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Abstract

After a preliminary explanation as to how I came to know Andy Grieve and

some remarks about his career and mine and how they have intersected, I

consider the design and analysis of trials of vaccines for COVID-19 for the

purpose of estimating efficacy. Five large trials, run by the sponsors Pfizer/

BioNTech, AstraZeneca/Oxford University, Moderna, Novavax and J&J

Janssen are considered briefly. Frequentist approaches to analysis were used

for four of the trials but Pfizer/BioNTech nominated a Bayesian approach.

The design and analysis of this trial is considered in some detail, in particular

as regards the choice of prior distribution. I conclude by drawing some gen-

eral lessons.
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1 | INTRODUCTION

It is a pleasure to be able to contribute a piece to Andy Grieve's festschrift issue. A short explanation as to how I have to
know Andy is in order. In 1987, after 9 years working for the then Dundee College of Technology, I was appointed as a
statistician in my hometown of Basle to work in the medical statistics group of CIBA-Geigy (now merged with Sandoz
to form Novartis) headed by Jakob Schenker. There was another, methodological statistics group headed by Hugo
Flühler. The medical statistics group was located in the Klybeck site and the methodology group in the Rosental site,
over a mile away and this meant that the statisticians from the two groups did not meet up regularly, although they did
occasionally attend seminars together. However, my boss Jakob Schenker previously worked in the methodology group
and brought some statisticians with him when he took over the medical statistics group and their familiarity with the
other group helped the medical statisticians to know what their more methodologically minded colleagues were up to.

Nevertheless, I found this separation far from ideal and remarked that CIBA-Geigy seemed to have two statistics
groups: one with lots to do and no time to think and the other with lots of time to think and nothing to do. This was,
however, unfair. The methodology group was, in fact, involved in many applications, basically anything to do with sta-
tistics except phase II–IV clinical trials, and they were also involved across all the many divisions of the conglomerate,
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not just pharmaceuticals. They had been pioneering practical Bayesian approaches to a number of problems they
encountered. An important context for this is that this was before the computational revolution introduced at the begin-
ning of the next decade by Alan Gelfand and Adrian Smith.1

In fact, only a year earlier, in collaboration with Adrian Smith, who acted as a statistical consultant to the group,
Hugo Flühler and two members of his group had presented a read paper to the Royal Statistical Society.2 The two
others were Amy Racine and Andy Grieve and their names regularly cropped up in our discussions of what the method-
ology group was up to.

I was advised on my arrival to become familiar with SAS® and also repeated measures designs and was informed
that the local expert for the latter was Andy Grieve. He had a fearsome reputation as someone who could master detail
easily and 5 years earlier had published a note in Biometrics3 correcting some algebra in an earlier famous paper by
James Grizzle on crossover designs.4 According to local legend, whenever Andy found a problem difficult he would just
give himself leave of absence from work and then emerge a few days later with the problem solved. I was given a tech-
nical report of his to read that I found intimidatingly stiff with algebra (some of it related no-doubt, to his work on
sphericity5 and pre-test post-test designs6) and immediately became completely in awe of his statistical ability, a feeling
that has not left me since.

In fact, unfortunately for me, Andy was about to move to the English office of CIBA-Geigy, so that we hardly over-
lapped in Basle. However, his new appointment in the UK meant that he was more often involved in clinical trials and
we collaborated on a project in asthma developing the drug formoterol,7 so we came to know each other well by phone
(this was an era before email for us). I soon came to count Andy as a good friend as well as a reliable source of sound
statistical advice and we have collaborated several times since, having published together on at least five occasions. A
highlight of our collaboration for me was having appeared together as two of the four members of the Royal Statistical
Society team that got to the final of the 2006 University Challenge the Professionals series.

Andy is a committed Bayesian and I often fly under a frequentist flag of convenience. This has led to a number of
good-natured arguments over the years between the two of us, although we have also often agreed that much of what
matters has little to do with statistical philosophy per se but rather more with understanding and respecting the field of
application. An example is given by our joint paper on crossover trials.8 I have decided to pick as my topic for this fest-
schrift issue something that ought to interest us all, the design of trials of efficacy of vaccines against COVID, but which
also gives scope for a double connection to Andy. I shall consider five trials but only one of them in detail. This was not
only a trial run by Pfizer, a company for whom Andy used to work but also one for which Bayesian methods were used.
Andy had long left Pfizer by the time the vaccine development programme for COVID was put together and he is not
responsible for the decisions made in planning this trial but I like to think that something of the Bayesian approach he
brought survives, so this seems to me to be a suitable topic for discussion.

2 | FIVE TRIALS

The five trials that I shall consider are all large, randomised placebo-controlled phase III studies and are summarised in
Table 1. I shall only consider the trials as regards the purpose of estimating efficacy. Safety is also very important but

TABLE 1 Numbers of subjects and cases for five large trials.

Sponsor

Subjects Cases

Vaccine Placebo Vaccine Placebo

Pfizer/BioNTech9 20,712 21,096 77 850

AZ/Oxford10 17,662 8550 73 130

Moderna11 14,134 14,073 11 185

Novavax12 7020 7019 10 96

J&J Janssen13 19,630 19,691 116 348

Note: Pfizer/BioNTech figures after 6 months follow up. Novavax after 3 months follow up AZ/Oxford, Moderna J&J Janssen after 2 months follow-up (figures
are the median time after the second dose except for J&J Janssen, where time is after the first dose).
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raises different issues as regards the use of controls and also concerning scales of measurement.14 Such matters are
beyond the scope of this article but are either applied or discussed in various papers to which I refer.

Attempting to describe the COVID vaccine trials during the pandemic has been trying to hit a moving target. The
trials have reported at stages at which information is still accruing, even if earlier analyses presented were at the pre-
specified primary time point, whether for accrual or follow-up. The reader should bear this in mind. What is being pres-
ented is a snapshot. I cannot guarantee, even at the time of writing, that what is presented is the latest picture of a given
trial. It is the nature of the studies that the situation may change over time as more observation time accrues. The foot-
notes to the table should be consulted for details of follow up.

There were also some differences in the approaches to blinding and in the endpoint used and a brief summary is
provided in Table 2. It should be noted that the J&J Janssen vaccine was given in a single injection, whereas for the
other four sponsors, two injections at various intervals were given. For these four sponsors, only cases arising after the
second injection were counted. The subsequent interval required to be counted varied from 7 days for Pfizer/BioNTech
and Novavax to 14 and 15 for Moderna and AZ/Oxford.

Although it has little direct relevance to inference, it is of interest to look at the plans for the five trials. Details are
summarised in Table 3. All the five trials used as a null hypothesis that the vaccine efficacy (VE) was 30%, suggesting
either strong agreement in the community of researchers or common regulatory advice or both. Four sponsors, Pfizer/
BioNTech, AZ/Oxford, Moderna and J & J Janssen used a clinically relevant value of 60% for VE for the power calcula-
tion. Novavax used a value of 70%. (Details of the VE scale will be discussed in due course).

Four of the trials used a one-to-one randomisation, whereas the AZ/Oxford trial allocated twice as many subjects to
vaccine as to placebo. This was a surprising choice. For a given number of patients enrolled it would give more informa-
tion on side-effects, albeit only in an uncontrolled manner. However, all the trials were sequential, and since stopping
would be largely dependent on the number of cases, in the event of the vaccine's being effective, this would delay the
point at which efficacy could be declared. Sequential boundaries for four of the trials are given in Figure 1. The exception
is the J&J Janssen trial, which used a ‘truncated sequential probability ratio test’13 (p. 2189). It is noticeable, for the four
trials using a VE of 60% under H1, despite many other details varying, similar numbers of events are targeted, ranging
from 150 for AZ/Oxford to 164 for Pfizer BioNTech. Novavax assumed a VE of 70% and targeted a much lower number of
events, 100. See Patterson et al (2022), in particular their Table 1, for a useful summary of sample size considerations for
vaccine trials.15 In fact, the major uncertainty in such trials is not the number of events that are needed but the number of
subjects needed to provide them. This is one reason that makes a sequential approach particularly attractive.

TABLE 2 Endpoints used for the primary efficacy analysis of the five trials.

Sponsor Design Endpoint

Pfizer/BioNTech Observer blind Covid-19 occurrence 7+ days after the 2nd dose in participants without evidence of
infection

AZ/Oxford Double blind 1st occurrence of SARS-CoV-2 RT-PCR confirmed symptomatic illness, 15+ days after 2nd
dose

Moderna Observer blind 1st occurrence of symptomatic Covid-19 with onset 14+ days after the 2nd injection

Novavax Observer blind 1st occurrence of PCR-confirmed symptomatic (mild to severe) COVID-19 with onset 7+
days after 2nd vaccine

J&J Janssen Double blind Moderate to severe critical COVID-19 occurring 14+ days after vaccination

TABLE 3 Various features of the plans for the five trials.

Sponsor

Vaccine Efficacy Assumed Event rate

Power (%)

Target numbers

H0% H1% % per 6 months Events Vaccine Subjects Placebo Subjects

Pfizer/BioNTech9 30 60 0.65 90 164 21,999 21,999

AZ/Oxford10 30 60 0.8 90 150 20,000 10,000

Moderna11 30 60 0.7 90 151 15,000 15,000

Novavax12 30 70 1 95 100 7500 7500

J&J Janssen13 30 60 0.7 90 154 30,000 30,000
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Explicit details of the way the J&J Janssen trial was conducted as regards monitoring are neither given in the paper
publishing the results nor in the protocol but reference is made to two papers16,17 by statisticians working for
GlaxoSmithKline (GSK), about which I can make three comments. First, it is pleasing to see ideas developed by statisti-
cians at one pharmaceutical company (GSK) being used at another (J&J Janssen). (Vlad Dragalin moved from GSK to
J&J Janssen so this is no doubt part of the explanation!) This is a tribute to the science of drug development and the
pharmaceutical industry. Second, it is, however, a pity that specific details of implementation were omitted from the
protocol and the publication. Third, the conditional analysis described by the GSK statisticians16,17 is important and
indeed central to much of what I shall subsequently describe. I have frequently used the conditional argument in blog-
ging on COVID vaccine trials without realising that it had been very nicely described in these papers.16,17 I am now in a
position to make amends by citing them.

As regards the other boundaries, in some cases I have had to construct these from incomplete information in the
trial protocols. The reader should beware it is possible that I have made mistakes. Novavax took one interim look using
a Pocock boundary.18 The Pfizer analysis was Bayesian and will be discussed in detail in due course but the boundary,
according to the protocol, was chosen to control the type I error rate at 2.5% one sided and to allow for up to four
interim looks. There was also a futility boundary, which will not be discussed here. AZ/Oxford planned one interim
look at about 50% of information with an alpha level of 0.31% with 4.9% at the end for an overall type I error rate of 5%.
Reference is made to a Lan-DeMets spending function19 but the rule itself is not given a name in the protocol. The
values are fairly similar to those for an O'Brien-Fleming rule.20 Moderna planned three looks in total and make explicit
reference to Lan-DeMets and O'Brien-Fleming.

It turns out, however, that the sequential approaches used have very little impact on the final analysis of the results
of these trials. A possible approach to analysis will be discussed in the next section.

3 | VACCINE EFFICACY

The common scale used to report on the trials was vaccine efficacy, VE, defined as a parameter as

VE¼ 100
πP�πV

πP
¼ 100 1�πV

πP

� �
, ð1Þ

FIGURE 1 Stopping boundaries for four of the five vaccine efficacy trials. The numbers are the information fractions at the various

looks.
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where πP,πV are the probabilities of infection if given placebo or vaccine and the multiplier 100 is used because the fig-
ure is usually expressed as a percentage. As the second of the forms shows, but for the factor 100, it is simply one minus
the relative risk.15 A simple estimate of this is

VEest ¼ 100
YP=nP�YV=nV

YP=nP
, ð2Þ

where YP,YV,nP,nV are numbers of cases of COVID and subjects treated in vaccine and placebo groups respectively. If
nV ¼ nP then (2) reduces to

VEest ¼ 100
YP�YV

YP
, ð3Þ

A simple justification of (3) is then as follows. (1) The numerator estimates the number of cases of COVID that were
prevented: YV is the number of observed cases in the vaccine group but if the placebo group is similar in size and
nature, then YP is an estimate of the counterfactual number of cases that would have been seen had the vaccine been
ineffective. Thus YP�YV is an estimate of the number of cases prevented. (2) The denominator that is used is now an
estimate of the number of subjects at risk. The number of subjects given vaccine, nV, might seem to be appropriate here
but in fact, it is the nature of a pandemic that during any period of observation many individuals will not come into
contact with the virus and therefore cannot be infected. They thus also cannot be protected from infection. Therefore,
the number that is used is the number who would have been infected had the vaccine been ineffective and this is esti-
mated as YP.More generally, if the number of subjects in the two groups are unequal, which was a design feature of the
AZ/Oxford trial, then if R¼ nV=nP one can write (2) as

VEest ¼ 100
RYP�YV

RYP
: ð4Þ

Note that (3) is a special case of (4) with R¼ 1. Expression (4) is useful in that if numbers of subject are unknown but
the allocation ratio is known, then, for a large trial, one can simply substitute the allocation ratio for R in (4) and calcu-
late accordingly. This was the situation I found myself in in various stages in the pandemic when I was blogging on the
results of various trials for which numbers of cases were usually available, say from press-releases, but numbers of sub-
jects often were not.In fact, for modelling, a more useful parameter is what might be called the case proportion.

θ¼ πV
πPþπV

: ð5Þ

Take for simplicity the balanced case with one to one randomization and therefore R¼ 1. If the number of cases in the
placebo and vaccine groups are approximately Poisson distributed with parameters λP,λV, respectively, then

YV
~Bin θ,nð Þ

θ¼ λV
λPþ λV

,n¼YVþYP:
ð6Þ

which is to say that conditionally on the total number of cases, the number of cases under vaccine has a binomial distri-
bution θ,nð Þ with θ equal to the expected number of cases under vaccine as a ratio of total expected cases and n equal
to the number of cases.

This form of conditioning is discussed in section 4.5 of Lehmann's famous book21 and also by Dragalin, Fedorov16

and in an earlier paper together with Cheuvart,17 both of which papers describe its application to vaccine trials. An
analogous form is, of course, common in log-linear models (see McCullagh and Nelder22 chapter 6, in particular
section 6.4). For a more recent discussion, see the paper by Patterson et al already referenced.15 This particular form of
analysis is very flexible, permits use of frequentist ‘exact’ methods for constructing confidence intervals and was
employed by Pfizer/BioNTech in their Bayesian approach, as I shall discuss in due course.
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The relationship between (1) and (5) is given by

VE¼ 100
2θ�1
θ�1

θ¼ 1�VE=100
2�VE=100

:
ð7Þ

This can be used to transfer inference from one scale to another.

4 | RESULTS FOR THE FIVE TRIALS

At the time of writing and using the information based on the five papers previously referenced,9–13 the results in terms
of vaccine efficacy are as given in Figure 2. In addition to the results quoted in the various papers, I have calculated
confidence intervals by (a) using an exact argument based on a conditional binomial and the allocation ratio (two for
AZ/Oxford and one in the other four cases) then (b) transferring the resulting interval for θ to one for VE by applying

FIGURE 2 Results in terms of vaccine efficacy of the phase III trials listed in Table 1. For each of the five trials results of two analyses

are shown. One is the published result and the other is a simple conditional analysis using the proportion of cases in the vaccine group, the

panned allocation ratio and applying an exact binomial analysis. Also given are total numbers of cases and subjects.

TABLE 4 Numbers of subjects by trial and arm.

Sponsor

Planned
Allocation
Ratio

Control
subjects nc

Vaccine
subjects nv

Observed
allocation ratio nv/nc Chi-square p-chi p-exact

Pfizer/BioNTech 1 21,096 20,998 0.995 0.228 0.633 0.636

AZ/Oxford 2 8550 17,662 2.066 6.025 0.014 0.014

Moderna 1 14,073 14,134 1.004 0.132 0.716 0.721

Novavax 1 7019 7020 1.000 0.000 0.993 1.000

J&J Janssen 1 19,544 19,514 0.998 0.023 0.879 0.883
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Equation (7). The sponsors' estimates and confidence intervals are given by filled circles and solid bars and the result of
my simple calculation by open circles and dashed bars. Totals numbers of cases and subjects are also indicated for the
five studies. Although it is convenient to put these results in one table, the reader should be wary of assuming that they
are comparable. Definitions of cases are not necessarily identical and time windows for observations differ and, in par-
ticular, as will be discussed below, follow-up has also differed and this can have an important effect on results.

Of course, one should prefer the estimates of the sponsor, which have the advantage of being pre-specified and
using further (for example covariate or follow-up time) information. Nevertheless, it is interesting to see how close one
can get using the simple argument. The one exception appears to be the AZ/Oxford trial. Part of the explanation may
be that this is the trial for which the observed allocation ratio has the biggest difference from the expected one. The situ-
ation is shown in Table 4.

The chi-square statistic (with one degree of freedom) is what would apply as a test of the chance mechanism had
simple randomisation been applied. In practice, some form of blocking will have been used by the sponsors and so the
statistic may be regarded as an underestimate. Indeed, it is noticeable that the statistics are generally less than 1, so
closer than one would expect had simple randomisation been applied but that there is one exception: the value for
AZ/Oxford is six times what would be expected. Also given are the P-values calculated from the chi-square and the
‘exact’ p values calculated from a binomial test. These are in close agreement.

Of course, as I myself have argued previously,23,24 using such baseline analyses is not an adequate way to decide
whether changing the model by including a variable would change the analysis of the outcome variable. Furthermore,
perhaps ironically, when such tests of balance are carried out, comparison of the sample size per arm is not the object
but such values are, instead, conditioned on, say to compare if the distribution of covariates is ‘balanced’. Nevertheless,
the AZ/Oxford disparity is curious and, as far as I am aware, has not been explained by the authors. I find the discrep-
ancy concerning, not because the P-value is less than 5% (it is very modest and one of five post-hoc values) but because
I expect blocking to have been used in the trial, in which case, the allocation ratio ought to be closer to the expected
ratio of 2:1.

The way to check if it has an effect, however, is to include it in the analysis. Figure 3 again gives the sponsor analy-
sis but this time my alternative analysis conditions on the actual observed ratio of subjects. There is little difference to
the situation in Figure 2, although my result for AZ/Oxford is now a little closer to the sponsor's. Of course, in making
this adjustment, I am making a ‘missing at random’ assumption. Furthermore as already noted the denominator used
by sponsors was often observations time and in any case, the numbers deemed to be at risk were sometimes a little

FIGURE 3 Representation of the results in Figure 2 but conditioning on the observed rather than the planned ratio of subjects.
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lower than the figures I have quoted. Nevertheless, in conclusion, what is remarkable is how close a simple analysis
gets to the more sophisticated version used by the sponsors.

This raises an interesting issue. The exact analysis I have used does not rely on asymptotic results. To that extent, it
might be considered to be superior to more flexible modelling that does. On the other hand, the more flexible modelling
can take into account many relevant incidental matters that the exact analysis ignores. The supposed accuracy of the
exact analysis is only achieved by disregarding these incidental matters in order to achieve a validity, which applies
when averaged over all randomisations. (See Seven Myths of Randomisation for a criticism of this view.25) This too,
therefore is a sort of asymptotic result, not as the sample size goes to infinity but as the randomisations do. As Jack
Good put it, discussing what he called the Statistician's Stooge, “this precise objectivity is attainable, as always, only at
the price of throwing away some information”’26 (p. 54). My intuition is that the modelling approach is to be preferred.
I have presented the ‘exact’ analysis here not to propose it as a superior alternative but instead as a useful simple
check.

5 | PFIZER/BIONTECH'S BAYESIAN APPROACH

Four sponsors nominated frequentist methods as their approach to analysing the planned trial. Pfizer/BioNTech, on
the other hand, nominated a Bayesian approach. I now propose to discuss this in detail. Much of what I have to say
concerns planning. However, since a plan is guided by the intended analysis, I shall also illustrate some points by ana-
lysing the results. Two points are worth noting. First, I do not have access to the covariate data that were used. Second,
I shall illustrate the analysis using the outcome data that were available at the analysis published by Polack et al27 in
the New England Journal of Medicine on 10 December 2020. (As a referee has pointed out to me, although there have
been subsequent analyses using more data, it is misleading to describe this as an interim analysis, since it was the anal-
ysis that was defined to take place after the planned target of 164 cases had accrued. Further follow-up since that time
has provided more data but that is another matter).

As regards the first point, which in any case follows from necessity, I have already explained one can get very close
to sponsor results by using the results from cases alone and this simple analysis has the virtue of allowing one to con-
centrate on what the essential difference between a frequentist and Bayesian analysis is. As regards the second, the
more data one has, then, other things being equal, the smaller the difference between frequentist and Bayesian
approaches. Using fewer data is thus more revealing. In any case, as discussed above they can be considered as those
that were relevant to the primary analysis.

As the Polack et al paper27 puts it “The 95.0% credible interval for vaccine efficacy and the probability of vaccine
efficacy greater than 30% were calculated with the use of a Bayesian beta-binomial model.” (P2605) Which prior distri-
bution was used to produce the relevant posterior distribution is not explained at this point. However, a footnote to
Table 2 states, “The credible interval for vaccine efficacy was calculated with the use of a beta-binomial model with
prior beta (0.700102, 1) adjusted for the surveillance time.” A further footnote to this table states, “Posterior probability
was calculated with the use of a beta-binomial model with prior beta (0.700102, 1).” The quoted parameters are those
for the prior beta distribution for a beta binomial analysis. It is this distribution I propose to discuss.

A striking feature of the distribution is that the first parameter is quoted to six significant figures and the second to
only 1. To find the reason, it is necessary to consult the protocol,28 which states:

“A minimally informative beta prior, beta (0.700102, 1), is proposed for θ = (1 � VE)/(2 � VE). The prior
is centred at θ =0.4118 (VE = 30%) which can be considered pessimistic. The prior allows considerable
uncertainty; the 95% interval for θ is (0.005, 0.964) and the corresponding 95% interval for VE is (�26.2,
0.995)” (pp. 102, 103).

A common form for parameterising the beta distribution is that given by Forbes et al29 who write it as

f X ¼ xð Þ¼ xν�1 1� xð Þω�1

Z 1

0
uν�1 1�uð Þω�1du

, 0≤ x ≤ 1 , ð8Þ
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where the denominator of (8) is the beta function. This appears to be the form that Pfizer/BioNTech have used. The
argument x of the beta distribution ranges between 0 and 1, which makes it suitable to act as a quantity which is itself a
probability. Note that vaccine efficacy is not a probability but the expected ratio of cases under vaccine to all cases is a
probability and this is the parameter for which the prior distribution is established in the protocol and this is what we
have labelled θ in (5). In, other words, we can substitute θ for x and ν¼ 0:700102, ω¼ 1 in (8). With this
parameterisation, the mean of the prior distribution is 0.4118. The prior distribution in terms of θ is given by Figure 4.
Also shown are various possible alternatives. We now proceed to discuss the choice of the prior distribution that
was used.

Why the choice of this strange mean of 0.4118? The answer is that application of the transformation given by (7)
yields a corresponding value of 30% on the vaccine efficacy scale and 30% was the minimum value of interest for vac-
cine efficacy that was commonly agreed (at least, by all five sponsors considered here). There are, however, three prob-
lems in giving this as a justification. The first is that it does not follow from the fact that the transformation of the
mean of 0.4118 on the θ scale yields a value of 30% on the VE scale that the mean on the VE scale is 30%. For any
monotonic transformation, the median on one scale can be transformed to the median on another but transformations
over means are not necessarily the same as means over transformations.

The second problem is that there are infinitely many beta-distributions with a mean of 0.4118. Why was the one
with ν¼ 0:700102, ω¼ 1 chosen? The choice of possible values is illustrated in Figure 5, which gives contours of the
variance,

var ν,ωð Þ¼ νω

νþωð Þ2 νþωþ1ð Þ ð9Þ

of the beta distribution as a function of ν&ω. Note that the variance increases with lower values of the parameters that
is to say towards the lower left hand side of the figure. The solid grey diagonal line rising from bottom left to top right
joins all possible parameter combinations that have a mean of 0.4118. The diamond gives the combination chosen by
Pfizer/BioNTech but many other choices are possible. A common default beta distribution is the one with ν¼ 1,ω¼ 1
for which the probability density is uniformly 1 for all values of θ and for which the variance is 1=12. Of course, this

FIGURE 4 Prior distribution for θ used by Pfizer/BioNTech as well as various possible alternatives that might be considered.
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has a mean value of 0.5, not 0.4118. What Pfizer/BioNTech seem to have done is to change the value of ν and keep the
value of ω the same in order to produce a mean of 0.4118. If they wanted to keep one of the parameters at 1 they could
equally well have used ν¼ 1, ω¼ 1:428363, although this would have implied a smaller prior variance. This point is
illustrated by an asterisk. However, if both values are changed in order to maintain the variance at 1=12 but yield a
mean of 0.4116, the combination is ν¼ 0:78516, ω¼ 1:1215. This point is illustrated by a circle.

I am grateful to a referee for suggesting a justification. If the object is to target a particular quantile such as 0.4118
(which as previously noted corresponds to 30% vaccine efficacy) and one wishes to have a unimodal prior distribution
and be minimally informative, then, as is explained in the appendix to Neuenschwander et al,30 the following holds as
regards a choice of νandω.

1. The quantile requirement must be satisfied.
2. At least one of the two parameters must be at least equal to one.
3. The sum of the parameters must be as low as possible.

The purpose of the first requirement is, of course obvious, the second ensures that the distribution is unimodal and the
third minimises the information requirement, if this is defined by regarding the sum of the parameters as being a
notional equivalent of the number of patients previously seen. As the referee points out, if this approach is adopted but
the first requirement is made in terms of the mean rather than the median, then the solution is:

ν¼ p
1�p

,ω¼ 1; p≤ 0:5

ν¼ 1,ω¼ p
1�p

; p≥ 0:5,
ð10Þ

where p¼E X½ �, and X is as defined in (8).

FIGURE 5 Contours of the variance of a beta distribution as a function of νandω. Contours 1–5 give various variances.
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The third criticism is the most serious. There is no reason to choose 30% as a point to anchor the prior dis-
tribution. The value of 30% is a sort of agreed minimum relevant effect but it does not follow that it should
represent prior belief. However, prior belief is what the prior distribution is supposed to represent. The value
of 30% should be taken as a minimum target value for the posterior belief, for example by showing that the
probability that vaccine efficacy is less than this can be no greater than 2.5%. This is a quite different matter
from the prior belief and the statement in the protocol that this “can be considered pessimistic” is quite wrong.
It can be considered a stringent standard to adopt for ‘proof’ of efficacy but a pessimistic prior distribution
should surely not be centred on a vaccine having this efficacy. A more advanced Bayesian approach might use
30% to define some sort of loss function (although this would not be easy) but the issue of the prior distribu-
tion would be different from this.

The associate editor has reminded me of the important paper by Spiegelhalter, Freedman and Parmar31 discussing
Bayesian approaches to clinical trials. This explicitly distinguishes between plausible values, such as are relevant to
prior belief, and those that are relevant to decision-making, such as zones of equivalence of treatments. It would be
interesting to explore the implications of this but that would involve a considerable investigation, which I do not claim
to be competent to undertake. In any case, in practical terms it does not matter. The distribution is extremely uninfor-
mative. Nevertheless, the definition of an uninformative distribution in terms of a parameter defined to six significant
figures does seem somewhat strange.

6 | RESULTS OF THE BAYESIAN ANALYSIS

The reader is reminded that these are based on the results published in Polack et al.27 at the planned termination of the
trial and not the further results obtained by extensive follow-up. As already remarked, it is only necessary to know the
number of cases under vaccine, Yv, and under placebo, Y p to perform an analysis that gets close to that which uses
more information. At the time of this analysis, the values were Yv ¼ 8, Y p ¼ 162. If the prior distribution is a beta and
the likelihood is binomial, then the posterior is also a beta distribution and to obtain its parameters one simply adds the
respective numbers of cases to the respective parameters. (See, for example, Bernardo and Smith,32 p. 271). Thus,
we have

νpost ¼ νpriorþYv ¼ 0:700102þ8≈ 8:7,

ωpost ¼ωpriorþY p ¼ 1þ162¼ 163:
ð11Þ

The posterior mean of this distribution is given by29

θpost ¼ νpost
νpostþωpost

¼ 0:0507 ð12Þ

and the posterior mode, say θ0post, is given by29

θ0post ¼
νpost�1

νpostþωpost�2
¼ 0:0454: ð13Þ

The 2.5%, 97.5% and 50% points of the resulting posterior beta-distribution give the lower and upper limits of the so-
called 95% credible interval and the median. The values I get for this are

θ0:025 ¼ 0:0232, θ0:975 ¼ 0:0880, θ0:5 ¼ 0:0489: ð14Þ

Of course, all these results are on the scale of the case proportion, θ, whereas what we want is the vaccine effi-
cacy scale, VE. We can get results on this scale by applying (7) to (12), (13) and (14). Care must be taken with the latter
since low values of θ correspond to high values of VE and vice versa. The posterior distribution is illustrated in
Figure 6.

However, we shall defer making the transformation until we have considered a possible frequentist analysis.

800 SENN



7 | A FREQUENTIST ANALYSIS

We can use the binomial distribution given in (6) to calculate an ‘exact’ P-value for any observed number of cases
under vaccine Y v conditional on the total number of cases, n¼Y vþY c in the vaccine and placebo group, for any
assumed value θ. Here we have Y v ¼ 8 and n¼ 8þ162¼ 170, We simply vary θ to discover what values will give lower
and upper tail areas of 0.025 at Y v ¼ 8. These are the upper and lower 95% confidence intervals.

Figure 7, which is taken from the second edition of Dicing with Death,33 is a graphical representation as to how this
works. The two curves plot the probability of obtaining 8 or fewer and 8 or more cases under vaccine as a function of
the probability θ given that the total number of cases is 170. The dashed horizontal line at 0.025 indicates the desired
tail area probability. The confidence limits are found from the points at which the two curves intersect this boundary
and are indicated by vertical lines.

Using this approach, I obtain the following values for the lower and upper 95% confidence limits on the case propor-
tion scale

θLCL ¼ 0:0205, θUCL ¼ 0:0906: ð15Þ

The point estimate is simply the case proportion, that is to say

θest ¼Y v

n
¼ 8
170

¼ 0:04706 ð16Þ

and this is also illustrated in Figure 7.

8 | RESULTS ON THE VACCINE EFFICACY SCALE

We can translate all of these results to the vaccine efficacy scale by using the transformation given by (7), taking care to
note that since vaccine efficacy increases as θ decreases we transform lower to upper confidence limits and vice versa.

FIGURE 6 Posterior distribution of θ given the prior beta distribution used by Pfizer/BioNTech and the data analysed in

December 2020.
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Applying this to all the results we have so far we have them gathered in Table 5, which is taken from the second edition
of Dicing with Death.33

All analyses except the first have been produced by me using just the fact that the cases on vaccine and placebo split
8–162. The first analysis is taken from the paper by Polack et al.27 A curious feature about the reporting of this interval
is that although the method to produce it is described as Bayesian and although Table 2 of that paper, in which it is pro-
duced, has the footnote, “The credible interval for vaccine efficacy was calculated with the use of a beta-binomial model
with prior beta (0.700102, 1) adjusted for the surveillance time”, elsewhere in the paper a confidence interval is referred
to. The discussion of efficacy has the following statement

“Among 36,523 participants who had no evidence of existing or prior SARS-CoV-2 infection, eight cases of
Covid-19 with onset at least 7 days after the second dose were observed among vaccine recipients and
162 among placebo recipients. This case split corresponds to 95.0% vaccine efficacy (95% confidence inter-
val [CI], 90.3 to 97.6.”27 (p. 2610, my emphasis).

This is presumably a typographical error and, of course, as Table 5 shows, in practice it makes little difference which
method is used. Note also that other analyses in the paper apart from the main analysis are frequentist and planned
to be so.

However, one point should be understood about the intervals presented, whether confidence or credible. They are
statements about what happened in the trial not about what will happen in future. Confusion of these two very differ-
ent matters is very common in the discussion of clinical trials34 partly, I think, because it is incorrectly supposed that
saying what happened is a matter of descriptive statistics only. However, if we wish to know whether what was

FIGURE 7 Confidence curves for the results of the Pfizer/BioNTech trial.

TABLE 5 Various Bayesian estimates and 95% credible intervals as well as a frequentist estimate and 95% confidence intervals.

Type Point estimate (%) Lower Limit (%) Upper Limit (%)

Pfizer/BioNTech full model credible 95.0 90.3 97.6

Simple credible (mean θ) 94.7 90.4 97.6

Simple credible (mode θ) 95.2

Simple credible (median θ) 94.9

Simple confidence 95.0 90.0 97.9
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observed to happen was caused by the treatments given, then we are faced with the difficulty that we do not know what
would have happened had subjects who were given the vaccine been given placebo and vice versa. It is this causal effect
in the trial that the analyses attempt to address.

What will happen in future, is, of course contingent on many possible developments, as the history of the emer-
gence of the delta variant and then the omicron variant has shown. Furthermore, the follow-up time of the trials is lim-
ited, so it is quite possible that efficacy will wane to a degree that makes the estimates obtained scarcely relevant, a
point that is of great practical importance.

In any case, the vaccines are now being used in ways that have not been studied formally. To strike a personal note,
at the time of writing, I have received two doses of the AZ/Oxford vaccine, in the form studied in the large trial
described here and a follow up ‘booster’ low dose of the Moderna vaccine. I am happy to have done so but, as far as I
am aware, this combination had not been formally studied at the time I was offered it. This raises the issue that one
should be careful about comparing the efficacy of the J&J Janssen vaccine to the others. Figure 2 suggests that it had
lower vaccine efficacy. However, it was given as a single dose, whereas the others used two doses. It may be that the
J&J Janssen vaccine would have similar efficacy to the others if given in two doses. One might argue that this is not for
discussion since it has not been studied let alone proven. However, if we are prepared to judge, without formal demon-
stration, that adding a Moderna booster to a double dose of the AZ/Oxford vaccine is beneficial, can this be a reason-
able objection? What would be useful would be to have information on the protective value of the other vaccines after a
single dose but, the time window between first and second dose being relatively short, the number of control group
cases that arise within the interval may be inadequate to allow a reasonable calculation and in any case, given that effi-
cacy may wane eventually with time, the short window may be misleading.

The paper by Thomas et al.9 presents an estimate (confidence limits) of efficacy for the Pfizer/BioNTech vaccine in
the interval between first and second dose of only 58.4% (40.8%–71.2%). However, if only cases after the first 11 days
post vaccination are considered, this rises to 91.7% (79.6%–97.4%).9 This suggests that the Pfizer/BioNTech vaccine
might be very effective in a single dose but is far from conclusive.

The practical point is that if we are willing to give subjects three vaccine shots when we have only studied two, we
must presumably be prepared to give subjects two shots although we have only studied one. That being so one could
argue that perhaps a more efficient approach would have been for every sponsor to have adopted the J & J Janssen sin-
gle dose approach for studying efficacy, even if the option to use two doses was considered important. This might have
made trials logistically simpler and consequently quicker to conclude. Indeed, as the pandemic unrolled, some coun-
tries adopted the policy of trying to vaccinate as many subjects as possible once, even if that meant that the delay
between first and second doses was longer for some subjects than that which had been observed in the trials.

In short, we need much more than just clinical trial results to make practical decisions. Cynics may claim that such
considerations render clinical trials pointless but this, I consider, is unreasonable. We have no choice but to make deci-
sions about treatment and although clinical trials provide no guarantees, they do eliminate many biases that would oth-
erwise make such choices even more uncertain.

9 | DISCUSSION AND LESSONS

I consider that the response to the COVID-19 pandemic by the pharmaceutical industry and to some degree academia
(bearing in mind the AstraZeneca and Oxford University collaboration) has been very impressive. Statisticians should
not delude themselves that statistics is the major part of this story. It is the work of the life scientists that deserves par-
ticular praise. Nevertheless, running the clinical trials to a successful conclusion (by which I mean a conclusion that is
informative, whether the news is good or bad) does require careful planning and statistics makes a large contribution to
that planning.

The trials illustrated the value of concurrent control. Infection rates were changing throughout the period in which
the trials were being run and in any case could be expected to vary from place to place. Infection rates in the control
groups varied markedly from trial to trial, as is illustrated by Figure 8. The higher rate in the Pfizer/BioNTech com-
pared to the others is quite marked but then the follow-up at the time of reporting is different and this can have very
important consequences15 not only in terms of changing susceptibility over time, for example due to new variants or
the introduction or relaxation of various other measures, but because of the complex relationship between time to event
variables and binary dichotomies. Also shown are fixed and random effects meta-analyses over the five trials. The con-
siderable extra-binomial variation (heterogeneity) results in the confidence interval for the random effects estimate
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being much wider than those for the fixed effects estimate. This does not mean that either estimate is particularly useful
but it points to the degree of variation.

As shown in Table 2, three of the trials, those of Pfizer/BioNtech, Moderna and Novavax, were described as observer
blind with the other two, those of AZ/Oxford and J&J Janssen being described as double blind. Blinding is important. It
not only serves to avoid biased judgement of outcomes but helps to support the randomisation process. In a blog,
I wrote on the subject35 I gave the following list of possible issues:

1. Subjects who are chosen to be vaccinated are invited to attend a clinic to receive their vaccine.
2. A team of health workers is assigned for vaccination and another team is assigned for assessing controls.
3. Blood samples are collected by the vaccinating clinic.
4. Subsequent blood samples (say after 28 days) are also collected in the vaccinating clinic.
5. Samples are sent in batches to the laboratory to be analysed.
6. Control subjects are visited by nurses at home to collect blood samples.

And discussed these as follows:

“All of these have the ability to subvert the randomisation process. With the exception of the first and the
last and possibly the second, they are not biasing per se. But they make very debatable any assumption of
independence that might be naively made in analysis. A biasing factor is one that prevents the estimate
from converging on the 'right' answer as the sample size grows but attracts it to some other value. Lack of
independence, on the other hand, affects the rate of convergence.”

Such problems cannot arise if the trials are double blind, since whatever nuisance effect may currently apply to a group
of subjects it is impossible for them to be clustered except accidentally, for which randomisation allows, since they have
been randomly allocated to one group or another and since blinding prevents identification of subjects in a way that
could affect subsequent handling. Whether observer blind trials provide adequate protection against such problems is
not clear to me.

On the whole, I think the plans here were good. Of course, one must give credit to the extremely successful logistic
operations that were mounted in the face of many difficulties. Many resources had to be combined energetically and

FIGURE 8 Infection rates in the placebo groups with associated confidence intervals for the five trials. Closed circles and solid bars,

Normal approximation. Open circles and dashed bars, exact binomial. The fixed effects meta-analysis of all five trials is indicated by a

diamond and the random effects meta-analysis by a triangle.

804 SENN



effectively. Statisticians have made contributions to planning multi-centre trials36,37 but running them well is very
much more than just statistics. Nevertheless, sample size determination and other aspects of design were important.

In fact, the numbers of subjects required was secondary. What was needed to get adequate power and
precision were cases. Subject numbers were targeted to deliver the required number of cases using assump-
tions of background rates. In my opinion, it was an unwise decision of AZ/Oxford to allocate two subjects
to vaccine for every one allocated to placebo. If VE0 ¼VE=100 is vaccine efficacy expressed as a proportion rather
than a percentage and R is the ratio of subjects allocated to vaccine rather than placebo, and timeR is the ratio of the
time it will take to reach a target number of cases compared to what the time would be for an allocation ratio of
R¼ 1, then

TimeR ¼ 2�VE0ð Þ Rþ1ð Þ
2 R�R VE0ð Þþ1ð Þ : ð17Þ

This is equal to 1 (trivially) if R¼ 1 but also if VE0 ¼ 0. However, if VE0 >0, it is an increasing function of R. The situa-
tion is illustrated in Figure 9, which plots expression (17) for various values of vaccine efficacy. Shown are the cases
where the vaccine is inefficacious, vaccine efficacy is 30% as assume for the ‘null hypothesis, or 60% as was assumed for
the power calculation or 90%, the sort of value observed in some trials by some sponsors. I estimate that for the target
efficacy of 60% assumed in the AZ/Oxford protocol, the 2:1 allocation would prolong the duration of the trial by 1/6,
other things being equal.

Where binary data are concerned because the precision is not independent of the parameters, there can be a justifi-
cation for unequal allocation ratios. However, I have my doubts that this can be a justification here. For discussion of
allocation ratios for vaccine trials see papers by Patterson et al.15,38

The Pfizer/BioNTech trial illustrates a number of matters of theoretical interest that turn out, however, to be
unimportant practically. The first is that the choice of prior distribution may be difficult. The second is that there is the
danger of confusing prior belief and desired objectives, for example to prove that efficacy is at least 30%. The third is
that it can be difficult to translate belief from one scale to another, especially if the ‘anchoring’ is done in terms of
moments. Models over means are not the same as means over models. In making this criticism, I am not belittling the

FIGURE 9 Time to recruit a target number of cases as a function of the allocation ratio (vaccine subjects to control subjects) for various

degrees of vaccine efficacy as a proportion (not a percentage). Time is expressed as a ratio of the time it would take for a 1:1 allocation.
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work of the statisticians in the Pfizer/BioNTech trial. They helped to produce a fine protocol and delivered an excellent
analysis. I am extremely impressed by the speed with which an effective plan was delivered.

Of course, in the end it did not matter. Even for the earlier analysis based on 8 and 162 cases that I chose to present
here, the prior distribution was overwhelmed by the likelihood. For the results available towards the end of 2021,
77 cases under vaccine and 850 under placebo, the influence of the prior distribution was even less.

I also think one further very important matter was illustrated by the vaccine trials. Statistical work is most impres-
sive when it is practically grounded. Andy Grieve has never shied away from theoretical difficulties when they have
presented themselves. On the other hand, he has also always been motivated by practical problems, as the paper with
Amy Racine, Hugo Flühler and Adrian Smith that I cited earlier shows. The COVID-19 pandemic has presented statisti-
cians with many challenges. Theory guided by application has been the way to meet them. I can only applaud the
response of the pharmaceutical statistics profession to the challenge.
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