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The auditory front-end is an integral part of a spiking neural network (SNN) when
performing auditory cognitive tasks. It encodes the temporal dynamic stimulus, such
as speech and audio, into an efficient, effective and reconstructable spike pattern
to facilitate the subsequent processing. However, most of the auditory front-ends in
current studies have not made use of recent findings in psychoacoustics and physiology
concerning human listening. In this paper, we propose a neural encoding and decoding
scheme that is optimized for audio processing. The neural encoding scheme, that
we call Biologically plausible Auditory Encoding (BAE), emulates the functions of the
perceptual components of the human auditory system, that include the cochlear filter
bank, the inner hair cells, auditory masking effects from psychoacoustic models, and the
spike neural encoding by the auditory nerve. We evaluate the perceptual quality of the
BAE scheme using PESQ; the performance of the BAE based on sound classification
and speech recognition experiments. Finally, we also built and published two spike-
version of speech datasets: the Spike-TIDIGITS and the Spike-TIMIT, for researchers to
use and benchmarking of future SNN research.

Keywords: spiking neural network, neural encoding, auditory perception, spike database, auditory masking
effects

INTRODUCTION

The temporal or rate based Spiking Neural Networks (SNN), supported by stronger biological
evidence than the conventional artificial neural networks (ANN), represents a promising research
direction. Neurons in a SNN communicate using spiking trains that are temporal signals in
nature, therefore, making SNN a natural choice for dealing with dynamic signals such as audio,
speech, and music.

In the domain of rate-coding, we studied the computational efficiency of SNN (Pan et al.,
2019). Recently, further evidence has supported the theory of temporal coding with spike times.
To learn a temporal spike pattern, a number of learning rules have been proposed, which include
the single-spike Tempotron (Gütig and Sompolinsky, 2006), conductance-based Tempotron (Gütig
and Sompolinsky, 2009), the multi-spike learning rule ReSuMe (Ponulak and Kasiński, 2010;
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Taherkhani et al., 2015), the multi-layer spike learning rule
SpikeProp (Bohte et al., 2002), and the Multi-spike Tempotron
(Gütig, 2016), etc. The more recent studies are aggregate-label
learning (Gütig, 2016), and a novel probability-based multi-layer
SNN learning rule (SLAYER) (Shrestha and Orchard, 2018).

In our research, a question is constantly asked: what are the
advantages of SNN over ANN? From the viewpoint of neural
encoding, we expect to encode a dynamic stimulus into spike
patterns, which was shown to be possible (Maass, 1997; Ghosh-
Dastidar and Adeli, 2009). Deep ANNs have benefited from the
datasets created in recent years. In the field of image classification,
there is ImageNet (Russakovsky et al., 2015); in the field of
image detection, there is COCO dataset (Veit et al., 2016); while
in the field of Automated Speech Recognition (ASR), there is
TIMIT for phonemically and lexically transcribed speech of
American English speakers (Garofolo, 1993). With the advent
of these datasets, better and faster deep ANNs inevitably follow
(Hochreiter and Schmidhuber, 1997; Simonyan and Zisserman,
2014; Redmon et al., 2016). The publicly available datasets
become the common platform for technology benchmarking. In
the study of neuromorphic computing, there are some datasets
such as N-MNIST (Orchard et al., 2015), DVS Gestures (Amir
et al., 2017), and N-TIDIGITS (Anumula et al., 2018). They are
designed for SNN benchmarking. However, these datasets are
relatively small compared with the deep learning datasets.

One may argue that the benchmarking datasets for deep
learning may not be suitable for SNN studies. Let us consider
image classification as an example. Humans process static images
in a similar way as they would process live visual inputs. We
note that live visual inputs contain much richer information
than 2-D images. When we map (Rueckauer et al., 2017) or
quantize (Zhou et al., 2016) static images into spike trains, and
compare the performance of an ANN on static images, and a
SNN on spike trains, we observe an accuracy drop. One should,
however, not hastily conclude that SNNs are inherently poor in
image classification as a consequence of event-based activations
in SNNs. Rather, the question seems to be: how can one better
encode images into spikes that are useful for SNNs, and how can
one better use these spikes in an image classification task? For
some of the recent image-based neuromorphic datasets, Laxmi
et al. (Iyer et al., 2018) has argued that no additional information
is encoded in the time domain that is useful for pattern
classification. This prompts us to look into the development
of event-based datasets that inherently contain spatio-temporal
information. On the other hand, a dataset has to be complex
enough such that it simulates a real-world problem. There are
some datasets that support the learning of temporal patterns
(Zhang et al., 2017, 2018, 2019; Wu et al., 2018a), whereby each
pattern contains only a single label, such as a sound event or
an isolated word. Such datasets are much simpler than those in
deep learning studies (Graves et al., 2006), whereby a temporal
pattern involves a sequence of labels, such as continuous speech.
For SNN study to progress from isolated word recognition
toward continuous speech recognition, a continuous speech
database is required. In this paper, we would describe how
we convert the TIMIT dataset to its event-based equivalent:
Spike-TIMIT.

A typical pattern classification task consists of three
stages: encoding, feature representation, and classification. The
boundaries between each stage are getting less clear in an
end-to-end classification neural network. Even then, a good
encoding scheme can significantly ease the workload of the
subsequent stages in a classification task, for instance, the Mel-
Frequency Cepstral Coefficients (MFCC) (Mermelstein, 1976)
is still very much in use for automatic speech recognition
(ASR). Hence the design of a spiking dataset should consider
how the encoding scheme could help reduce the workload of
the SNN in a classification task. This cannot be misconstrued
as giving the SNN an unfair advantage so long as all SNNs
are measured using the same benchmark. The human cochlea
performs frequency filtering (Tobias, 2012) while human vision
performs orientation discrimination (Appelle, 1972). These all
involve encoding schemes to help us better understand our
environment. In our earlier work (Pan et al., 2019), on a simple
dataset TIDIGITS (Leonard and Doddington, 1993) that contains
only single spoken digits, we used a population threshold coding
scheme to encode the dataset into events, which we refer to as
Spike-TIDIGITS. Using such an encoding scheme, we go on to
show that the dataset becomes linearly separable, i.e., the input
can be classified based on spike counts alone. This demonstrates
that when information is encoded in both the temporal (spike
timing) and spatial (which neuron to spike) domain, the encoding
scheme is able to project the inputs to a higher dimension, that
takes some of the workload off the subsequent feature extraction
and classification stages. In the case of Spike-TIDIGITS, the
spikes encoded can be directly counted and then classified using
a Support Vector Machine (SVM). Using this neural encoding
scheme, We further enhance it and then apply it to the TIMIT
dataset in this work.

The motivation of this paper is two-fold. Firstly, we believe
that we need well-designed spike-encoded datasets that represent
the state-of-the-art encoding methodology. With these datasets,
one can focus the research on SNN feature representation
and classification tasks. Secondly, the datasets should present
a challenge in pattern classification, that become the reference
benchmark in future SNN studies.

As speech is the most common way of human communication,
we are looking into the neural encoding of speech signals in
this work. The first question is how best possible to convert
speech signals into spikes. There have been many related studies
in speech and audio encoding, each of which is optimized
for a specific objective, for example, the minimum signal
reconstruction error (Loiselle et al., 2005; Dennis et al., 2013;
Xiao et al., 2016). However, the speech and audio encoding
methods have not taken into consideration the combination
of psychoacoustic effects, computational efficiency, and pattern
classification performance for neuromorphic implementation. In
the SNN applications for speech recognition (Xiao et al., 2016;
Darabkh et al., 2018), MFCC (Mermelstein, 1976) are commonly
used as the spectral representation in speech recognition. Others
have tried to use the biologically plausible cochlear filter bank,
but they are either analog filters which are prone to changes in
the external environment (Liu and Delbruck, 2010), or yet to
be studied in a spike-driven SNN system (Loiselle et al., 2005).
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Yang et al. (2016) successfully implements a silicon cochlear
for event-driven audio sensing, which has not considered the
psychoacoustics of the auditory system.

Considering spectral representation, an important step in
neural encoding is to then convert the spectral energy in a
perceptual frequency band into a spike train. The most common
way is to treat the two-dimensional time-frequency spectrogram
as a static image, then converting each “pixel” value into a spike
latency time within the framing window size (Wu et al., 2018a),
or into the phase of the sub-threshold membrane potential
oscillation (Nadasdy, 2009). Such “pixel-conversion” methods
do not represent the spatio-temporal dynamics of the auditory
signals in the same way as the spike trains in a SNN, therefore,
another feature representation step is required, such as the
self-organizing map (Wu et al., 2018b), or local spectrogram
features (Dennis et al., 2013; Xiao et al., 2016). If the audio
encoding is able to capture the spatio-temporal dynamics that are
discriminative for classification (Gütig and Sompolinsky, 2009),
it is not necessary to encode every speech frame in the front-
end, therefore, the spiking rate can be reduced. Finally, it has
not been given enough attention as to how to reconstruct a
neural encoded speech signal back into its auditory signals for
perceptual evaluation. Speech signal reconstruction is a critical
task in speech information processing, such as speech synthesis,
singing synthesis, and dialogue technology.

To address the need for neuromorphic computing for
speech information processing, we propose three criteria for a
biologically plausible auditory encoding (BAE) front-end:

(1) Biologically plausible spectral features.
(2) Sparse and energy-efficient spike neural coding scheme.
(3) Friendly for temporal learning algorithms on cognitive

tasks.

The fundamental research problem in neural encoding is
how to encode the dynamic and continuous speech signals into
discrete spike patterns. Spike rate code is thought to be less likely
in an auditory system since much evidence suggests otherwise,
for example, how bats rely highly on the precise spike timing
of their auditory system to locate sound sources by detecting a
time difference as short as 5 µs. Latency code and phase code
are well supported by neuro-biological observations. However,
on its own, they cannot provide an invariant representation of
the patterns for a classification task.

To facilitate the processing of an SNN in a cognitive task,
neural temporal encoding should not only consider how to
encode the stimulus into spikes, but also care about how to
represent the invariant features. Just like the auditory and visual
sensory representations in the human prefrontal cortex, such
representations in the proposed BAE front-end are required
in an SNN framework, that can then be implemented with
a low-cost neuromorphic solution, that can effectively reduce
the processing workload in the subsequent SNN pipeline.
A large number of observations in neuroscience support the
observation that our auditory sensory neurons encode the
input stimulus using threshold crossing events in a population
of sensory neurons (Ehret, 1997; Hopfield, 2004). Inspired

by these observations, a simple version of threshold coding
has been proposed (Gütig and Sompolinsky, 2009), in which
a population of encoding neurons with a set of uniformly
distributed thresholds encode the spectral energy of different
frequency channels into spikes. Such a cross-and-fire mechanism
is reminiscent of quantization from the point of view of
information coding. In our proposed BAE encoding front-
end, such a neural coding scheme is also being incorporated.
Further investigation is presented in the “Experiment and
Results” section.

Besides effective neural coding representation, an efficient
auditory front-end aims to encode acoustic signals into
sparse spike patterns, while maintaining sufficient perceptual
information. To achieve such a goal, our biological auditory
system has provided us a solution best understood as masking
effects (Harris and Dallos, 1979; Shinn-Cunningham, 2008). The
auditory masking is a complex and yet to be fully understood
psychoacoustic phenomenon as some components of the acoustic
events are not perceptible in both frequency and time domain
(Ambikairajah et al., 1997). From the viewpoint of perceptual
coding, these components are regarded as redundancies since
they are inaudible. Implementing the masking effects, those
inaudible components will be coded with larger quantization
noise or not coded at all. Although the mechanism and
function of masking are not yet fully understood, its effects
have already been successfully exploited in auditory signal
compression and coding (Ambikairajah et al., 2001), for efficient
information storage, communication, and retrieval. In this paper,
we propose a novel idea to apply the auditory masking effects
in both frequency and time domain, which we refer to as
simultaneous masking and temporal masking, respectively, in
our auditory neural encoding front-end so as to reduce the
number of encoding spikes. This improves the sparsity and
efficiency of our encoding scheme. Given how we address
the three optimization criteria of neural encoding, we refer
to it as BAE scheme or BAE. Such an auditory encoding
front-end also provides an engineering platform to bridge
the study of masking effects between psychoacoustics and
speech processing.

Our main contributions in this paper are: (1) we emphasize
the importance of spike acoustic datasets for SNN research. (2)
we propose an integrated auditory neural encoding front-end
to further research in SNN-based learning algorithms. With the
proposed BAE encoding front-end, the speech or audio datasets
can be converted into energy-efficient, information-compact, and
well-representative spike patterns for subsequent SNN tasks.

The rest of this paper is organized as follows: in section
“Materials and Methods” we discuss the auditory masking
effects, and how simultaneous masking in the frequency
domain and temporal masking in the time domain for neural
encoding of acoustic stimulus is being implemented; the BAE
encoding scheme is applied in conjunction with masking to
RWCP, TIDIGITS, and TIMIT datasets. In section “Experiment
and Results,” we describe the details of the resulting spike
datasets and evaluate them against their original datasets. We
discuss our findings in section “Discussion” and conclude in
section “Conclusion.”
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MATERIALS AND METHODS

Auditory Masking Effects
Most of our speech processing front-ends employ a fixed
feature extraction mechanism, such as MFCC, to encode the
input signals, whereas the human auditory sensory system
ignores some while strongly emphasizes others, commonly
referred to as the attention mechanism in psychoacoustics.
The auditory masking effects closely emulate this phenomenon
(Shinn-Cunningham, 2008).

Auditory masking is a known perceptual property of the
human auditory system that occurs whenever the presence
of a strong audio signal makes its neighborhood of weaker
signals inaudible, both in the frequency and time domain.
One of the most notable applications of auditory masking
is the MPEG/audio international standard for audio signal
compression (Ambikairajah et al., 2001; Fogg et al., 2007). It
compresses the audio data by removing the acoustically inaudible
elements, or by encoding those parts with less number of bits,
due to more tolerance to quantization noise (Ambikairajah
et al., 1997). To achieve such a goal, the algorithm is supported
by two different kinds of auditory maskings according to the
psychoacoustic model (Lagerstrom, 2001):

1. In the frequency domain, two kinds of masking effects
are used. Firstly, by allocating the quantization noise in
the least sensitive regions of the spectrum, the perceptual
distortion caused by quantization is minimized. Secondly,
an absolute hearing threshold is exploited, below which
the spectral components are entirely removed.

2. In the time domain, the masking effect is applied such that
the local peaks of the temporal signals in each frequency
band will make their ensuing audio signals inaudible.

Motivated by the above signal compression theory, we propose
an auditory masking approach to spike neural encoding, which
greatly increases the coding efficiency of the spike patterns,
by eliminating those perceptually insignificant spike events.
The approach is conceptually consistent with the MPEG-1
layer III signal compression standard (Fogg et al., 2007), with
modifications according to the characteristics of spiking neurons.

Simultaneous Masking
The masking effect presented in the frequency domain is
referred to as simultaneous masking. According to the MPEG-1
standards, there are two sorts of masking strategies in the
frequency domain: the absolute hearing threshold and the
frequency masking. The simultaneous masking effects are
common in our daily life. For instance, the sensible sound levels
of our auditory systems vary in different frequencies, therefore,
we can be more sensitive to the sounds in our living environment.
This is an evolutionary advantage for survival, in both human
beings and animals. Besides the absolute hearing threshold, every
acoustic event in the spectrum will also influence the perception
of the neighboring frequency components, that is, different levels
of tones could contribute to masking effects of other frequency
tones. For instance, in a symphony show, the sounds from
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FIGURE 1 | Absolute hearing threshold Ta for the simultaneous masking. Our
hearing is more sensitive to the acoustic stimulus around several thousand
Hz, which covers the majority of the sounds in our daily life. The sounds below
the thresholds are completely inaudible.

different musical instruments can be fully or partially masked
by each other. As a result, we can enjoy the compositions
of various frequency components with rich diversities. Such a
psychoacoustic phenomenon is called frequency masking.

Figure 1 illustrates the absolute hearing threshold, Ta, as
a function of frequency in Hz. The function is derived from
psychoacoustic experiments, in which pure tones continuous in
the frequency domain are presented to the test subjects and the
minimal audible sound pressure levels (SPL) in dB are recorded.
The commonly used function to approximate the threshold is
(Ambikairajah et al., 1997):

Ta
(
f
)
= 3.64 ×

(
f

1000

)−0.8
− 6.5× e−0.6

(
f

1000−3.3
)2

+ 0.001 ×
(

f
1000

)4
(1)

For the frequency masking, in the MPEG-1 standard, some
sample pulses under masking thresholds might be partially
masked, thus they are encoded by a lower number of bits.
However, in the event-based scenario, spike patterns carry
no amplitude information, similar to on-off binary values,
which means that partial masking can hardly be realized.
As such, we have modified the approach such that all
components under the frequency masking are fully masked
(discarded). Further reconstruction and pattern recognition
experiments are necessary to evaluate such an approach. Figure 2
shows the overall masking thresholds with both masking
strategies in the frequency domain. This figure illustrates the
simultaneous masking thresholds added to the acoustic events in
a spectrogram. The sound signals with different spectral power
in different cochlear filter channels will suffer from various
masking thresholds.
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FIGURE 2 | The frequency masking thresholds acting on a maskee (the
acoustic events being masked), generated by the acoustic events from the
neighboring critical bands, are shown as a surface in a 3-D plot. The acoustic
events are referred to as the spectral power of the frames in a spectrogram.
The spectral energy axis is the sound level of a maskee; the critical band axis
is the frequency bins of the cochlear filter bank, as introduced in section
“Spike-TIDIGITS and Spike-TIMIT Databases”; the masking thresholds axis
indicates the overall masking levels on the maskees of different sound levels
from various critical bands. For example, an acoustic event of 20dB level on
the 10th critical band is masked off by the masking threshold of nearly 23dB,
which is introduced by the other auditory components of its neighboring
frequency channels.

FIGURE 3 | The overall simultaneous masking effects on a speech utterance
of “one,” in a 3-D spectrogram. Combining the two kinds of masking effects in
the frequency domain (refer to Figures 1, 2), the gray surface shows the
overall masking thresholds on a speech utterance (the colorful surface). All the
spectral energy under the thresholds will be imperceptible.

Figure 3 provides a real-world example of the simultaneous
masking. The spectrogram of a speech utterance of “one”
from the TIDIGITS dataset is demonstrated in a 3-D plot.
The gray surface illustrates the simultaneous masking threshold
acting on the spectrogram (colorful surface). By the masking
strategy, the acoustic events with spectral energy lower than the
threshold surface will be removed. Section “Biologically Plausible
Auditory Encoding With Masking Effects” will introduce how
to convert the masked spectrogram into a sparse and well-
represented spike pattern.

Temporal Masking
Another auditory masking effect is temporal masking in the time
domain. Conceptually similar to the frequency masking, a louder
sound will mask the perception of the other acoustic components
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FIGURE 4 | The illustration of temporal masking: each bar represents the
acoustic event received by the auditory system. In this paper, acoustic events
generally referred to framing spectral power, which are the elements to be
parsed to an auditory neural encoding scheme. A local peak event (red bar)
forms a masking threshold represented by an exponentially decaying curve.
The subsequent events that are weaker than the leading local peak will not be
audible until another local peak event exceeds the masking threshold.

in the time domain. As illustrated in Figure 4, the vertical bars
represent the signal intensity of short-time frames, that is called
acoustic events, along the time axis. A local peak (the first red
bar) forms a masking threshold that makes the following events
inaudible until the next local peak (the second red bar) exceeds
the masking threshold. According to the psychoacoustic studies,
the temporal masking threshold is modeled as an exponentially
decaying curve (Ambikairajah et al., 2001):

y (n) = cn × p1 (2)

where y (n) denotes the masking threshold level on the nth
following an acoustic event; c is the exponential index and p1
represents the sound level of the local peak as the beginning of
the masking. The decaying parameter c is tuned according to the
hearing quality.

Auditory Masking Effects in Both Domains
By applying both the simultaneous masking and temporal
masking illustrated above, we can remove those imperceptible
acoustic events (frames) from the overall spectrogram. Since our
goal is to apply the masking effects in the precise timing neural
code, we propose the strategy as follows:

1. The spike pattern PK×N
(
pij
)

is generated from the raw
spectrogram SK×N

(
sij
)

without masking effects, by some
temporal neural coding methods, which will be discussed
in section “Neural Spike Encoding” Here the index i, j
refers to the time-frequency bin in the spectrogram, with
i referring to the frequency bin, and j referring to the time
frame index. The spike pattern PK×N is defined as a matrix
that:

pij =


tf , if a spike is emitted within the duration of the

time-frequency bin i, j.
0, otherwise

(3)
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where tf is the encoded precise spike timing. As such the
spike pattern PK×N

(
pij
)

is a sparse matrix that records
the spike timing.

2. According to the spectrogram SK×N
(
sij
)

and the auditory
perceptual model, the simultaneous masking threshold
matrix Msimultaneous

(
msimultaneous

ij

)
and the temporal

masking threshold matrix Mtemporal

(
mtemporal

ij

)
are

obtained. The overall masking threshold MK×N
(
mij
)

is
defined as follows. It provides a 2-D masking threshold
surface that has the same dimensions as the spectrogram.

mij = max
{
msimultaneous

ij ,mtemporal
ij

}
(4)

3. A masking map 8K×N
(
φij
)

is generated, whose
dimensions are the same as the spectrogram. The element
of the matrix8K×N

(
φij
)

is defined as:

φij =

{
1, if sij ≥ mij
0, if sij < mij

(5)

where the time-frequency bin i,j is masked with φi,j =

0 when the frame energy si,j is less than the masking
threshold mij, otherwise, φ i,j = 1.

4. Apply the masking map matrix8K×N
(
φij
)

to the encoded
pattern PK×N

(
pij
)

to generate a masked spike pattern
Pmask(pmask

ij ) :

Pmask
= PK×N ◦8K×N (6)

where ◦ denotes the Hadamard product. By doing so,
those perceptually insignificant spikes are eliminated, thus
forming a more compact and sparse spike pattern.

Figure 5 demonstrates the auditory masking effects acting in
both the frequency and time domains, on a speech utterance of
“one” in the TIDIGITS dataset. The colored surface represents
the original spectrogram while the gray areas represent the
spectral energy values that are being masked. For TIDIGITS
datasets, nearly half of the acoustic events (frames) are
removed according to our auditory masking strategy, which
corresponds to the 55% removal of PCM pulses in speech coding
(Ambikairajah et al., 2001).

Cochlear Filters and Spike Coding
The human auditory system is primarily a frequency analyzer
(Tobias, 2012). Many studies have confirmed the existence of
the perceptual centre frequencies and equivalent bandwidths.
To emulate the working of the human cochlea, several artificial
cochlear filter banks have been well studied: GammaTone filter
bank (Patterson et al., 1987; Hohmann, 2002), Constant Q
Transform-based filter bank (CQT) (Brown, 1991; Brown and
Puckette, 1992), Bark-scale filter bank (Smith and Abel, 1999),
etc. They share the same idea of logarithm distributed centre
frequencies and constant Q factors but slightly differ in the exact
parameters. To build the auditory encoding system, we adopt an
event-based CQT-based filter bank in the time domain, following
our previous work (Pan et al., 2018).

Time-Domain Cochlear Filter Bank
Adopting an event-based approach to emulate the human
auditory system, we propose a neuronal implementation of the
event-driven cochlear filter bank, of which the computation can
be parallelized as follows,

• As illustrated in Figure 6, a speech waveform
(Figure 6A) is filtered by K neurons (Figure 6B) where
each neuron represents one cochlear filter from a
particular frequency bin.
• The weights of each neuron in Figure 6B are set as the time-

domain impulse response of the corresponding cochlear
filter. The computing of a neuron with its input is inherently
a time-domain convolution process.
• The output of the filter bank neurons is a K-length vector

(Figure 6C), where K is the number of filters, for each time
step. Since the signal (Figure 6A) shifts sample by sample,
the width of the output matrix is the same as the length of
the input signal. As such, the auditory signal is decomposed
into multiple channels in parallel, forming a spectrogram.

Suppose a speech signal x with M samples
x = [x1, x2, ...., xM] sampled at 16 kHz. For the kthcochlear
filter, the impulse response (wavelet) is a Mk-length vector
Fk = [Fk(1), Fk(2), ...., Fk(Mk)]. We note the impulse response
Fk has an infinite window size, however, numerically its
amplitude decreases to small values outside an effective window,
thus having little influence on the convolution results. As
investigated in Pan et al. (2018), we empirically set Mk to an
optimal value. So the mth output of the kth cochlear filter neuron
is modeled as yk (m):

yk(m) =
Mk∑
i=1

φm(i)Fk(i), k = 1, 2, ...,K, m = 1, 2, ...,M (7)

φm = [xm, xm+1, xm+2, ..., xm+Mk−1], m ∈ 1, ...,M (8)

φm is a subset of the input samples within the mth window, whose
length is the same as that of the Mk-length wavelet, indicated
as the samples between the two arrows in Figures 6A,B. The
window φm will move sample by sample, naturally along with the
flow of the input signal samples. At each time step, a vector of
length K, which is the number of filters, is generated as shown in
Figure 6C. After M such samples, the final output time-frequency
map of the filter bank is a K×M matrix YK × M .

After time-domain cochlear filtering, the K × M time-
frequency map YK × M should be framed, which emulates the
signal processing of hair cells in the auditory pathway. For the
output waveform from each channel, we apply a framing window
of length l (samples) with a step size of l/2 and calculate the
logarithmic frame energy e of one framing window:

e = 10 log

 l∑
q=1

x2
q

 (9)

where xq denotes the samples within the l-length window;
e is the spectral energy of one frame, hence obtaining the
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FIGURE 5 | Both the simultaneous and temporal masking effects acting on the 3-D plot spectrogram of a speech utterance of “one.” The gray-color shaded parts of
the spectrogram are masked.

A

B

C

FIGURE 6 | (A) A speech signal of M samples; (B) Time-domain filter bank with K neurons that act as filters; (C) The output spectrogram that has K × M dimension.

time-frequency spectrum SK × N (sij) as indicated in section
“Auditory Masking Effects in Both Domains” which will be
further encoded into spikes.

Neural Spike Encoding
In the inner ear, the motion of the stereocilia in the inner hair
cells is converted into a chemical signal that excites adjacent nerve
fibers, generating neural impulses that are then transmitted along
the auditory pathway. Similarly, we would like to convert the sub-
band framing energy into electrical impulses, or so-called spikes,
for the purpose of information encoding and transmission. In
the prior work, the temporal dynamic sequences are encoded
using several different methods: latency coding (Wu et al., 2018a),
phase coding (Arnal and Giraud, 2012; Giraud and Poeppel,

2012), latency population coding (Dean et al., 2005), that are
adopted for specific applications. These encoding schemes are not
optimized for neuromorphic implementation.

We would like to propose a biologically plausible neural
encoding scheme by taking into account the three criteria as
defined in section “Introduction.” In this section, the particular
neural temporal coding scheme, which converts perceptual
spectral power to precise spike times, is designed to meet the
need of synaptic learning rules in SNNs (Gütig and Sompolinsky,
2006; Ponulak and Kasiński, 2010). As such, the resulting
temporal spike patterns are supposed to be friendly toward
temporal learning rules.

In our previous work (Pan et al., 2019), two mainstream neural
encoding schemes, the single neuron temporal codes (latency
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coding, phase coding) and the population codes (population
latency/phase coding, threshold coding) are compared. It is
found that the threshold coding outperforms the other coding
schemes in SNN-based pattern recognition tasks. Next are some
observations made while comparing threshold coding, and the
single neuron temporal coding.

First of all, the single temporal coding scheme, such as
latency or phase coding, encodes the spectral power using
spike delaying time, or phase-locking time. Suppose a frame of
normalized spectral power is e, the nth latency spike timing tfn is
defined as:

tfn = (1− e) ∗ T + (n− 1) ∗ T = (n− e) ∗ T (10)

where T denotes the time duration of the encoding window.
For the phase coding, tfn is phase-locked to the nearest peak
of the sub-threshold membrane oscillation. The spectral power,
that represents the amplitude information, e is represented as
the relative spike timing (1− e) ∗ T within each window and the
number of spikes embedded are in the order n. Unfortunately,
the SNN can hardly decode such an encoding scheme without
the knowledge of the encoding window boundaries, implicitly
provided by the spike order n and window length T. The
spatio-temporal spike patterns could not provide such knowledge
explicitly to the SNN. On the other hand, in the population
code, such as threshold coding, the multiple encoding neurons
naturally represent the amplitudes of the spectral power frames,
and we only need to represent the temporal information in the
spike timing. For example, the spike timing of the nth onset
encoding neuron of the threshold code tnf is:

tnf = tcrossing (11)

tcrossing records the time when the spectral tuning curve
from one sub-band crosses the onset threshold θn of the nth
encoding neuron. In this way, both the temporal and amplitude
information is encoded and made known to the SNN, which
meets the third criterion mentioned above.

Secondly, coding efficiency, which refers to the average
encoding spike rates (number of spikes per second), is also
studied in Pan et al. (2019). The threshold code has the least
average spike rates among all investigated neural codes. As the
threshold code encodes only threshold-crossing events, it is
supposed to be the most efficient coding method.

Thirdly, the threshold code promises to be more robust against
noise, such as spike jitter. As it encodes the trajectory of the
dynamics of the sub-band spectral power, the perturbation of
precise spike timing will have less impact on the sequence of
encoding neurons.

As such, the threshold code is a promising encoding scheme
for temporal sequence recognition tasks (Pan et al., 2019).
Further evaluation will be provided later in the experiments.
While we note that each neural coding scheme has its own
advantages, we focus on how the encoding scheme may help
subsequent SNN learning algorithms in a cognitive task in
this paper. As such, we adopt the threshold code for all
experiments in this paper.

Biologically Plausible Auditory Encoding
(BAE) With Masking Effects
We propose a BAE front-end with masking effects as illustrated
in Figure 7.

Firstly the auditory stimuli are sensed and amplified
by the microphone and some peripheral circuits, leading
to a digital signal (a). This process corresponds to the
pathway of the pinna, external auditory meatus, tympanic
membrane, and auditory tube. Then the physically sensed
stimuli are filtered by the cochlear filter bank (b), that
emulates the cochlear function of frequency analysis. The
outputs of the cochlear filter bank are parallel streams of
time-domain sub-band (or so-called critical band) signals
with psychoacoustic centre frequencies and bandwidths.
For the purpose of further neural coding and cognitive
tasks, the sub-band signals should be framed as the
logarithm-scale energy as per Eq. 9. The output of (c), the
raw spectrogram, is then converted into a precise spike
pattern. The spectrogram is also being used to calculate
the simultaneous and temporal masking thresholds, as
in (d) and (e), under which the spikes will be omitted.
Finally a sparse, perceptually related, and learnable
temporal spike pattern for a learning SNN is generated
as shown in (g).

Figure 8 gives an example of the intermediate results
at different stages in Figure 7 for a speech data waveform.
Figures 8A,B show the raw waveform and the spectrogram
of a speech utterance “three” spoken by a male speaker.
The spectrogram is further encoded into a raw spike
pattern by threshold neural coding. Figure 8D is the
masking thresholds as formulated in section “Auditory
Masking Effects,” according to which the raw spike pattern
Figure 8C is masked and results in a masked spike pattern
Figure 8E. 50.48% of all spikes are discarded, given
by the results in the later experiment section. Figure 9
further demonstrates the comparison between auditory
masked/unmasked spike patterns.

EXPERIMENT AND RESULTS

Spike-TIDIGITS and Spike-TIMIT
Databases
The TIDIGITS (Leonard and Doddington, 1993) (LDC
Catalog No. LDC93S10) is a speech corpus of spoken
digits for speaker-independent speech recognition (Cooke
et al., 2001; Tamazin et al., 2019). The speakers are from
different genders (male and female), age ranges (adults and
children), dialect districts (Boston, Richmond, Lubbock, etc.).
As such, the corpus provides sufficiently speaker diversity
and becomes one of the common benchmarking datasets.
The TIDIGITS has a vocabulary of 11 spoken words of
digits. The original database contains both isolated digits
and digits sequences. In this work, we only use the isolated
digits: each utterance contains one individual spoken digit.
In this first attempt, we would like to build a spike-version

Frontiers in Neuroscience | www.frontiersin.org 8 January 2020 | Volume 13 | Article 1420

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01420 January 14, 2020 Time: 15:32 # 9

Pan et al. An Efficient Auditory Neural Encoding

Auditory 
signals

Cochlear 
filter bank

Framing 
log energy

Threshold 
coding

Simultaneous
masking

Temporal 
masking

Spike 
pattern

A B C F

D

E

G

FIGURE 7 | The BAE scheme for temporal learning algorithms in auditory cognitive tasks. The raw auditory signals (a) are filtered by the CQT-based event-driven
cochlear filter bank, resulting in a parallel stream of sub-band signals. For each sub-band, the signal is logarithmically framed, which corresponds to the processing
in auditory hair cells. The framed spectral signals are then further masked in simultaneous and temporal masking.

A B C

D

E

FIGURE 8 | An illustration of the intermediate results in a BAE process. Raw speech signal (A) of a speech utterance “three” is filtered and framed into a
spectrogram (B), corresponding to the process in Figure 7 (a) and (c). By applying the neural threshold code, a precise spike pattern (C) is generated from the
spectrogram. The masking map as described in Eq. 5 is illustrated in (D), where yellow and dark blue color blocks represent the values 1 and 0, respectively. The
masking (D) is applied to the spike pattern (C) and the auditory masked spike pattern is obtained in (E).

speech dataset that contains sufficient diversity and can be
immediately used to train an SNN classifier (Pan et al., 2018;
Wu et al., 2018a). As each digit is repeated 224 and 226
times, the Spike-TIDIGITS has 224 × 11 = 2464 and
226 × 11 = 2486 isolated digit utterances for the training
and testing set, respectively.

The BAE encoder proposed in section “Biologically Plausible
Auditory Encoding With Masking Effects” and Figure 7 is applied
as the standard encoding scheme to generate this spike dataset.
Tables 1, 2 describe the parameters in the encoding process
of Spike-TIDIGITS.

Next, we encode one of the most popular speech dataset
TIMIT (Garofolo, 1993) into a spike-version, Spike-TIMIT.
TIMIT dataset consists of richer acoustic-phonetic content
than TIDIGITS (Messaoud and Hamida, 2011). It consists of
continuous speech utterances, that are useful for the evaluation
of speech coding schemes (Besacier et al., 2000), speech
enhancement El-Solh et al. (2007) or ASR systems (Mohamed
et al., 2011; Graves et al., 2013). Similar to TIDIGITS, the speakers
of TIMIT corpus are from eight different dialect regions in the
United States, 438 males and 192 females. There are 4621 and
1679 speech sequences in the training and testing sets. This

Frontiers in Neuroscience | www.frontiersin.org 9 January 2020 | Volume 13 | Article 1420

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01420 January 14, 2020 Time: 15:32 # 10

Pan et al. An Efficient Auditory Neural Encoding

FIGURE 9 | Encoded spike patterns by threshold coding with/without masking. The two spike patterns are encoded from a speech utterance of “five” in the
TIDIGITS dataset. The x-axis and y-axis represent the time and encoding neuron index. The positions of the colorful dots indicate the spike timings of the
corresponding encoding neurons. The colors distinguish the centre frequencies of the cochlear filter bank. With auditory masking, the number of spikes reduces by
nearly 50%, which are close to the 55% reducing rate of coding pulses as reported in Ambikairajah et al. (1997).

TABLE 1 | Parameters of neural threshold encoding for the speech and
audio databases.

Parameter Value

Window size 30 ms

Stride size 15 ms

Frequency range [200 Hz, 8000 Hz]

Sampling rate 20 kHz

TABLE 2 | Cochlear filter parameters: we use a total of 20 cochlear filters in the
BAE front-end.

Cochlear filter index Centre frequency (Hz) Bandwidth (Hz)

1 200.2 69.3

2 238.3 83.0

3 283.2 98.6

4 336.4 117.2

5 400.4 139.6

6 476.1 166.0

7 565.9 197.3

8 672.3 234.4

9 800.8 278.3

10 952.1 331.1

11 1131.3 394.5

12 1345.2 468.8

13 1600.6 557.6

14 1903.3 663.1

15 2263.7 788.1

16 2690.9 937.5

17 3200.2 1114.3

18 3805.7 1325.2

19 4525.9 1576.2

20 8000.5 6949.2

The center frequency and bandwidth of each filter are listed.

corpus has a vocabulary of 6224 words, which is larger than
that of TIDIGITS.

Our proposed BAE scheme is next evaluated in the
following sections, using both reconstruction and speech pattern
recognition experiments.

Audio Reconstruction From Masked
Patterns
According to Eq. 5, we adopt the binary auditory mask8K×N(φij)
which either fully encodes or ignores an acoustic event. It is
suggested in auditory theory (Ambikairajah et al., 1997) that
partial masking may exist in the frequency domain, especially
in the presence of rich frequency tones. We would like to
evaluate the masking effect in the BAE front-end both objectively
and subjectively.

We begin by reconstructing the spike trains into speech
signals, and then evaluate the speech quality using several
objective speech quality measures: Perceptual Evaluation of
Speech Quality (PESQ), Root Mean Square Error (RMSE),
and Signal to Distortion Ratio (SDR). The PESQ, defined in
Beerends et al. (2002) and Rix et al. (2002), is standardized
as ITU-T recommendation P.862 for speech quality test
methodology (Recommendation P.862, 2001). The core
principle of PESQ is the use of the human auditory perception
model (Rix et al., 2001) for speech quality assessment.
For speech coding, especially the perceptual masking
proposed in this paper, the PESQ measure could correctly
distinguish between audible and inaudible distortions and
thus assess the impact of perceptually masked coding noise.
Besides, the PESQ is also used in the assessment of MPEG
audio coding where auditory masking is involved. In this
paper, the PESQ scores are further converted to MOS-
LQO (Mean Opinion Score-Listening Quality Objective)
scores ranging from 1 to 5, which are more intuitive
for assessing speech quality. The mapping function is
obtained from ITU-T Recommendation P.862.1 (ITU-T
Recommendation, 2003). Table 3 defines the MOS scales and
their corresponding speech quality subjective descriptions
(Recommendation P.800, 1996).

TABLE 3 | Perceptual evaluation of speech quality (MOS) scores and their
corresponding perceptual speech quality subjective assessments.

PESQ (MOS) scores 5 4 3 2 1

Speech quality Excellent Good Fair Poor Bad
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FIGURE 10 | The reconstruction from a spike pattern into a speech signal. Parallel streams of threshold- encoded spike trains that represent the dynamics of
multiple frequency channels are first decoded into sub-band digital signals. The sub-band signals are further fed into a series of synthesis filters, which are built
inversely from the corresponding analysis cochlear filters as in Figure 6. The synthesis filters compensate for the gains from the analysis filters for each frequency
bin. Finally, the outputs from the synthesis filter banks sum up to generate the reconstructed speech signal.

TABLE 4 | The objective audio quality measures of the reconstructed audio
signals for environmental sounds dataset RWCP.

Reconstructed
signal

PESQ RMSE SDR (dB) Reduced
rate (%)

ŝraw 4.53 2.79 × 10−4 38.96 0

ŝmask 4.15 5.67 × 10−4 33.13 39.38

ŝrandom 2.81 1.85 × 10−2 4.95 40.07

The reduced rates refer to the ratio of masked spikes.

TABLE 5 | The objective speech quality measures of the reconstructed speech
signals for the spoken digits dataset TIDIGITS.

Reconstructed
signal

PESQ RMSE SDR (dB) Reduced
rate (%)

ŝraw 4.54 4.78 × 10−4 34.60 0

ŝmask 4.43 7.49 × 10−4 29.94 50.48

ŝ2×threshold 3.80 8.50 × 10−3 5.65 50.80

ŝrandom 2.92 1.05 × 10−2 4.76 49.91

The reduced rates refer to the ratio of masked spikes.

Besides PESQ, the RMSE (Eq. 12) and Expand SDR (Eq. 13)
measures are also reported, where xi and x̂i denote the ith time-
domain sample of the original and reconstructed speech signals
x1×M and x̂1×M , respectively.

RMSE =

√√√√ 1
M

M∑
i=1

(xi − x̂i)2 (12)

SDR = 10 log10

( ∑M
i=1(xi)

2∑M
i=1(xi − x̂i)2

)
(13)

For comparison, we compare three groups of reconstructed
speech signals: (1) the reconstructed signal ŝmask from spike trains

TABLE 6 | The objective speech quality measures of the reconstructed speech
signals for the continuous and large-vocabulary speech dataset TIMIT.

Reconstructed
signal

PESQ RMSE SDR (dB) Reduced
rate (%)

ŝraw 4.54 1.23 × 10−4 42.28 0

ŝmask 4.44 3.10 × 10−4 34.02 29.33

ŝrandom 2.35 9.20 × 10−3 4.83 30.8

The reduced rates refer to the ratio of masked spikes.

with auditory masking; (2) the reconstructed signal ŝraw from raw
spike trains without auditory masking; and (3) the reconstructed
signal ŝrandom from randomly masked spike trains.

Figure 10 depicts the flowchart of the reconstruction process.
The left and right panels represent the spike encoding and
decoding processes. The raw speech signals are first decomposed
by a series of cochlear analysis filters, generating parallel
streams of sub-band signals as in Figure 7 (b). The 20 sub-
band waveforms are encoded into spike times with masking
strategies and then decoded back to sub-band speech signals.
The reproduced sub-band waveforms 1 to K (20 in this work)
are gain-weighted and summed to form the reconstructed
speech signal for perceptual quality evaluation. Since the
cochlear filters decompose the input signal by various weighting
gains in different frequency bands, the weighting gains in
the decoding part represent the inverse processing of the
cochlear filters.

The audio quality of the three groups of reconstructed signals
is compared, as reported in Tables 4–6. For a fair comparison,
we first simulate a random masking effect by randomly dropping
the same amount of spikes as that of the auditory masking.
We further simulate a masking effect by doubling the firing
thresholds that are used in Figure 7 (f) purely according to energy
level. The reconstructed signals from such elevated thresholds
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TABLE 7 | Spiking neural network architectures for RWCP sound classification and TIDIGITS speech recognition tasks.

Dataset and task Input layer Output layer Learning rule

RWCP sound classification 1 × 620 encoding neurons 1 × 10 LIF neurons Tempotron

TIDIGITS speech recognition 1 × 620 encoding neurons 1 × 11 LIF neurons MPD-AL

LIF refers to the Leaky-Integrate and Fire spiking neuron.

TABLE 8 | The RWCP classification accuracy for different neural encoding
schemes and the average spike rates.

Neural encodings-classifier model Classification
accuracy (%)

# Spikes/
second

BAE-tempotron 99.5 245

Latency coding-tempotron 10.1 1, 598

Phase coding-tempotron 10.1 1, 598

Population coding-tempotron 99.0 4, 627

Threshold coding-tempotron 99.5 557

MFCC-HMM Dennis et al., 2013 90.0 –

LSF-SNN Dennis et al., 2013 98.5 –

LTF-SNN Xiao et al., 2016 97.5 –

DKP-SNN Yao et al., 2019 99.1 –

The average spike rates refer to the average number of spikes per second when
the same audio samples are encoded.

are denoted as ŝ2 × threshold. The raw spike patterns without any
masking are used as a reference.

The perceptual quality scores of the ŝmask and ŝraw are rather
close at a high level of approximately 4.5, which suggests a
satisfying subjective quality between “Excellent” and “Good”
according to Table 3. It is noted that the speech signals with
random masking are perceived as “Poor” in quality. Besides the
PESQ, the other two measures also lead to the same conclusion.
The RMSE of ŝraw and ŝmask are approximately two orders
of magnitude larger than that of the ŝrandom; the SDRs also
show a great gap.

Sound Classification by SNN for RWCP
Dataset
Firstly, the BAE encoding is evaluated by a sound classification
task on the RWCP sound scene database (Nakamura et al.,
2000), which records the non-speech environmental sounds
with rich and diverse frequency components. There are 10
sound categories in this database: bells, bottle, buzzer, cymbals,
horn, kara, metal, phone, ring, and whistle. The sound
recordings, each clip lasting for several seconds, are encoded
into sparse spatio-temporal spike patterns and classified by a
supervised learning SNN. We adopt a network structure that
is shown in Table 7 with Tempotron synaptic learning rule
(Gütig and Sompolinsky, 2006).

Besides the BAE scheme, we also implement several other
neural encoding schemes for the threshold coding (Figure 7)
(f), such as latency coding (Gollisch and Meister, 2008), phase
coding (Giraud and Poeppel, 2012), population coding (Dean
et al., 2005), etc. The detailed implementation can be found

at (Pan et al., 2019). The classification accuracy, as well as the
average spike rates are summarized in Table 8.

The results in Table 8 show that our BAE scheme achieves
the best classification accuracy (99.5%) with a spiking rate of
245 spikes per second, across the other commonly used neural
encoding schemes. The results suggest that the proposed BAE
encoding scheme is both effective in pattern classification, and
energy-efficient.

Speech Recognition by SNN for TIDIGITS
Dataset
In this section, we evaluate the BAE scheme in a speech
recognition task, which also aims to evaluate the coding fidelity
of our proposed methodology. The spike patterns encoded
from TIDIGITS speech dataset are fed into an SNN, and the
outputs correspond to the labels of which spoken digits the
patterns are encoded from. The spike learning rule is Membrane
Potential Driven Aggregate-Label Learning (MPD-AL) (Zhang
et al., 2019). The network structure is given in Table 7.

To evaluate the effectiveness and robustness of the BAE
front-end, we compare the classification performances between
spike patterns with and without auditory masking. Gaussian
noise, measured by Signal-to-Noise Ratio (SNR) in dB, is
added to the original speech waveforms before the encoding
process. Figure 11 shows the classification accuracy under noisy
conditions and in the clean condition. Besides, we also compare
our scheme with the other benchmarking results in Table 9.

The results show that the pattern classification accuracy for
masked patterns is slightly higher than those of the unmasked
patterns, under different test conditions. Above all, referring to
Table 5, our proposed BAE scheme helps to reduce nearly half of
the spikes, which is a dramatic improvement in coding efficiency.

Large Vocabulary Speech Recognition
for TIMIT Dataset
In section “Biologically Plausible Auditory Encoding With
Masking Effects,” we present how the TIMIT dataset has been
encoded into spike trains, which we henceforth refer to as
Spike-TIMIT. We next train a recurrent neural network, the
LSTM (Hochreiter and Schmidhuber, 1997) on both the original
TIMIT and Spike-TIMIT datasets, with the CTC loss function
(Graves et al., 2006). The LSTM architectures and the system
performances on various TIMIT datasets are summarized in
Table 10. The LSTM networks are adopted from Tensorpack1.
We obtained a PER of 27% and 30%, respectively, for the TIMIT
and Spike-TIMIT datasets. For comparison, we also report the
accuracy for Spike-TIMIT without masking that shows 28% PER.

1Wu Y. et al. (2016). Tensorpack. Available at: https://github.com/tensorpack/.
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FIGURE 11 | The classification accuracy for the Spike-TIDIGITS dataset
under different signal-to-noise ratios, with or without masking effects. The
accuracy for the Spike-TIDIGITS with masking effects is slightly higher than
that for the Spike-TIDIGITS without masking effects.

TABLE 9 | The TIDIGITS speech recognition accuracy for different neural
encoding schemes.

Models of TIDIGITS speech recognition Classification
accuracy (%)

Biologically plausible auditory encoding (BAE)-MPDAL 97.4

Liquid state machine Zhang et al., 2015 92.3

SNN-SVM Tavanaei and Maida, 2017b 91.0

Spiking CNN-HMM Tavanaei and Maida, 2017a 96.0

AER silicon cochlea-SVM Abdollahi and Liu, 2011 95.6

Auditory spectrogram-SVM Abdollahi and Liu, 2011 78.7

We also notice some improvement in accuracy when dropout
is introduced for Spike-TIMIT but not for TIMIT. Although
the phone error rates are quite close across these datasets, we
observe that the Spike-TIMIT derived from our proposed BAE
scheme shows the highest spike efficiency (30% spike reduction
in Table 6), which further improves the energy efficiency.

DISCUSSION

In this paper, we propose a BAE scheme, especially for speech
signals. The encoding scheme is inspired by the modeling of the
human auditory sensory system, which is composed of spectral
analysis, neural spike coding, as well as the psychoacoustic
perception model. We adopt three criteria for formulating the
auditory encoding scheme.

For the spectral analysis part, a time-domain event-based
cochlear filter bank is applied, with the perceptual scale of
centre frequencies and bandwidths. The key feature of the
spectral analysis is the parallel implementation of time-domain
convolution. One of the most important properties of SNN
is its asynchronous processing. The parallel implementation
makes the neural encoding scheme a friendly frontend for any
SNN processing. The neural encoding scheme, the threshold
code in our case, helps to generate a sparse and representative
spike patterns for efficient computing in the SNN classifier. The

threshold code helps in two aspects: firstly it tracks the trajectory
of the spectral power tuning curves, which represents the features
in the acoustic dynamics; secondly, the threshold code, as a
form of population neural code, is able to project the dynamics
in the time domain onto the spatial domain, which facilitates
the parallel processing of spiking neurons on cognitive tasks
(Pan et al., 2019). Another key component of the BAE front-
end is the implementation of auditory masking that benefits
from findings in human psychoacoustic experiments. The
integrated auditory encoding scheme fulfills the three proposed
design criteria. We have evaluated our BAE scheme through
signal reconstruction and speech recognition experiments giving
very promising results. To share our study with the research
community, the spike-version of TIDIGITS and TIMIT speech
corpus, namely, Spike-TIDIGITS, and Spike-TIMIT, will be made
available as benchmarking datasets.

Figure 12 illustrates some interesting findings in our proposed
auditory masking strategy. The upper, middle and lower panels of
Figure 12 represent three speech utterances from the TIDIGITS
dataset. The first and second column illustrates the encoded spike
patterns with and without auditory masking effects. It is apparent
that a large number of spikes are removed. The graphs in the
third column demonstrate the membrane potential of the output
neuron in the trained SNN classifier after being fed with both
patterns during the testing phase. For example, the LIF neuron
in (Figure 12C) responds to the speech utterance of “six.” As
such, the encoded pattern of spoken “six,” as in (Figures 12A,B)
will trigger the corresponding neuron to fire a spike in the
testing phase. The sub-figure (c) demonstrates that though
the sub-threshold membrane potentials of masking/unmasking
patterns have different trajectories, the two membrane potential
curves will exceed the firing threshold (which is 1 in this
example) at close timing. Similar results are observed in
Figures 12F,I. The spike patterns with or without auditory
masking lead to similar neuronal responses, either in spiking
activities (firing or not) or in membrane potential dynamics,
as observed in Figures 12C,F,I. It is interesting to observe that
auditory masking has little impact on the neuronal dynamics.
As a psychoacoustic phenomenon, the auditory masking is
always studied using listening tests. It remains unclear how
the human auditory system responds to auditory masking.
Figure 12 provides an answer to the same question from an
SNN perspective.

The parameters of auditory masking effects in this work,
such as the exponential decaying parameter c in Eq. 2,
or the cross-channel simultaneous masking thresholds in
Figure 2, are all derived in the acoustic model of MPEG-1
Layer III standard (Fogg et al., 2007) and tuned according to
the particular tasks. However, from a neuroscience point of
view, our brain is adaptive to different environments. This
suggests that the parameters could be optimized by machine
learning methodology, for different tasks and datasets. Also,
the threshold neural code, which encodes the dynamics of
the spectrum using threshold-crossing events, relies heavily
on the choice of thresholds. We use 15 uniformly distributed
thresholds for simplicity. We note that the recording of
threshold-crossing events is analogous to quantization in
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TABLE 10 | Phone error rates (PER) for TIMIT and Spike-TIMIT datasets, using different LSTM structures.

Dataset Network architecture PER (%)

TIMIT 1 × 39 − 1 × 512 LSTM − 1 × 512 LSTM − 1 × 62 27

TIMIT 1 × 39 − 1 × 1024 LSTM − 1 × 1024 LSTM − 1 × 62 27

Spike-TIMIT 1 × 620 − Dropout (0.2) − 1 × 512 LSTM − 1 × 512 LSTM − 1 × 62 30

Spike-TIMIT 1 × 620 − Dropout (0.2) − 1 × 1024 LSTM − 1 × 1024 LSTM − 1 × 62 35

Spike-TIMIT-w/o mask 1 × 620 − Dropout (0.2) − 1 × 512 LSTM − 1 × 512 LSTM − 1 × 62 28

Spike-TIMIT-w/o mask 1 × 620 − Dropout (0.2) − 1 × 1024 LSTM − 1 × 1024 LSTM − 1 × 62 30

TIMIT1 1 × 39 − 1 × 512 LSTM − 1 × 512 LSTM − 1 × 62 28

1Wu Y. et al. (2016). Tensorpack. Available at: https://github.com/tensorpack/.

FIGURE 12 | Free membrane potential of trained Leaky-Integrate and Fire neurons, by feeding patterns with and without masking. The upper (A–C), middle (D–F),
and lower (G–I) panels are for three different speech utterances “six,” “seven,” and “eight.” The spike patterns with or without masking are apparently different, but
the output neuron follows similar membrane potential trajectories.

digital coding, that the maximal coding efficiency (maximal
information being conveyed constrained by the numbers of
neurons or spikes) may be derived using an information-
theoretic approach. The Efficient Coding Hypothesis (ECH)
(Barlow, 1961; Srinivasan et al., 1982) that describes the
link between neural encoding and information theory
could provide us the theoretical framework to determine
the optimal threshold distribution in the neural threshold

code. It may also otherwise be learned using machine
learning techniques.

CONCLUSION

Our proposed BAE scheme, motivated by the human auditory
sensory system, could encode temporal audio data into spike
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patterns that are sparse, efficient, and friendly to SNN learning
rules. It is both efficient and effective. We use the BAE scheme to
encode popular speech datasets, namely, TIDIGITS and TIMIT
into their spike versions: Spike-TIDIGITS and Spike-TIMIT. The
two spike datasets are to be published as benchmarking datasets,
in the hope of improving SNN-based classifiers.
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