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Introduction

Image-guided liver surgery is the current direction in which ‘preci-
sion surgery’ is developing [1]. Clinical doctors can extract the struc-
tural information of the liver and perform a geometric analysis of
the liver shape using the liver-segmentation technique. This tech-
nique provides data for subsequent procedures, including measur-
ing the volume, evaluating the function, locating the lesions and
planning the surgery. Nonetheless, the structural extraction and
segmentation of the liver are still mostly based on manual outlin-
ing of layers in liver CT images, which is subjective and inefficient.
In recent years, many methods on automatic segmentation of the
liver have been proposed and examined [2]. The liver is an organ
rich in sharp edges and concaves, and it lacks gray contrast with
adjacent tissues; meanwhile, various diseases can occur in the
liver, and different degrees of liver diseases can significantly affect
the acute segmentation of the liver parenchyma. We have sorted
out our own images in clinical practice and classified them for
readers to clearly understand the impact of different lesions on
liver-segmentation accuracy, as shown in Figure 1. Therefore, the
precision segmentation of the liver remains one of the greatest
challenges facing the field of medical image processing.

Results and discussion

Although the segmentation methods based on the deformation
model, statistical shape model and probabilistic atlas model

have been widely used in the field of liver segmentation and
tested to be effective, the following problems remain to be
addressed [3]. (i) In the deformation model, the validity and ro-
bustness of the internal and external force constraint models
must be improved. In addition, deformation models usually
cannot achieve accurate segmentation of convex or concave
regions while maintaining smoothness. (ii) In the statistical
shape model, precision matching between a priori shape mod-
els is relatively difficult, and the initial contour must be opti-
mized. Meanwhile, how to use the personalized information of
the images to be segmented to construct the statistical shape
model remains a problem. (iii) In the probabilistic atlas model,
subjectivity exists during the construction of the atlas. Accurate
and precision matching between the probabilistic atlas and CT
image of the liver area to be segmented warrants further
improvement.

In recent years, researchers have found that sparse coding
(or sparse dictionary learning) methods were able to sparsely
represent the training samples of statistical models, effectively
remove redundant information of training samples and sim-
plify the computation of the statistical shape model, thereby in-
creasing the efficiency of segmentation [4]. However, the
segmentation methods based on sparse coding only generated
a sparse model under the framework of Euclidean space and
performed dictionary learning via Euclidean distance analysis;
thus, they exhibited the following limitations: (i) Similar image
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Figure 1. Comparison between the liver and adjacent soft tissues in gray contrast-enhanced computed tomography images. (A) Primary hepatic cancer.
(B) Fibrolamellar hepatocellular carcinoma. (C) Metastatic hepatic cancer. (D) Fatty liver. (E) Cirrhosis. (F) Hemangioma. (G) Hepatic focal nodular hyperplasia. (H)
Hepatic angiomyolipoma. (I) Liver cyst. (J) Liver abscess. (K) Hepatic adenoma. (L) Hepatic infarction.

blocks were required to set up sparse matrix and dictionary learn-
ing during the process of sparse model construction. In that case,
similarity and matching accuracy between small image blocks
were difficult to obtain and various degrees of gap or an overlap-
ping region may appear in the segmentation results, which nega-
tively affects the segmentation accuracy. (ii) When using the
discrete cosine transformation (DCT) dictionary to acquire the
similarity levels of images, it is difficult to achieve optimization.
When processing medical data, the sample space can be repre-
sented in a curved Riemannian manifold to better interpret the
sample. As a result, many researchers further investigated the sym-
metric positive define (SPD) matrix and generated a non-Euclidean,
curved Riemannian manifold. This Riemannian manifold provided
a compact representation of the target model, incorporated multi-
ple features of images and achieved a robust visualization of the
size and shape of the target [S]. Based on the Riemann manifold
theory, the SPD matrix can be mapped to the tangent space
through logarithmic mapping and calculated accordingly; then, the
final algorithm results can be obtained through the index operator
mapping back to the original space, during which the shortcomings
in statistical learning methods can be addressed or avoided.
According to relevant research progress, research on liver
segmentation based on CT images has greatly promoted
advancements in the diagnosis and treatment of clinical dis-
eases. However, existing algorithms have not yet fully
addressed many technical segmentation problems, including
the complexity of the abdominal anatomy, various liver dis-
eases, imaging interference of abdominal CTs and individual
patient differences. The liver-segmentation methods based on
statistical models exhibited a reliable efficacy and received im-
provement from many researchers, but many disadvantages re-
main [6, 7]. Therefore, a reliable and consistent segmentation
method is still considered a global challenge and thus warrants

further study by scholars to construct a liver-segmentation
method suitable for clinical applications.

Conclusions

Liver segmentation based on statistical learning represents
the future direction of ‘precision surgery’ development. In par-
ticular, the successful application of brain-like algorithms based
on deep learning theory and the popular statistical learning the-
ory of Riemann will be an important foundation for the break-
through of liver-segmentation technology in the future.
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