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High-throughput metabolomics technology, such as gas chromatography mass spectrometry, allows the analysis of hundreds
of metabolites. Understanding that these metabolites dominate the study condition from biological pathway perspective is still
a significant challenge. Pathway identification is an invaluable aid to address this issue and, thus, is urgently needed. In this
study, we developed a network-based metabolite pathway identification method, MPINet, which considers the global importance
of metabolites and the unique character of metabolomic profile. Through integrating the global metabolite functional network
structure and the character of metabolomic profile, MPINet provides a more accurate metabolomic pathway analysis. This
integrative strategy simultaneously captures the global nonequivalence of metabolites in a pathway and the bias frommetabolomic
experimental technology. We then applied MPINet to four different types of metabolite datasets. In the analysis of metastatic
prostate cancer dataset, we demonstrated the effectiveness ofMPINet.With the analysis of the two type 2 diabetes datasets, we show
that MPINet has the potentiality for identifying novel pathways related with disease and is reliable for analyzing metabolomic data.
Finally, we extensively applied MPINet to identify drug sensitivity related pathways. These results suggest MPINet’s effectiveness
and reliability for analyzing metabolomic data across multiple different application fields.

1. Introduction

The development of high-throughput metabolomics tech-
nology, such as nuclear magnetic resonance and approaches
based on mass chromatography, has enabled us to obtain
metabolomic profiles of large numbers of metabolites [1].
The increasing availability of high-throughput data and large-
scale high-quality pathway sources, such as KEGG [2] and
Reactome [3], provides the potential for understanding these
metabolomic data at the pathway level. Many currently
available pathway-identification approaches are effective in
transcriptomics [4, 5], though a method that effectively

incorporates both global biological network structure and
metabolomic profile is urgently needed.

Several computational approaches for metabolite path-
way analysis have been developed recently, including over-
representation analysis (ORA) and set enrichment analysis
(SEA) [6]. ORA is widely used by researchers from a statis-
tical perspective. It subjects a list of interesting metabolites
(e.g., differential metabolites) to statistical analysis to detect
whether the given metabolite set is overrepresented in a
predefined pathway. For example, metabolite biological role
(MBRole) [7] and metabolite pathway enrichment analysis
(MPEA) [8] used ORA to perform pathway analysis based on
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metabolite sets. Metabolite set enrichment analysis (MSEA)
[9] is a classic method of SEA, which involves enrichment
analysis based on the whole list of metabolites identified
in the profile, and it is also taking into consideration
metabolite concentrations. There is no doubt that pathway
analysis should involve a statistical model in order to reduce
the incidence of false positive identification of differential
metabolites based on a computational approach. However,
bothORA and SEA consider a pathway as a simplemetabolite
set; they ignore functional interactions among metabolites
and treat all metabolites equivalently. From a biological view,
some metabolites should receive more attention than others
and this is defined as the nonequivalent roles of metabolites
in the pathway. Recently, a topology-based pathway analysis
method, metabolomics pathway analysis (MetPA), which
considers the local nonequivalence of metabolites in an
individual pathway, was designed by Xia and Wishart to
effectively improve pathway identification [10]. However,
individual pathways are components of biological networks,
and metabolites in different pathways also have functional
interactions [11, 12]. A network-based approach that takes
account of functional interactions to evaluate the nonequiv-
alence of metabolites from a global perspective is therefore
more suitable.

Also, the currently available approaches of metabolomic
functional analysis ignore several common important
aspects. Firstly, from a biological point of view, some
metabolites participate in many pathways; they are referred
to as common metabolites, while other metabolites only
participate in a few pathways, which are referred to as
pathway-specific metabolites. If a pathway identification
method is mainly based on common metabolites, there
will be more false positive pathways due to the presence
of metabolites that are involved in multiple pathways. In
contrast, it is more reliable that metabolites within an
identified pathway tend to be pathway-specific as these
dysfunctional metabolites only particularly involved in this
pathway. Thus, these pathway-specific metabolites are more
important in the pathway identification.

Secondly, dysfunction of metabolites may be compen-
sated for by their functional partners in the biological net-
work. Metabolites involved in a number of pathways usually
have many functional partners, while other metabolites only
participate in a few pathways and thus have few functional-
compensation partners. If metabolites within a pathway tend
to be pathway-specific, its deregulated signals are likely to be
amplified to the entire pathway. In contrast, if the metabolites
in a pathway tend to have many functional partners in the
biological network, the dysregulation signal is more likely to
be alleviated. Thus, the nonequivalence roles of metabolites
should be considered in order to identify pathways correctly.

Finally, from the perspective of metabolomic technol-
ogy, there is bias existing in metabolite identification. Most
current metabolomic technologies usually only analyze a
small fraction of the entire metabolome (5–10%) [6], and
the identified metabolites are not randomly selected. These
identified metabolites in the profiles are preferred to be
well studied. This may be due to the fact that metabolite
identification depends heavily on a priori knowledge [13, 14].

This metabolite identification bias will lead to the subse-
quent pathway identification bias because these well-studied
metabolites usually reside in fundamental pathways, such as
glutathione metabolism, or the citrate cycle. These funda-
mental pathways are thus likely to be inappropriately iden-
tified when metabolites are treated equivalently in pathways.
In contrast, pathways that do not contain many well-studied
metabolites (i.e., metabolites that are difficult to be identified
in the profile) are more likely to be ignored by most of the
current methods. It is therefore essential to consider the bias
from metabolomic experimental technology. Furthermore,
in contrast to transcriptome analysis, which can provide
thousands of differential molecules for functional analysis,
metabolomics usually use only dozens of metabolites for
pathway identification. However, most of the metabolite
pathway analysismethods currently proposedwere originally
designed for transcriptomics.

In this study, we developed a network-based pathway-
analysis method called MPINet that considers both the
global nonequivalence of metabolites and the bias from
metabolomics experimental technology. In addition, a clas-
sical statistical model is also integrated. We constructed a
human metabolite functional network. The global nonequiv-
alence of metabolites within pathways refers to the dif-
ferent importance of metabolites and was evaluated based
on the global functional interactions of metabolites within
networks. Initial bias scores of metabolites were assigned
based on the metabolomic profile, and a monotonic cubic
regression spline model was then fitted to integrate the
global nonequivalence scores and the initial bias scores of
metabolites, and weights were assigned to the metabolites
(nodes) in the network. Finally, the pathway weight, which
was calculated based on the global node-weighted network,
was used as the parameter for Wallenius approximation
[15] to evaluate the significance of the pathway. We applied
MPINet to four datasets and demonstrated the ability of
MPINet to identify biologically meaningful pathways suc-
cessfully and reproducibly across multiple different applica-
tion fields. MPINet has been implemented as a free web-
based (http://bioinfo.hrbmu.edu.cn/MPINet/) and R-based
tool (http://cran.r-project.org/web/packages/MPINet/), sup-
porting 3350 human pathways across 10 databases.

2. Materials and Methods

2.1. Datasets and Processing. We analyzed one metastatic
prostate cancer dataset, two type 2 diabetes datasets, and one
drug-sensitivity dataset. These datasets were obtained from
metabolomics experiments or manually extracted from the
literature.

2.1.1. Metastatic Prostate Cancer Dataset. The metabolomic
profile of prostate cancer was obtained from the study of
Sreekumar et al. [16]. It included 16 tissue samples from
benign adjacent prostate, 12 from localized prostate cancer,
and 14 from metastatic prostate cancer samples [16]. In this
study, we used the localized prostate cancer and metastatic
prostate cancer samples as a case-control study. Differential
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metabolites were determined by Wilcoxon’s rank-sum test
(𝑃 < 0.1). Finally, 92metabolites were identified asmetastatic
prostate cancer differential metabolites and used for pathway
analysis.

2.1.2. Type 2 Diabetes Datasets. We analyzed two type 2 dia-
betes datasets: type 2 diabetes dataset 1 and type 2 diabetes
dataset 2.We extracted type 2 diabetes-associatedmetabolites
from the HMDB database [17] and text mining (supple-
mentary Table S1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2014/325697). Finally, 65 metabo-
lites were identified as type 2 diabetes-associatedmetabolites.

Dataset 2 was obtained from Suhre et al. [18]. Multiplat-
form metabolomic profiles, including 482 metabolites, were
detected from 40 individuals with type 2 diabetes and 60
control individuals. We selected the differential metabolites
from the data preprocessed by Suhre et al. (𝑃 < 0.05) and
converted the metabolite names to PubChem CIDs. Sixty-
six metabolites related to type 2 diabetes were used for
subsequent analysis.

2.1.3. Drug-Sensitivity Dataset. A total of 121 drugs selected
from Weinstein et al. [19] were analyzed. Drug-sensitivity
data based on GI50 values were obtained from the CellMi-
ner database [20], and metabolite measurement data were
obtained from Metabolon, downloaded from http://dtp
.nci.nih.gov/mtargets/download.html. The drug-sensitivity
dataset included the −log(GI50) data for drugs in replicated
experiment across NCI-60 cell lines. For each drug, the
−log(GI50) values from different experiments were averaged.
The metabolite measurement dataset included 352 metabo-
lites across 58 cell lines, of which 160 named metabolites
mapped to 159 distinct PubChem CIDs.

For each drug, we calculated the Pearson correlation of
the drug −log(GI50) value and the metabolite measurements
obtained in the experiment by Metabolon across 58 NCI-
60 cell lines. The Benjamin method was used to correct the
𝑃 value. The significant drug-sensitivity-related metabolite
cutoff was set at 60%. MPINet was then applied to drug-
sensitivity-related metabolites to identify drug-sensitivity-
associated pathways.

2.2. Methods. We have implemented MPINet as a freely
available R-based (http://cran.r-project.org/web/packages/
MPINet/) and web-based tool (http://bioinfo.hrbmu.edu.cn/
MPINet/), supporting 3350 human pathways across 10
databases, including KEGG, Reactome, PID, and Wikipath-
ways from ConsensusPathDB [21]. Input only requires a list
of the metabolites of interest (e.g., differential metabolites).
Figure 1 gives a schematic overview of MPINet.

2.2.1. Construction of the Global Edge-Weighted Human
Metabolite Network. The preliminary metabolite interac-
tion network was downloaded from the STITCH database
(http://stitch.embl.de/) [22]. We constructed the global edge-
weighted human metabolite network from the preliminary

network as follows. First, we extracted stereospecific com-
pound interactions from the chemical-chemical link file and
used the “combined score” in STITCH, as the initial edge
weight. Second, we collected human metabolites from a
wide range of databases, including KEGG [2], HMDB [17],
Reactome [3], MSEA [9], and SMPDB [23]. We obtained the
total of 4994 human metabolites from these five databases.
Third, we extracted human metabolite interactions from the
preliminary network obtained in the first step. We extracted
the interacting pair if both of the metabolites in the inter-
acting pair were included in the 4994 human metabolites.
Finally, a global edge-weighted human metabolite network
was constructed, which contained 3764 nodes and 74667
weighted edges (Table S2).

2.2.2. Calculating theGlobal Nonequivalence Scores ofMetabo-
lites Based on the Network. Based on the notion that dysfunc-
tion of metabolites with strong functional-interaction part-
ners will be more easily compensated for, we defined a global
nonequivalence score (GN score) to measure the functional
interaction between a metabolite and its functional partners
in the global metabolite network.

Firstly, we quantified the functional interactions between
each pair of metabolites in the network by calculating the
global connection strength (GCS) for each metabolite pair.
The GCS measure was defined as the modified version of
the strength of connection (SOC) measure in Campbell
et al. [24], which measured the connection strength between
metabolites from a global perspective by considering both
the number and length of multiple paths between two
metabolites in the network. A detailed description of how
the GCS values were calculated was included in the supple-
mentary text. Higher GCS values indicate stronger functional
interactions between the metabolite pairs.

We then defined the GN score of a given metabolite
as the mean of the GCS values between it and the other
metabolites in the network. A high GN score indicates that
the metabolite has strong functional interactions with its
functional partners, and dysfunction of these metabolites is
thus likely to be compensated for. In contrast, metabolites
with low GN scores have weaker interactions, and their
dysfunction is less likely to be compensated for, which
suggests that metabolites should be paid more attention.

2.2.3. Calculating the Combined Global Nonequivalence and
Bias Scores of Metabolites. Our goal was to consider simul-
taneously the global nonequivalence of metabolites in a
pathway and the bias in pathway identification based on
metabolomic data. These two critical factors are not inde-
pendent, given that metabolites with a high GN score are
more likely to be identified in the profile and to be identified
as differential. A simple sum of the values for these two
factors is thus not adequate. We therefore used a monotonic
cubic regression spline model [25] with six knots and a
monotonicity constraint to integrate the GN scores and the
initial bias scores. This monotonic model quantified the
probability ofmetabolites being differential and compensated
for as a function of GN score.



4 BioMed Research International

Global edge weighted human metabolite network

Pathway 1

Pathway 2

Global node weighted human metabolite network

Wallenius approximation:

(1) Calculate pathway weight 

(2) Evaluate significance

The monotonic spline model

Pathway data sources Interesting metabolite
dataset sources

Metabolite
profiling

Text-mining

Interesting metabolite set

Pathway ID Pathway name Ann ratio Weight

Pathway 1 Pathway name 1 3/92 Weight 1
Pathway 2 Pathway name 2 5/92 Weight 2

3/92

(1) Calculate SOC value

(2) Calculate global  
   

(3) Calculate CGNB score

(1) Primary network

Stitch database 6191622 edges 
263179 nodes

(2) Filter network

Pr
op

or
tio

n 
D

E

0.00

0.05

0.10

0.15

0 200 400 600 800 1000 1200 1400
Bias data in 100 gene bins.

4994 human metabolites as b-
ackground; 3764 nodes and
74667 edges in the global edge
weighted human metabolite n-
etwork; the edge weight is the
“combined score” obtained
from stitch database.

+

Pathway N

Pathway N Pathway name N

P value

P value 1
P value 2

P value NWeight N

A B

A B

A B

where weighti = W6

SOCAB = 0.01

SOCAB = 0.08

SOCAB = 0.20

nonequivalence score

GNk =
1

|M|
∑
j∈M

Skj

...
...

...
...

...

W =
1/|P| (1− Cj)

1/K (1/ ∑
r∈P𝑘

(1− Cr))Pk| |∑ K

k=1

∑
j∈P

P valuei = F x,m1,m2, n,weighti)(

Figure 1: Schematic overview of MPINet.
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where the 𝑦
𝑗
in this study is a binary value for the cor-

responding metabolite, 1 for differential metabolites and 0
for nondifferential metabolites in the network; 𝑥
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Supposing that there are𝑀 metabolites in the network, the
binary initial bias score vector of these𝑀 metabolites 𝑌 can
be represented as
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The cubic spline model can then also be represented as
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where𝑦
𝑗
, 𝑥
𝑗
(𝑗 = 1 ⋅ ⋅ ⋅𝑀) are the initial bias score and theGN

score of the correspondingmetabolite, respectively. Consider
𝑦
𝑗
= 1 for an interesting metabolite; otherwise 𝑦

𝑗
= 0. The

cubic spline model can be simplified as

𝑌 = 𝑋𝛽 + 𝜀, (6)

where 𝑋 is the model matrix, 𝛽 is the parameter vector
that contains 𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑘
. The penalized constrained least

squares withmonotonicity constraint are used to evaluate the
parameter vector 𝛽, to minimize
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Here 𝑆 is a positive semidefinite matrix of coefficients.
𝜆 is the smoothing parameter which can be given by 𝛽.
We then obtain the evaluated 𝛽 vector, 𝛽. The probability
of metabolites being differential and compensated can be
evaluated as

𝑌̂ = 𝑋𝛽. (8)

Finally, the combined global nonequivalence and bias
(CGNB) score vector of a metabolite, 𝐶, can be calculated as

𝐶 = 1 − 𝑌̂. (9)

Thus, a high CGNB value represents a metabolite that is
difficult to be identified in the profile and also not easily
compensated for, which indicates that the metabolite should
be paid more attention.

2.2.4. Evaluating the Significance of Pathways. We used the
Wallenius approximation [15] to evaluate the significance
of pathways. This method is an extended version of the
hypergeometric test, which involves weighted parameters. In
MPINet, we assumed that the probability ofmetabolites being
identified in the profile and being compensated for within a
pathway differed from that of metabolites within other path-
ways. For each pathway, a weight can be calculated based on
the CGNB scores of the metabolites within it. For pathways
containing metabolites that are difficult to compensate for
under dysregulated conditions and are difficult to identify
in the profile, MPINet will enhance their competitiveness
through the pathway-weight value. For a given pathway, the
following values are required for this step: (i) the number of

interesting metabolites (𝑛); (ii) the number of background
metabolites (𝑁); (iii) the number of background metabolites
annotated to this pathway (𝑚

1
); (iv) the number of interesting

metabolites annotated to this pathway (𝑔); (v) the weight of
this pathway (𝑤

1
). First, the relative weight of the pathway is

calculated as follows:
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where 𝑃 is the metabolite set of the pathway, |𝑃| is the size
of 𝑃, 𝑗 is the metabolite in 𝑃, 𝐶
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is the CGNB score of

the metabolite 𝑗, 𝐾 is the number of pathways selected for
analysis, 𝑃
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3. Results

We firstly confirmed that the bias in metabolomics experi-
mental technologies impacts on pathway identification.Then,
we applied MPINet to four datasets, including a prostate
cancer metastasis dataset, diabetes dataset 1, diabetes dataset
2, and a drug-sensitivity dataset. In the analysis of the pros-
tate cancer metastasis dataset, we aimed to compare the
effectiveness of MPINet and other currently popular meth-
ods, including the hypergeometric test (ORA), MSEA (SEA),
and MetPA. We then applied MPINet to a different biolog-
ical phenotype (diabetes) to identify novel diabetes-related
pathways. Diabetes dataset 2 was used to demonstrate the
reproducibility of MPINet. Finally, we applied MPINet to a
drug-sensitivity dataset to test its validity with a completely
different biological problem.

3.1. Bias in Metabolomics Experimental Technologies Impacts
on Pathway Identification. These identified metabolites
which were provided by the metabolomic technology are
small in amount and not random selected. These identified
metabolites in the profiles are usually well-studied metab-
olites which tend to have many functional partners in the
network. This will lead to the bias that pathways contain
manywell-studiedmetabolites are likely to be inappropriately
identified.

In order to validate the bias in metabolite pathway
identification, we performed the following analysis. First,
we validated our assumption that metabolites with high GN
scores were more likely to be identified in profiles and thus
be considered as differential (i.e., the two main factors are
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Figure 2: Validation of bias in metabolite pathway identification based on 101 pathways with more than five metabolites each. (a) The
proportion ofmetabolites in the profile plotted against themeanGN score in a bin of 400metabolites in the global humanmetabolite network
across the three profiles. (b) The proportion of differential metabolites plotted across the three disease datasets. (c) Cumulative distribution
of number of pathways associated with metabolites at a given GN score level. (d) Frequency of mean GN scores of metabolites in pathways.
(e) 𝑃 values for two-sided Wilcoxon’s rank-sum test comparing the GN score of metabolites in the given pathway with that of the overall
metabolites. (f) Scatter plot of pathway 𝑃 value distributions. 𝑃 values were calculated by one-sidedWilcoxon’s rank-sum test comparing GN
scores of metabolites in a given pathway with overall metabolites.

not independent).We calculated theGN scores ofmetabolites
identified in three different metabolomic profiles and showed
that metabolites identified in metabolomic profiles tended to
have high GN scores (Figure 2(a)). Differential metabolites
also tended to have high GN scores (Figure 2(b)). We then
calculated the GN scores of metabolites in the network and
inspected the number of pathways inwhich they participated.
As expected, metabolites with high GN scores tended to
participate in multiple pathways, while metabolites with low
GN scores tended to reside in few pathways (i.e., pathway-
specific metabolites) (Figure 2(c)).

For the pathways, we calculated the GN scores of all the
metabolites in KEGG pathways and found a wide variation
in the distribution of metabolite GN scores (Figure 2(d)).
We then used Wilcoxon’s rank-sum test to determine if
the GN scores of metabolites within each pathway differed
significantly from random. More than half of all pathways
had significantly differential GN-scoremetabolites (𝑃 < 0.05,

Figure 2(e)). We similarly analyzed all 3189 human pathways
from ConsensusPathDB [21] and found consistent results
(Figure S1). We also found that pathways including metabo-
lites with high GN scores were usually fundamental pathways
(Figure 2(f)). Overall, almost half of the analyzed pathways
tended to contain metabolites with significantly high or low
GN scores compared with random; however, the metabolites
identified in the profiles anddifferentialmetabolites tended to
have high GN scores (Figures 2(a) and 2(b)), suggesting that
pathways containing many high-GN-score metabolites (i.e.,
usually fundamental pathways) were preferentially identified,
while pathways containing many low-GN-score metabolites
tended to be ignored by most currently used methods. A
method that takes account of this bias is thus required.

3.2. Network-Based Metabolite Pathway Identification
(MPINet) Can Effectively Identify Pathways Implicated in
Prostate Cancer Metastasis. We determined the effectiveness
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of MPINet for identifying pathways associated with prostate
cancer metastasis and compared the results with those of
three other popular methods, including ORA (hypergeo-
metric test), MSEA, and MetPA.

3.2.1. Comparison of MPINet with ORA. To demonstrate the
advance of MPINet, we compared pathways identified by
MPINet to those by ORA using a prostate cancer dataset.
MPINet identified twenty-two significant pathways, asso-
ciated with prostate cancer metastasis, with a strict false
discovery rate (FDR) cut-off level (FDR < 0.01). Among these
pathways, up to 14 were well documented to be implicated
in cancer (detailed information is provided in supplementary
Table S3). After applying the ORA method to the same
prostate cancer dataset, we identified 12 significant pathways
under the same strict cut-off level (FDR < 0.01). Compared
withORA,MPINet identified 18 unique pathways, 11 of which
were reported to associate with metastatic cancer or cancer
(pathway names marked red in Figure 3(a); Table S3). These
results indicate the superior ability of MPINet to identify
cancer-related pathways.

The most significant additional pathway identified by
MPINet was the “tryptophan metabolism” pathway. MPINet
yielded a FDR of 2.18𝐸 − 07. However, this pathway was
not significant even at the 10% level in the ORA method
(FDR = 0.29). The degradation of tryptophan mediated
by indoleamine 2,3-dioxygenase can influence the tumoral
immune response [26]. Recently, Opitz et al.’s study also
found that kynurenine, which is derived from tryptophan
through tryptophan-2,3-dioxygenase, can suppress antitu-
mor immune responses and promote tumor-cell survival
and motility [27]. Furthermore, it has been reviewed that
the subregion of tryptophan metabolism pathway which
starts from tryptophan was reported to be implicated with
the cell proliferation of prostate cancer [28]. An inspection
of this pathway showed that there were only three differ-
ential metabolites annotated in this pathway and two of
which, tryptophan and kynurenate, were presented in the
network (Figure 4(a) path: 00380). Kynurenate is a catabolite
generated by kynurenine which was reported to promote
the survival and motility process of tumor [27]. Recent
studies found that the subregion of this pathway that con-
verted tryptophan to kynurenate which includes tryptophan,
N󸀠-formylkynurenine, kynurenine, 4-(2-aminophenyl)-2,4-
dioxobutanoate, and kynurenate is closely related with the
tumor progression such as survival and motility (Figure
S2) [27]. Interestingly, most of metabolites in this pathway
had high CGNB scores, suggesting that they were pathway-
specific and thus not easily detected in the metabolomic
profile.These results suggest that the nondifferential metabo-
lites in the subpath region from tryptophan to kynure-
nate, including N󸀠-formylkynurenine, kynurenine, and 4-(2-
aminophenyl)-2,4-dioxobutanoate (Figure 4(a) path: 00380),
may also be associated with cancer. MPINet increased the
competitiveness of the “tryptophan metabolism” pathway by
integrative analysis of the metabolite network structure and
metabolomic profile. However, ORA ignored this pathway
because a few metabolites were annotated to this pathway.

ORA analysis also ignored the nonequivalence of metabolites
and the bias inherent in metabolite pathway analysis.

MPINet identified the “arachidonic acid metabolism”
pathway with FDR = 0.0023. Most metabolites in this path-
way had high CGNB scores (Figure 4(a): path: 00590), but
surprisingly, only one interesting metabolite is annotated in
this pathway. ORA analysis thus disregarded this pathway
with a high FDR value 0.76. However, the arachidonic acid
metabolism pathway has been reported to highly associate
with the progression of prostate tumor [29]. Previous studies
have shown that arachidonic acid can mediate the pro-
gression of prostate cancer metastasis to bone and affect
the metabolism of cancer in bone stromal cells [30]. In
addition, a wide range of studies have shown that arachi-
donic acid can affect the progression of malignant prostate
cancer through metabolites produced in the COX and LOX
processes [31–33]. These metabolites further influence many
cancer invasion-related activities, including proliferation,
apoptosis, and angiogenesis [31–33]. For example, Yang et al.
[33] demonstrated that the LOX metabolite 12-HETE was
important for the progression of prostate carcinoma.

3.2.2. Comparison of MPINet with Other Methods. We also
compared MPINet with MSEA and MetPA. The MSEA
method identified 13 significant pathways in the prostate
cancer dataset, under the strict cut-off value for significance
(FDR < 0.01). Because MSEA uses the SMPDB pathways in
the MSEA library as pathway databases, rather than KEGG,
we also applied MPINet to the same pathway databases
to ensure a fair comparison. MPINet identified 15 signifi-
cant pathways (FDR < 0.01) when using SMPDB pathway
databases. Most of the pathways (10 pathways) identified by
MSEA were also included in the pathway list for MPINet
(Figure 3(b)), and three pathways (marked red in Figure 3(b))
including “tryptophan metabolism,” “tyrosine metabolism,”
and “steroidogenesis” pathway have been reported to be
highly associated with cancer and were uniquely identified
by MPINet. The tryptophan metabolism has been well
documented in the literatures to be implicated with the
progression of prostate cancer such as promoting the survival
and motility of tumor cell and suppressing the antitumor
immune response [27]. MSEA uses the whole list of metabo-
lites in a profile and metabolite concentration changes.
However, this quantitative information is unavailable for
most metabolites. The “tryptophan metabolism” pathway, as
discussed above that highly associates with prostate cancer,
was also uniquely identified by MPINet in this comparison
(Figure 3(b)). Inspection of this pathway shows that only
two differential metabolites were identified in the profile,
while no quantitative information was available for the other
metabolites in the pathway (Figure 4(a): path 00380). In
addition, MSEA treats each pathway as a simple metabolite
set and ignores functional interactions among metabolites
within the biological network. Two further pathways, “tyro-
sine metabolism” and “steroidogenesis,” are also reported
to be associated with cancer [34, 35]. For example, the
norepinephrine is closely related with tumor and the nore-
pinephrine metabolism which has been reported to highly
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Figure 3: Comparisons between MPINet and other methods. 𝑌-axis represents pathways, and 𝑥-axis is the −log10 transformation of FDR-
values. Red bars represent pathway results identified by MPINet and blue bars represent the results of ORA (MSEA). Pathway names marked
in red were uniquely identified by MPINet. Pathway names marked by blue were uniquely identified by ORA (MSEA). (a) MPINet versus
ORA. (b) MPINet versus MSEA.
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Figure 4: Global-weighted human metabolite network for several pathways identified by MPINet. The yellow node represents differential
metabolites. Node size is proportional to the CGNB score of metabolites in (a) and (b). (a) Two metastatic prostate cancer-related pathways:
“tryptophan metabolism” and “arachidonic acid metabolism.” (b) Three type 2 diabetes-related pathways: “primary bile acid biosynthesis,”
“valine, leucine, and isoleucine degradation,” and “tyrosine metabolism.” (c) A global view of the interaction between the 21 type 2 diabetes-
associated pathways.The edges between two pathways are displayed when the average GCS value betweenmetabolite sets in the two pathways
is greater than the median GCS value. Edge-line width is proportional to the average GCS value. Orange nodes represent pathways known to
be related to type 2 diabetes. The red circle in the network corresponds to the three pathways in (b).

associate with the initiation and progression of tumor is
a subprocess of the tyrosine metabolism pathway [34, 36,
37]. However, three pathways identified by MSEA, “galactose
metabolism,” “pentose phosphate pathway,” and “citric acid
cycle” (marked blue in Figure 3(b)), are more fundamental
pathways.

We applied MetPA to the prostate cancer dataset. For
fair comparison, 72 pathways in our KEGG pathway data,
which were also in the 80 human pathway library of MetPA,
were selected for comparison. The results of MetPA are
given as impact scores, and we therefore compared pathway
rank list from MPINet and MetPA. MPINet detected 15
pathways at a significance level of FDR < 0.01, based on
this pathway dataset, up to nine of which are known to be
related to cancer (Table 1). Arginine and proline metabolism
is the most significant pathway identified byMPINet. Several
studies have shown that arginine and proline metabolism
regulated the immune responses and tumor growth and
metastasis [38, 39]. We then examined their ranks in the
MetPApathway list. Among these nine pathways, theMPINet
ranks of seven surpassed those in MetPA (marked by stars
in Table 1). Six of these seven pathways were ranked >15 in
MetPA. For example, the top ranked of the six pathways
was the “tryptophan metabolism” pathway which is highly
associated with the tumor progression, with a MetPA impact
score of only 0.14 (rank 19). The impact score in MetPA is
calculated as the normalized sum of importance measures
of differential metabolites and also depends on the number
of differential metabolites. However, as shown in Figure 4(a),

most metabolites in this pathway were not identified in
the profile. Furthermore, most of the metabolites in this
pathway are pathway-specific (Figure 4(a)), suggesting that
they are less likely to be compensated for by factors outside
this pathway. MPINet paid more attention to this pathway
by considering the global nonequivalence of metabolites
and the bias associated with the experimental technology.
MetPA, however, disregarded this pathway because of local
importance measures and ignoring the bias.

3.3. Identifying Pathways Related to Type 2 Diabetes

3.3.1. MPINet’s Potential to Identify Novel Type 2 Diabetes-
Related Pathways. We applied MPINet to a different pheno-
type and demonstrated its power to identify novel pathways
potentially related to type 2 diabetes. We initially analyzed
type 2 diabetes dataset 1. MPINet identified 21 pathways with
FDR < 0.01 (Table S4) and up to six of which belonged to lipid
metabolism, which has been reported to play an important
role in the pathogenesis of type 2 diabetes, mainly through
its influence on insulin resistance [40, 41]. Furthermore,
lipid management represents a useful strategy for reducing
vascular risk in patients with diabetes mellitus [42]. Among
these six identified lipid-metabolism pathways, “primary
bile acid biosynthesis,” “biosynthesis of unsaturated fatty
acids,” and “synthesis and degradation of ketone bodies” have
previously been reported to be associatedwith type 2 diabetes
[43–46]. The most significant additional pathway related to
type 2 diabetes was the “primary bile acid biosynthesis”
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Table 1: Top-ranked 15 pathways in MPINet and their ranks in MetPA.

Pathway name FDR-N R-P I-P
Arginine and proline metabolism∗ 8.15E − 09 6 0.21
Caffeine metabolism 1.16𝐸 − 07 12 0.17
Tryptophan metabolism∗ 5.75E − 07 17 0.14
Primary bile acid biosynthesis 2.54𝐸 − 05 17 0.14
Ubiquinone and other terpenoid-quinone biosynthesis 2.65𝐸 − 05 33 0.05
Steroid hormone biosynthesis∗ 2.65E − 05 38 0.03
Cyanoamino acid metabolism 0.00019 12 0.17
Tyrosine metabolism∗ 0.00034 34 0.04
Nicotinate and nicotinamide metabolism 0.0004 26 0.07
Linoleic acid metabolism 0.0012 1 0.62
Cysteine and methionine metabolism 0.0039 9 0.19
Arachidonic acid metabolism∗ 0.0039 — —
Porphyrin and chlorophyll metabolism 0.0043 34 0.04
Inositol phosphate metabolism∗ 0.007 17 0.14
Valine, leucine, and isoleucine degradation∗ 0.0081 26 0.07
FDR-N: FDR values of pathways in MPINet; R-P and I-P: ranks and impact scores for MetPA. Bold pathways have been well reported to be related with cancer.
Ranks of pathways marked by asterisk in MPINet surpass that in MetPA.

pathway, with an FDR value of 1.45𝐸−05 (rank 3), compared
with an FDR value of 0.216 (rank 34) yielded by ORA, and
an impact value of only 0.07 (ranked 23) reported by MetPA.
Most metabolites in this pathway tended to be pathway-
specific and thus difficult to be identified (Figure 4(b)).
Bile acid sequestration maintains lipid concentrations by
mediating bile acid metabolism, and bile acid has the ability
to influence systemic glucose metabolism [43]. Furthermore,
Kobayashi et al. [44] also found that bile acids impacted on
glucose metabolism and proposed the bile acid metabolism
pathway as a novel potential therapeutic target pathway
in type 2 diabetes. Therefore, bile acid sequestrants such
as cholestyramine have been developed for the treatment
of type 2 diabetes [47]. Biosynthesis of unsaturated fatty
acids pathway is also highly associated with type 2 diabetes.
The animal model experimental study of Krishna Mohan
and Das suggested that polyunsaturated fatty acids have the
ability of suppressing the occurrence of diabetes mellitus
induced by chemical [48]. Moreover, the similar conclusion
was review in that elevating the consumption of n-3 long
chain polyunsaturated fatty acids may prevent type 2 diabetes
and increasing evidences support this conclusion [45]. Three
other possible novel type 2 diabetes-related lipid-metabolism
pathways were identified by MPINet (FDR < 0.01), including
“steroid hormone biosynthesis,” “fatty acid elongation in
mitochondria,” and “glycerophospholipid metabolism.”

MPINet also identified some additional pathways, includ-
ing “valine, leucine, and isoleucine degradation,” “valine,
leucine, and isoleucine biosynthesis,” and “histidine metab-
olism,” which are related to type 2 diabetes [49–51]. The most
significant of these was the “valine, leucine, and isoleucine
degradation” pathway, which was identified by MPINet with
an FDR value of 3.33𝐸 − 05 (rank 4), compared with an FDR

value of 0.042 (rank 14) in the ORA method, and an impact
score of only 0.09 in MetPA (rank 19). Inspection of this
pathway showed that it included many metabolites with high
CGNB scores (Figure 4(b)). Leucine-mediated mTORC1 sig-
naling activation and mTORC1 together with its downstream
target are important regulators of insulin resistance, which
is a key feature of type 2 diabetes [50, 51]. The “histidine
metabolism” pathway may be implicated with type 2 diabetes
because histidine has the ability to suppress the production
of hepatic glucose, and Kimura et al. suggest that histidine or
the suppression of hepatic glucose production mediated by
histidine is a potential therapeutic target of type 2 diabetes
[49].

Finally, we investigated the crosstalk between the 21 path-
ways identified by MPINet with a significance level of FDR <
0.01. Interestingly, the additional “tyrosine metabolism”
(path: 00350) pathway was closely connected with “primary
bile acid biosynthesis” (path: 00120) and “valine, leucine,
and isoleucine degradation” (path: 00280) in the network
(Figure 4(b)). These results indicate that this pathway may
also be associated with type 2 diabetes. Furthermore, several
pathways not associated with type 2 diabetes in the literature
were found to interact closely with well-reported type 2
diabetes-related pathways (Figure 4(c)).

3.3.2. Reproducibility of MPINet. The type 2 diabetes dataset
2 was used to evaluate the reproducibility of MPINet. We
selected 66 differential metabolites from the data of Suhre
et al. (see Section 2). Only 30.7% of metabolites in dia-
betes dataset 1 overlapped with those in diabetes dataset 2.
However, up to 20 (76.9%) pathways identified in diabetes
dataset 2 overlappedwith diabetes dataset 1 (FDR< 0.05).The
overlapped pathways were highly significant 𝑃 = 2.36𝑒 − 11,
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hypergeometric test. Some critical pathways such as “valine,
leucine, and isoleucine degradation,” “valine, leucine, and
isoleucine biosynthesis,” “primary bile acid biosynthesis,”
and “histidine metabolism,” which are implicated in the
progression of type 2 diabetes, were also identified in diabetes
dataset 2.These results suggest thatMPINet performs reliably
in metabolomics pathway identification.

3.4. Identifying Drug-Sensitivity-Associated Pathways. We
investigated the effectiveness of MPINet for identifying
drug-sensitivity-related pathways. Platinum-based drugs are
widely used to treat many types of tumors, such as colon
cancer, lung cancer, breast cancer, and ovarian cancer.
However, resistance to platinum-based drugs is a major
bottleneck in cancer therapy. The identification of consis-
tent pathways relevant to platinum-based drug sensitivity
is therefore of considerable importance. We analyzed the
platinum-based drugs tetraplatin, iproplatin, and cisplatin
and identified 55, 17, and 44 significant metabolites (FDR <
60%) associated with these three drugs, respectively.Through
inputting these metabolites, MPINet identified 19, 9, and
19 significant pathways as drug-sensitivity-related pathways,
respectively (FDR < 0.01). As we expected, most of the
pathways identified by MPINet were shared by at least two
of the three drugs (Figure 5(a)). These results indicate that
MPINet was able to identify highly consistent pathways
associated with the sensitivities of these three platinum-
based drugs. MPINet identified five sensitivity-related path-
ways shared by all three drugs, including the three lipid
metabolism pathways, “steroid biosynthesis,” “primary bile
acid biosynthesis,” and “steroid hormone biosynthesis.” Some
previous studies have shown that lipid metabolism may
influence the effects of platinum-based drugs [52], and
Hendrich and Michalak [53] suggested that membrane-lipid
composition might be associated with multidrug resistance.
These results demonstrate the ability of MPINet to identify
effectively pathways associated with platinum-based drug
sensitivity. Furthermore, we expansively applied MPINet to
all 121 drugs (see Section 2) and identified the sensitivity
pathways for each drug. From a global point of view, drugs
assigned to the same mode of action tended to be associated
with sensitivity pathways from the same class (Figure 5(b)).
For example, amino acid metabolic pathways tended to be
related to topoisomerase I inhibitor sensitivity (Figure 5(c)).
Overall, these results indicate that MPINet provides a
robust and effective method for identifying drug-sensitivity
pathways.

4. Conclusion and Discussion

The major innovations of MPINet include the simultaneous
evaluation of the global nonequivalence of metabolites based
on the global network structure and consideration of the
bias associated with metabolomic experimental technology.
From a biological perspective, dysfunctions of metabolites
with strong functional-interaction partners are more likely
to be compensated for than those with weak functional-
interaction partners. Taking account of these functional

interactions (network structure) to evaluate the nonequiv-
alence of metabolites will help to improve the power of
pathway identification. From the experimental technology
perspective, the low coverage of metabolomics [9] and
metabolite identification bias can have a great impact on
subsequent pathway analysis (Figure 2). Based on these
considerations, we developed a novel metabolite pathway
identification method that takes account of the above aspects
by allowing the integrated analysis of functional interactions
between metabolites in the global biological network and
the character of the metabolomic profile. We demonstrated
the effectiveness and reproducibility of MPINet and its wide
applicability across different application fields by analyzing
several real datasets.

Metabolites involved in fundamental pathways have often
been well studied and tend to be easily detected in the
profile (Figure 2). These fundamental pathways may thus
be preferentially identified if this bias is not adjusted for.
In contrast, pathways that contain many pathway-specific
metabolites (i.e., metabolites with low GN score) (specific
pathways) will be more easily ignored. However, specific
pathways have often been reported to be associated with
diseases. If the metabolites in a pathway tend to be pathway-
specific, dysregulation signals will be amplified and the entire
pathway may even be shut down. An example of this is
the arachidonic acid metabolism pathway, which includes
many metabolites with high CGNB scores (Figure 4(a)).
The metabolites are influenced by dysfunctional arachi-
donic acid and may not be easily compensated for by
functional-interaction partners. MPINet pays more attention
to pathway-specificmetabolites by considering the nonequiv-
alence of metabolites from a global perspective; MPINet
increases the competitiveness of pathways containing many
metabolites with high CGNB scores and decreases the
competitiveness of pathways that contain many well-studied
metabolites.

Compared with other current methods such as ORA,
MSEA, and MetPA, MPINet can integrate not only metabo-
lites from metabolomics experiments, but also the global
metabolite network structure to enhance the ability of
pathway identification. One of the limitations of current
metabolomics technology is that manymetabolites cannot be
identified. MPINet utilizes the global metabolite functional
network to compensate for the lack of information. Thus, in
the case of pathways with weak signals from the annotation
number point of view,MPINet can also identify these by con-
sidering the additional global network structure. MSEA can
also detect some weak pathways [54, 55] by considering the
additional nondifferential metabolites in the metabolomic
profile; however, compared with MSEA, the additional infor-
mation in MPINet is based on global functional level rather
than on the concentration of a single metabolite. Moreover,
MPINet only requires simple input consisting of a list of
interesting metabolites. Taken together, MPINet has the
potential to complement ORA, MSEA, and MetPA and may
also be a useful tool in subsequent studies, such as studies
of disease classification based on biologically meaningful
pathways [56].
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Figure 5: Identification of drug-sensitivity-related pathways. (a) Venn plot of pathways related to platinum-based-drug sensitivity. (b)
Hierarchical clustering of drugs and sensitivity-related pathways. The corresponding cell was colored orange if the pathway was significantly
associated with drug sensitivity (FDR < 0.01). (c) Zoom-in plot of the circle region in (b).
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