effec-

tive southern connection between the eastern and western
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groups, through the southern localities. If the white-

footed mouse is found mostly in forests, it is also fre-

quently observed in diverse habitats such as open fields,

grass, road ditches, corn fields, or human habitations

(Cummings and Vessey 1994). This diversity of habitat

used by the mouse increases its dispersal ability, and indi-

viduals are able to disperse over a wide range of distances

throughout their life span, between 85 and 867 m

(Krohne and Hoch 1999). Forest fragments in our sam-

pling area tend to connect in the south, and most of the

interpatches distances are lower than 900 m. The mouse

is thus likely able to use the multiple forest patches as

stepping stones as a mean to disperse over large distances,

a very efficient colonization process too often neglected

(Baum et al. 2004).

Effect of the habitat in the landscape

A vast majority (63%) of our study extent is covered by

agricultural fields, and our sampling sites thus represent

woodland areas within a “sea of agriculture”. Intense agri-

cultural practices began in the 1940s and led to a 70%

decrease in the local forests in the region (Wampach

1988). Open fields negatively affect P. leucopus movement

(Rizkalla and Swihart 2007), which is expected to enhance

population differentiation. Most mouse individuals prefer

to use corridors and are unlikely to willingly enter the

agricultural matrix (Rizkalla and Swihart 2007). However,

the genetic study performed on our samples (Rogic et al.

2013) did not evidence that white-footed mice in isolated

woodlots suffered decreased genetic variation, as it would

be expected if dispersal was substantially inhibited by the

agricultural matrix (Mossman and Waser 2001). Similarly,

we found a strong phenotypic similarity between central

populations that are all located in an agriculture-domi-

nated landscape. The influence of an agricultural land-

scape on mice dispersal appears thus to be limited, which

may be in part due to the existence of seasonal corridors

within the landscape. Depending on crop height and

maturity, they can act as dispersal barrier (Krohne and

Hoch 1999) or corridors (Cummings and Vessey 1994;

Anderson et al. 2003), explaining the low genetic and

morphological differentiation between the populations

sampled in forest patches within an agricultural land-

scape.

Recent range expansion

Recent climate change deeply affect species geographic

distribution, and there is strong empirical evidence for

range expansion in Northern Hemisphere temperate spe-

cies driven by climate modifications (e.g., Thomas and

Lennon 1999; Hill et al. 2002; Parmesan 2006). Although

relatively rare in the past (Grant 1976), the white-footed

mouse has become more abundant in the region over the

last few decades (Rogic et al. 2013). The northern range

limit of this species has been shifting north recently

(Myers et al. 2009), and the northward expansion of

P. leucopus is estimated to occur at a rate of 10 km per

year in southern Quebec (E. Roy-Dufresne, L. Travis, J. A.

Simon, G. L. Chmura, and V. Millien, unpublished data).

The correlation between morphological and genetic pat-

terns of differentiation we observed among P. leucopus

populations may thus reflect the ongoing expansion of

the white-footed mouse via small founder populations,

independently colonizing different forest patches. Our

finding of a significant isolation by distance further sup-

ports this hypothesis. In other words, we posit that the

fragmentation of the landscape and the local habitat mod-

ulate the pattern of northward colonization observed in

P. leucopus. Instead of a homogeneous front of migration,

our results point to the existence of many propagules,

small founding populations colonizing one forest patch

after another. Further analyses have to be performed to

test whether such a mechanism promoting local differen-

tiation of populations exists in our study system, but the

congruence between nuclear neutral markers and pheno-

typic traits supports this hypothesis. Coupling morpho-

logical data to genetic analysis could be an efficient way

to study the process of range expansion, mostly addressed

genetically so far (e.g., Edmonds et al. 2004; Excoffier and

Ray 2008; Hallatschek and Nelson 2008; Peter and Slatkin

2013).

The white-footed mouse postglacial history

In addition to recent climate warming, larger scale factors

may also play an important role in the distribution and

differentiation of P. leucopus at the most northern part of

its range. Global warming since the last glacial maximum,

about 20,000 years ago, has influenced species distribu-

tion (Taberlet et al. 1998; Hewitt 2004). Similarly, the

postglacial history of the white-footed mouse has shaped

its current pattern of distribution and most likely its

morphological differentiation. Here, we found that the

Richelieu River currently acts as a strong geographic bar-

rier for the mouse. The morphological differentiation of

populations located on each side of the river could have

occurred recently through isolation by the river. However,

the postglacial recolonization patterns of the white-footed

mouse may also have resulted in such a geographic differ-

entiation. Based on mitochondrial DNA, two clades of

the white-footed mouse are present in our study area,

along the northern and southern shores of the St-Law-

rence River, respectively (J. Fiset, N. Tessier, V. Millien,

and F. -J. Lapointe, unpubl. data). These two lineages are
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related to the central and north-eastern North American

clades evidenced in Rowe et al. (2006), showing that the

P. leucopus populations currently in Quebec originated

from two distinct glacial refugia. Following the Horton–
Strahler stream ordering (Horton 1945; Peckham and

Gupta 1999), the Saint Lawrence River is estimated to be

a 10th order river and is very unlikely to be crossed by

mice. The Richelieu is only a fifth order river, but also

constitutes a strong barrier to dispersal for the mouse. In

sum, the current pattern of genetic and morphological

differentiation of the white-footed mouse in southern

Quebec is likely the result of the pattern of postglacial

recolonization from distinct southern refugia, modulated

by the presence of large north–south oriented rivers.

Conclusions

The pattern of strong interpopulation morphological dif-

ferentiation we found here was unexpected at such a

small geographic scale. We conclude that while large riv-

ers and postglacial recolonization routes have shaped the

current distribution and differentiation of P. leucopus

populations, further local differentiation is occurring, at

the scale of the landscape. The fragmentation of the land-

scape, in particular the presence of north–south oriented

rivers, contributes to this differentiation and is modulat-

ing the northward shift in the geographic range of

P. leucopus in response to the global warming (Myers

et al. 2009). Landscape fragmentation at the northern

range edge of the species prevents the occurrence of a

continuous front of colonization and northern expansion

is thus achieved through successive independent founding

events. This observation is of importance if we are to

implement faunal pathways as a mitigation measure in

response to global change (e.g., Nu~nez et al. 2013), and

such south–north corridors may allow a better preserva-

tion of genetic and phenotypic diversity during the pro-

cess of expansion. Furthermore, morphological variation

is often interpreted as an adaptive response to the envi-

ronment, such as specific food, habitat resources, or the

climate (e.g., Renaud and Millien 2001; Millien and

Damuth 2004; Millien 2004; Pergams and Lawler 2009;

Ravinet et al. 2012; Renaud et al. 2013). However, the

morphological differentiation observed across populations

at the northern limit of the species range is not necessar-

ily a signature of local adaptation. In the context of range

expansion, the hypothesis of multiple independent foun-

der events at the front of invasion with no adaptive com-

ponent cannot be ruled out. Finally, both range

expansion and local adaptation could play in concert and

produce a geographic structure, such as the one we

observed here in the white-footed mouse. The integration

of phenotypic, mtDNA, and nDNA data also pointed to

the overlooked signature of postglacial recolonization in

shaping the current patterns of species geographic differ-

entiation. It is likely that the pattern of postglacial recol-

onization from distinct glacial refugia we described for

the white-footed mouse also occurred in many other

North American species (e.g., Zamudio and Savage 2003),

thus similarly affecting the current patterns of population

differentiation at the northern edge of their range in

southern Qu�ebec. This is of relevance, as this region is

located at the front range of many temperate species that

are expected to shift their distribution toward northern

latitude (Berteaux et al. 2010). Overall, the mechanisms

and signature of range expansion are still poorly under-

stood (Sexton et al. 2009). In this context, the integration

of genetic and phenotypic data, both reflecting mecha-

nisms operating at differing temporal and geographic

scales, can help better understand the patterns of pole-

ward distribution shifts of species and build scenarios for

the future faunal turnover anticipated in response to glo-

bal warming (Berteaux et al. 2010; Auzel et al. 2012).
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