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Introduction
Phosphorylation of signaling proteins is one of the common 
mechanisms cells employ to transmit signals. The emerging 
proteomics technology provides us with an excellent plat-
form to monitor the phosphorylation states of a large num-
ber of phospho-proteins under different external stimuli.1,2 
Signal transduction pathways respond to external stimuli 
and internal environmental changes in order to maintain 
cellular homeostasis. During the process, many signaling 
pathways eventually affect the transcription of the genes 

involved in various biological processes. Therefore, simulta-
neously studying transcriptomic and proteomic responses of 
cells will help us to elucidate signal transduction. Unveiling 
cells’ complex signaling network is of great importance for us 
to understand the cell’s regulatory mechanisms under physi-
ological and pathological conditions. Moreover, the disease 
treatment and drug development could be largely enhanced 
by studying to what extent the animal signaling networks can 
be used to explain the human signaling network.3 However, 
it is computationally challenging to accurately reconstruct the 
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complete signaling networks responsible for transducing the 
signals and ultimately regulating gene expression,4,5 due to the 
lack of established methods to integrate protein phosphoryla-
tion and gene expression data.

A wealth of data is available for investigating large-
scale regulatory networks, due to the rise of the high-
throughput technology which enables the simultaneous 
genome-scale measurements. Certain technologies have 
been applied to utilize large-scale data in the f ield.4–7 One 
commonly used method is differential equations, which 
uses a set of ordinary differential equations (ODEs) to rep-
resent a dynamic system in a more quantitative and precise 
manner.8 However, with the increasing size of the net-
work, the identif ication of model structure and estimation 
of parameters become very diff icult, which might require 
network simplif ication or approximation.9 The informa-
tion theory based model, in general, is to determine the 
regulatory dependency based on correlation analysis, and 
has a major advantage of low computational cost on large-
scale networks.6,10 There are also other various methods 
to model and simulate large-scale signal transduction 
network: Boolean network which uses binary variables 
and simple Boolean operation functions, eg, AND, OR, 
NOT, to represent a discrete dynamic system;11,12 Network 
Component Analysis (NCA) which uses prior information 
to constrain the search space for pathway inference;13,14 
supervised inference method, eg support vector machine 
(SVM), which splits the network inference into multiple 
classif ication problems.15

However, most of the approaches described above do 
not allow uncertainty to be included in the model. In con-
trast, Bayesian Network (BN) can formulate the quantita-
tive knowledge of the signaling pathways using probabilistic 
graphical representation, which introduces the uncertainty 
to the model.16–18 A BN is a directed acyclic graph (DAG) 
used to represent the joint distribution of a set of variables, 
and with certain constraints it can represent the causal rela-
tionship among these variables.18 A BN approach is particu-
larly suitable to represent the regulatory relationships among 
signaling proteins because the directed edges can be used 
to represent causal relationships.16,17,19,20 However, applying 
BN to learn signaling pathways based on large-scale genome 
data is also challenging in the following aspects. First, the 
DAG constraint of a conventional BN hinders its capability 
to represent the often observed feedback loops in biological 
systems, recent development of “loopy” inference algorithm 
may address such concerns.21 Second, with a large number 
of signaling proteins interacting and regulating each other, 
conventional approaches of representing probabilistic rela-
tionships among variables using conditional probability 
tables (CPT) becomes intractable, because the size of a CPT 
is exponential to the number of parents of a node. Finally, de 
novo learning structure based on observed data is NP-hard, 
which involves searching for a super exponential space of 

possible structures, but prior knowledge helps to constrain 
the searching space.19

To assess the current methods in learning cell signaling 
network and also try to understand the differences between 
rat and human cell signaling networks in response to com-
mon stimuli, SBV IMPROVER organized a Species Spe-
cific Network Inference challenge (https://www.sbvimprover.
com/challenge-2/sub-challenge-4-species-network-inference) 
based on rat and human genomic and proteomic data.22 In this 
challenge, a literature curated reference network with 220 nodes 
and 501 edges was provided as prior knowledge, from which 
the participants could add or remove edges. Figure 1 shows 
the overview of the network inference problem.

We participated in the SBV IMPROVER challenge 
and developed a novel BN learning approach to search for 
signaling pathways that model the information flow from 
extracellular stimuli to phospho-proteins states and further 
onto regulated gene expression. We adopted an approach 
that mimics full Bayesian framework in which we concen-
trated on identifying the BN that has the highest posterior 
probability conditioning on prior knowledge and data, rather 
than just fitting model parameters which often leads to the 
over-fitting problem. Instead of using conventional CPT, we 
defined conditional probabilities among variables using logis-
tic regression, which was amenable to a large number of par-
ents per node. We further designed a Markov chain Monte 
Carlo (MCMC) based inference algorithm to learn the BN 
structure through parameterization of conditional probabili-
ties. When applied to SBV IMPROVER challenge data, our 
models were capable of identifying biologically sensible net-
works and performed well during the SBV challenge.23

Methods
data collection and pre-processing. The transcriptomic 

and proteomic data for both rat and human were provided by 
SBV IMPROVER organizers.24 The phosphorylation states 
for 16 phospho-proteins under 26 different stimuli were mea-
sured in rat and human bronchus cells. Each stimulus experi-
ment included triplicates and data was collected at five and 
25 minutes. The SBV IMPROVER organizers provided dis-
cretized protein phosphorylation data, which was then pre-
processed into a binary matrix such that a “1” in the matrix 
indicates a protein is phosphorylated under a treatment con-
dition. A phospho-protein was considered phosphorylated if it 
was phosphorylated under either five or 25 minutes. There-
fore, the protein phosphorylation data was transformed in to 
a 16 × 78 binary matrix, ie, 16 phospho-proteins and 78 experi-
mental measurements, for rat and human, respectively.

Gene expression data was also measured and normal-
ized for cells exposed to 26 stimuli (two or three replicates per 
stimulus) and DME controls (Dulbecco’s Modified Eagle’s 
Medium corresponding to standard cell culture medium). In 
total, the data included 13,841 genes measured under 75 stim-
uli conditions and 16 DME controls for rat, and 20,010 genes 
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measured under 76 stimuli conditions and 16 DME con-
trols for human. We then calculated the gene expression fold 
change as the ratio of the gene expression level under stimuli 
conditions over the DME controls. We define a gene is dif-
ferentially expressed under a specific treatment condition, if 
the expression value of the gene exhibited a change of over 
twofold (increase or decrease). Then, we transformed the gene 
expression data into a 13,841 × 75 binary matrix for rat and 
a 20,010 × 76 binary matrix for human, such that a “1” in 
the matrix indicates a gene is differentially expressed under a 
treatment condition.

A reference network derived from literature was pro-
vided by the SBV IMPROVER as a starting point, which 
contains 220 nodes and 501 edges. The nodes could be clas-
sified into three categories: (1) stimuli, (2) signaling proteins 
which are composed of receptors, phospho-proteins, and tran-
scription factors (TFs), and (3) targets which are composed 
of genes and cytokines. We further augmented the reference 
network as follows: (1) adding an edge from known transcrip-
tion factors in the reference network, eg, SMAD2, STAT2 
and STAT3, to all genes in the network; (2) adding edges 
between phospho-proteins if correlation of their phosphoryla-
tion states was above 0.4. The augmented reference network 
with 220 nodes and 817 edges was used for rat and human 
BN structure inference.

bn representation. A BN is a DAG to represent the 
joint distribution of a set of variables, which could be fur-
ther factorized as a series of conditional probabilities. First, 
we transformed the augmented reference network into a BN, 
where the nodes represent the variables, eg, stimuli, phospho-
proteins, TFs and genes, and directed edges represent regula-
tory effects from parent nodes to the children nodes. Second, 
the states of the stimuli, measured phospho-proteins and genes 
were represented as Bernoulli variables, such that 1 is the 
“on” state (for example, proteins being phosphorylated, or 
gene being differentially expressed) and 0 is the “off” state. 
Third, we represented the conditional probabilistic relation-
ship between a node and its parents as a logistic function as 
defined in Equation (1):

 ( | ( )) ( ( )),Tp x Pa x Pa xσ β=
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where Xi denotes the state of node i, Pa(Xi) denotes the states 
of the parent nodes of node i, and β is a vector of logistic 
regression coefficients, with each element being associated 
with an edge between the node i and its parent nodes plus a 
bias term.

learning structure of species-specific signaling 
networks. We formulated the problem of learning signaling 
pathways as a task of learning BN structure based on the observed 
gene expression and protein phosphorylation data under differ-
ent stimuli. Here, we adopt a Bayesian approach toward the goal 
of searching for a network structure, S, which maximized the 
posterior probability given the observed data D:

 * arg max ( | )S GS p S D∈=  (2)
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figure 1. overview of the network inference problem. the task is to 
predict two separate signaling networks for rat and human by adding and 
trimming edges from reference network by applying Bn learning method 
to gene expression and reverse phase protein array data.
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where P(S|D) is the posterior probability of a given structure 
S and P(D|S) is the marginal likelihood of observing the data 
conditioning on a given structure, which involves integrating 
all possible values of the model parameter θ.

Learning BN structure based on observed data in our 
setting is difficult in the following aspects: (1) It is a NP-hard 
problem, due to the super exponential number of all possible 
network structures G with respect to the number of nodes, 
and exhaustive search all structure is intractable. (2) The inte-
gration in Equations (3) and (4) is often intractable. (3) The 
reference network contains many signaling proteins of which 
their activation states are unobserved; thus we need to infer 
their states when modeling the signal propagation in the sys-
tem, from stimuli to gene.

We developed an algorithm integrating Gibbs-sampling-
based belief propagation and a Monte Carlo approach to simul-
taneously address the items 2 and 3 in the previous paragraph 
(Fig. 2). Assuming that prior probability for any structure 
was uniformly distributed, we concentrated on computing an 
approximated marginal likelihood using samples obtained from 
Gibbs sampling and calculated the integration in Equation (4) 
via a Monte Carlo approach. Given a BN structure, we started 
N sampling chains, with each chain independently sampling the 
states of latent variables for all cases, updating model parameters 
and calculating the chain-specific likelihood of data P(D|S, θn). 
Then, the marginal likelihood can be approximated as follows:

 1

1 ( | , ) ( ) ( | , ) ( )N N
n np D S p p D S p d

N θθ θ θ θ θ→∞
=∑ ∫

 
(5)

where N is the number of chains, θn denotes the parameters 
derived from the nth sampling chain, and P(θ) is a prior distribu-
tion over the parameters. We will further discuss how to approx-
imate the integration in Equation (5) in later subsections.

learning network structure and parameters simulta-
neously. To avoid exhaustively searching through the space 
of network structures which was intractable, we developed 
an approach to simultaneously infer network structure and 
parameters by taking advantage of the form of conditional 
probability defined in our model. We constructed an initial 
network including all the edges in the augmented reference 
network, and we represented the conditional probability of 
a node using a logistic function as defined in Equation (1). 
The logistic regression represents the conditional probability 
between a node and its parent in a linear space instead of the 
exponential space associated with CPT. A logistic regression 
representation further enabled us to search for the BN struc-
ture through parameterization of the conditional probability. 
If an element β associated with an edge from a parent node is 
set to zero, it is equivalent to deleting the edge from the net-
work. We employed an elastic network approach to trim the 
edges using the R package “glmnet.”25 The elastic network can 
be used to learn regularized parameters in the framework of 
a generalized linear model in the following form:
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There is a connection between regularized regression and 
Bayesian treatment of regression as follows: estimating 
model parameters with an L1 regularization is equivalent to 

Algorithm:

Input: G-The canonical network

G’-The rat/human specific network

For i=1 to N do

Randomly initiate unobserved variables (latent variales).

While not converged

end

end

Calculate the edge weight by averaging all N samples.

Trim the edge with insignificant weight.

Trim the unobserved nodes with no direct/indirect connections to upstream observed variables.

Update edge weight using logistic regression method, i.e. glmnet in R.

Sample the state of the variables conditioning on the nodes in the
markov blanket.

D-Transformed activation for observed variables under different experimental
conditions, i.e. 0-inactive; 1-active

Output:

Bayesian network structure learing using MCMC

figure 2. Pseudo code of learning Bn structure with mCmC algorithm.
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estimating the maximum a posterior (MAP) parameters under 
a Laplacian prior over the parameters; estimating parameters 
with an L2 regularization is equivalent to estimating MAP 
parameters under a Gaussian prior over the parameters cen-
tering at 0. Therefore, the elastic network model in a linear 
regression setting can be thought of as estimating MAP 
parameters under a mixture of prior distributions. When 
the above assumptions are generalized to logistic regression 
under our setting, one can treat a MAP parameter vector nθ   
as a sample drawn from the posterior distribution over param-
eters. While nθ  is not exactly drawn from the prior distribution 
as required by Equation (5), integrating it out using a Monte 
Carlo approach would approximate the marginal likelihood of 
the model as follows:

1 1

1 1( | , ) ( | , ) ( ) ( | )N N N
n n n n np D S p D S p p D S

N N
θ θ θ →∞

= =∑ ≅ ∑   (8)

Under such a setting, our task of searching for optimal BN 
structure that effectively models the data is carried out by 
first instantiating the edges of the initial BN according to 
knowledge and data (augmentation step of our approach) and 
then trimming the edges that are not needed to explain the 
observed data. In this approach, we simultaneously learned 
the optimal structure as well as the parameters associated with 
the optimal structure.

results
overview. Learning a species-specific network is equiv-

alent to searching for a subset of nodes and edges from the 
reference network, which give the best representation of the 
observed data for a particular species. We addressed this task 
by going through the following steps: (1) augmenting the 
initial reference network by adding edges from known TFs 
to potential targets and edges between phospho-proteins with 
strong correlations of their phosphorylation states; (2) learn-
ing the BN by utilizing the experimental data and augmented 
reference network, which determines the network structure 
through parameterization; (3) using elastic network approach 
to determine if an edge should be retained between the parent 
node and its child node. Our approach enabled us to reduce 
the augmented network to a very sparse network that models 
the observed data well, and also allowed us to avoid exploring 
super-exponential space of all possible structures in a polyno-
mial time.

We tuned the α and λ parameters of “glmnet” and searched 
for the optimal penalty that led to the sparsest model with best 
performance [Equations (8) and (9)]. Figure 3A shows that by 
increasing α (increasing L1 penalization while decreasing L2 
penalization), we tend to have sparser networks, which is to 
be expected. Interestingly, Figure 3B shows that the models 
with around 350 edges return the best marginal log likelihood 
for both rat and human data, whereas models with too many 
edges or too few edges do not fit the data well. This is a key 

advantage of Bayesian model selection, such that it penalizes 
the too complex models that tend to over-fit data and the too 
simple models that cannot explain data well – a characteris-
tic commonly referred to as Occam’s razor. We selected the 
best models with αrat = 0.9 and αhuman = 1, for rat and human, 
respectively. Over half of the edges were trimmed off for both 
rat and human augmented reference networks. We also found 
that interactions between phospho-proteins in signaling path-
ways tended to be more translatable with few divergent points 
from rat to human, whereas TF–gene interactions tended to 
be more divergent between rat and human, which explained 
the difference in gene expression profiles.

learning rat and human specific signaling networks. 
We applied our BN learning method to infer the rat and 
human specific signaling networks from experimental data, 
incorporating the augmented reference network which con-
tains 220 nodes and 817 edges. The predicted networks are 
much sparser than the given the reference network, which 
only contains about half the edges in the reference network: 
the rat network is composed of 171 nodes and 366 edges, and 
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of edges in the predicted network.
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the human  network is composed of 171 nodes and 355 edges 
(Table 1 and Figure 4). Notably, most of the trimmed edges 
correspond to TF-.gene interactions, ie, 38 out of 72 genes 
were deleted for having no incoming transcriptional signal. 
The result was evaluated and scored by the SBV IMPROVER 
Species Specific Network Inference challenge committee, and 
ranked as one of two best performing teams in the competition, 
ie, team PITT.DBMI.DREAM (https://www. sbvimprover.
com/challenge-2/overview).

The two predicted networks inferred by our approach rep-
resent plausible signaling pathways specific to rat and human, 
respectively. In contrast to the original reference network, six 
signaling edges are not retained in either rat or human network. 
For example, MTOR → RPS6KB2, RPS6KB2 → RPS6, and 
RPS6KB2 → RPS6 are deleted due to the fact that the param-
eters associated with these edges cannot be learned since both 
of the latent variables, i.e. RPS6 and RPS6KB2, do not have 
any downstream observable node. We have also added three 
edges between AKT1 and three other proteins, ie, IKB_FAM-
ILY, HSPB1, and MAPK9. The proposed regulations are con-
sistent with the experimental facts: Aurora-A down-regulates 
IKB_FAMILY via AKT activation;26 HSPB1 phosphorylation 
level is mediated by AKT activity in epidermal differentiation;27 
and the JNK2-mediated phosphorylation of JIP1 results in the 
dissociation of AKT1 from JIP1 and subsequently restores 

AKT1 enzyme activity.28 Moreover, a number of gene targets  
have been added to the networks for known TFs, ie, CREB1 
(2 targets), SMAD2 (25 targets), STAT2 (23 targets), STAT3 
(21 targets), and STAT6 (30 targets).29–31

signaling network translatability between rat and 
human. Figure 4 shows the networks learned by our method 
and the comparison between rat and human. There is a sig-
nificant overlap between these two networks, ie, 162 shared 
nodes and 289 shared edges (Table 1). The predicted net-
work represents various cellular pathways according to the 
KEGG database,32 eg, MAPK signaling pathway, PI3 K-Akt 
signaling pathway, Jak-STAT signaling pathway, Ras signal-
ing pathway, NF-kappa B signaling pathway, etc.

Table 1. number of nodes, edges, signaling edges, and 
transcriptional edges in segmented reference network, predicted 
rat network, predicted human network, and predicted network 
intersection between rat and human.

REfNET RAT hUMAN boTh

# of nodes 220 171 171 162

# of edges 817 366 355 289

# of signaling edges 272 255 258 247

# of transcriptional edges 545 111 97 42

 

figure 4. the predicted rat and human signaling network.
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The result also shows that the interactions among 
phospho-proteins in signaling pathways tend to be more con-
served with fewer divergent points, whereas TF–gene inter-
actions tend to be more divergent between rat and human. 
Figure 5 illustrates the rat/human specific signaling edges 
and transcriptional edges. Notably, there are no significant 
difference between rat and human at protein–protein signal-
ing transduction level. Moreover, as shown in Figure 5A, 
most of the species specific edges were localized to only one 
or two interactions within the same signal cascade. However, 

gene expression might be more mediated in a species-specific 
fashion, where the same TF is responsible for regulating the 
expression of different sets of genes from rat to human as illus-
trated in Figure 5B.

discussion
Reconstruction of the signaling networks is very important for 
us to study cells’ regulatory mechanism, and the knowledge 
of correctly inferred signaling pathways can be further uti-
lized to improve disease treatment and drug development.5,33 

figure 5. (A) Rat and human specific signaling edges in the predicted network. (b) Rat and human specific transcriptional edges in the predicted 
network.
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Animal models play an essential role during this process, and 
exploring the commonality and discrepancy between human 
and animal models can help us better understand the human 
signaling network and ultimately design better drugs. In this 
study, we developed a BN structure learning approach for a 
species specific network learning task with three advantages: 
(1) we efficiently built the reference network to confine the 
network searching space by incorporating prior knowledge 
from literature and adding edges between the nodes with sta-
tistically significant correlations; (2) we avoided searching the 
super exponential space of all possible structures by adopting 
the MCMC EM method to infer the states of latent variables 
and estimate parameters associated with the edges; (3) we pre-
dicted the sparsest network to best represent the observed data 
by employing elastic network approach to determine the edge 
weight and network structure.

The predicted networks showed very strong overlaps 
between rat and human, especially at the protein signal trans-
duction level, which suggested that there was no entire signal-
ing paradigm shift between rat and human. However, TF to 
gene interactions tended to be more divergent between rat and 
human, where certain TFs were predicted to have different 
sets of gene targets. This difference could be the key to explain 
the discrepancy in gene expression profiles between rat and 
human under a common stimulus. These findings need further 
careful verification which may require carrying out more thor-
ough experimental work.

Our approach could be further extended to infer the acti-
vation states of signaling proteins given only gene expression 
profiles once the network structure and parameters are deter-
mined. This inference process could be very useful to learn the 
pathway driving forces in a patient specific fashion, because 
gene expression technology is readily applicable in clinical 
environment, particularly in cancer care, whereas proteomic 
analysis has not been widely used in clinical setting and is 
more expensive. In addition, our study provides an example to 
demonstrate the feasibility of inferring the signaling pathway 
and its state through integrating transcriptomic and proteomic 
data, and it may motivate more studies to apply the principles 
developed in this study in cancer and other disease researches.

conclusion
We developed a BN framework for learning species-specific 
signaling pathways that provided the best presentations for the 
observed data with the sparsest network, by applying advanced 
statistical methods on the reference graph to infer the states of 
latent variables and estimate the parameters associated with the 
edges. The results were assessed and scored as the top performer 
by SBV IMPROVER Species Specific Network Inference chal-
lenge committee and also matched with experimental evidence. 
Our predictions that the protein signaling pathways are con-
served and TF–gene interactions are divergent, could be used 
to explain the difference in gene expression profiles between rat 
and human, which needs further experimental verifications.
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