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Abstract Stroke is a major cause of mortality and long-

term disability worldwide. The initial changes in local

perfusion and tissue status underlying loss of brain function

are increasingly investigated with noninvasive imaging

methods. In addition, there is a growing interest in imaging

of processes that contribute to post-stroke recovery. In this

review, we discuss the application of magnetic resonance

imaging (MRI) to assess the formation of new vessels by

angiogenesis, which is hypothesized to participate in brain

plasticity and functional recovery after stroke. The excel-

lent soft tissue contrast, high spatial and temporal resolu-

tion, and versatility render MRI particularly suitable to

monitor the dynamic processes involved in vascular

remodeling after stroke. Here we review recent advances in

the field of MR imaging that are aimed at assessment of

tissue perfusion and microvascular characteristics, includ-

ing cerebral blood flow and volume, vascular density, size

and integrity. The potential of MRI to noninvasively

monitor the evolution of post-ischemic angiogenic pro-

cesses is demonstrated from a variety of in vivo studies in

experimental stroke models. Finally, we discuss some pit-

falls and limitations that may critically affect the accuracy

and interpretation of MRI-based measures of (neo)vascu-

larization after stroke.
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Introduction

Stroke is the result of occlusion or rupture of a brain artery,

leading to loss of focal blood flow and brain function.

Despite significant neurological deficits, most patients

experience at least some degree of spontaneous recovery

[1], which may be augmented by therapeutic intervention

[2]. Currently, neuroprotective therapy after acute clinical

stroke is restricted to the use of a single therapeutic agent,

recombinant tissue plasminogen activator (rtPA), which

should be given within 4.5 h after stroke to limit risk of

hemorrhagic transformation [3]. However, experimental

studies suggest that restorative pharmacological and cell-

based therapies have potential to improve functional out-

come when initiated 24 h up to weeks after stroke [2]. Such

therapies amplify certain endogenous processes, some of

which are also activated in the developing brain [4], that

may contribute to spontaneous recovery after stroke. These

events not only involve neuronal reorganization, but also

include vascular remodeling through angiogenesis. Inter-

estingly, there is an increasing amount of studies that has

provided evidence for formation of new blood vessels after

cerebral ischemia, and a possible significant role of angi-

ogenesis in post-stroke recovery [5–10]. However, the

exact pattern of neovascularization and its relation to res-

toration of function after stroke are still largely unresolved.

Therefore, thorough characterization of the spatial and

temporal profile of angiogenesis after ischemic stroke is of

significant importance to elucidate its role in recovery and

remodeling of neuronal tissue and ensuing functional
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outcome, which may lead to new insights for further

development of neurorestorative therapies.

Magnetic resonance imaging (MRI) provides a powerful

tool to noninvasively assess the evolution of various indi-

ces that can characterize cerebral tissue status after stroke

[11–14]. Over the last decade, different MRI methods have

also been applied to measure angiogenesis-related pro-

cesses. This review describes results from such studies in

experimental stroke models and discusses the principles,

potentials and pitfalls of MRI methods to assess brain

angiogenesis after stroke. First, the physiological process

of angiogenesis after stroke will be briefly introduced. The

main emphasis will be on the methodology and application

of different MR imaging techniques, with and without

contrast enhancement, that enable noninvasive monitoring

of developing and mature microvasculature for stroke

research.

Angiogenesis after stroke

Angiogenesis is the formation of new blood vessels from

existing vessels, which is a normal and vital process in

tissue growth and development that may also occur under

pathophysiological conditions, such as after stroke. The

physiological cascade of angiogenesis after stroke is highly

complex and has already been extensively described in

recent reviews [5, 6, 8–10]. Here we restrict the description

of post-stroke angiogenesis to a brief introduction of the

stages of onset, formation and maturation of new blood

vessels (schematically illustrated in Fig. 1). We refer to the

above reviews and references therein for more detailed

explanation of the molecular and cellular aspects of angi-

ogenesis after stroke.

Upon cessation of blood flow, the hypoxic/ischemic

condition around a stroke lesion rapidly triggers tran-

scription of a variety of genes that may be involved in the

process of angiogenesis [6]. For example, the production of

polypeptide growth factors, such as vascular endothelial

growth factor (VEGF), and proinflammatory cytokines by

residing brain cells and/or infiltrating inflammatory cells,

creates a permissive environment for sprouting of prolif-

erating endothelial cells [6, 8, 10]. It has been shown in

rodent stroke models that proliferating endothelial cells

form vascular buds that connect with small microvessels a

few days after stroke (Fig. 2a–c). This stage of early

angiogenesis is associated with a highly leaky blood–brain

barrier (BBB) [15, 16]. From 1 week after stroke, signifi-

cant increases in microvessel density have been reported

[8]. With time of survival, the conglomerates of micro-

vessels increase in size (Fig. 2d), potentially giving rise to

an increased cerebral blood volume (CBV) and flow (CBF)

[17, 18]. Furthermore, a decrease in vessel permeability

can be seen over time [8], which is suggestive for remod-

eling of pericytes, astrocytes and other cells that are

involved in BBB integrity.

Importantly, formation of new vessels after stroke may

(1) contribute to recovery of tissue-at-risk by restoring

metabolism in surviving neurons, (2) facilitate removal of

necrotic debris, and/or (3) enhance supply of neurotrophic

compounds for neuronal remodeling (e.g. synaptogenesis

and neurite sprouting) [5, 6, 8–10, 19]. However, whether

angiogenesis indeed gives rise to full-fledged functional

vascular networks around a stroke lesion is still unclear and

remains an important topic for further research.

MRI-based assessment of brain angiogenesis

after stroke

In the last two decades, MRI has proven to be a valuable tool

to investigate the spatiotemporal profile of ischemia-

induced changes after stroke, mainly attributable to its

capability to longitudinally evaluate a wide spectrum of

structural and functional tissue characteristics. This versa-

tility originates from the fact that contrast in MR images is

dependent on intrinsic, biophysical tissue properties such as

proton density, inter- and intramolecular magnetic interac-

tions, oxygenation state, magnetic susceptibility, diffusion,

perfusion and flow. These endogenous tissue characteristics

influence the MRI signal by their effect on MR relaxation

times (T1, T2 and T2
*) and water proton mobility, which can

be exploited to generate image contrast. Additionally,

exogenous contrast agents (e.g. gadolinium chelates and

Fig. 1 Schematic representation of the cascade of events associated

with angiogenesis after ischemic stroke. The physiological phenom-

ena on the left side may be assessed with MRI (BBB blood–brain

barrier, MVD microvessel density, CBV cerebral blood volume, CBF
cerebral blood flow)
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iron oxide particles) can be applied to enhance endogenous

contrast-generating mechanisms. This can improve ana-

tomical and/or physiological distinction, and may allow

detection of otherwise indiscernible factors. In stroke

research, both endogenous and exogenous MR contrast

mechanisms have been exploited to assess cerebrovascular

changes associated with angiogenesis. In the following

sections the various MR imaging techniques that have been

utilized to assess angiogenesis in the brain will be reviewed.

MRI of vessels, blood volume and perfusion

Probably the most intuitive way to evaluate the presence of

angiogenic vessels is direct visualization of the newly

formed vasculature by MR angiography [20]. However, the

spatial resolution of MRI is currently limited to approxi-

mately 50 lm for small animal MR imaging, and to

approximately 250 lm on clinical MRI scanners. Since

angiogenic processes in brain tissue, such as endothelial

sprouting and microvessel formation, take place at length

scales that are at least one order of magnitude lower, direct

depiction of remodeling of cerebrovascular structures is

currently not feasible with MRI. Alternatively, hemody-

namic parameters that are directly affected by angiogenesis,

such as cerebral blood volume (CBV) and cerebral blood

flow (CBF), can be measured with perfusion MR imaging

techniques such as dynamic susceptibility contrast-

enhanced (DSC-)MRI, steady state susceptibility contrast-

enhanced (ssCE-)MRI and arterial spin labeling (ASL).

DSC- and ssCE-MRI are based on detection of signal

changes induced by intravascularly injected exogenous

contrast agents, while ASL exploits endogeneous contrast

mechanisms involving magnetically labeled arterial water.

The following paragraphs provide a brief introduction to

these MRI methods. For more detailed information on the

principles of the different perfusion MRI techniques, we

refer the reader to specific reviews [21–23].

Dynamic susceptibility contrast-enhanced MRI

DSC-MRI allows calculation of cerebral hemodynamic

parameters from the time-course of signal changes induced

by the first passage of a paramagnetic contrast agent after

intravenous injection [24]. The most commonly applied

exogenous contrast agents are gadolinium chelates [25].

Their high magnetic susceptibility induces local magnetic

field inhomogeneities. The consequent local shortening of

T2 and T2
* leads to enhanced MR signal decay. By

dynamically monitoring these signal changes in perfused

tissue during the first passage of a bolus of injected contrast

agent, hemodynamic parameters such as CBF, CBV

and mean transit time (MTT) can be estimated from the

linear relationship between contrast agent concentration

and change in effective transverse relaxation rate

(DR2
* = D(1/T2

*), and the central volume theory [24, 25].

DSC-MRI has been successfully applied for spatiotem-

poral monitoring of changes in CBV in relation to

Fig. 2 Scanning electron

micrographs of vascular casts of

rat brains after unilateral

occlusion of the middle cerebral

artery (MCA). Three days after

MCA occlusion, vascular

budding was visible at many

sites in the ipsilateral cortex,

involving both small and large

vessels (a white arrows).

Microvessels formed

connections with surrounding

proliferating vessels (b, c white
arrows). With time of survival,

the conglomerates of

microvessels increase in size,

forming a dense and chaotic

microvasculature surrounding

larger microvessels (d). Inserted

bars denote the magnification in

each figure. Reproduced from

Ref. [77] with permission from

Lippincott, Williams and

Wilkins
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formation of new blood vessels in brain tumors, where a

significant correlation was found between increase of rel-

ative CBV and histologically determined microvessel

density and fractional blood volume [26]. In a rat stroke

model, Lin et al. demonstrated with DSC-MRI that CBV

was significantly enhanced in the ipsilateral cerebral cortex

at 7 days after transient unilateral occlusion of the middle

cerebral artery (MCA), which correlated with increased

vessel density in the outer cortical layer [18]. Similarly,

DSC-MRI has been applied to measure changes in CBV in

a rat embolic stroke model after angiogenesis-promoting

treatment with neuronal progenitor cells [27]. A coincident

increase of CBV and vascular density was reported, sug-

gesting a relationship between the elevated CBV and

angiogenesis [27].

Arterial spin labeling

As mentioned above, CBF can also be determined with MRI

without the use of exogenous contrast agents. In ASL,

radiofrequency (RF) pulses are used to magnetically alter

the status of water protons in arterial blood with respect to

those in stationary tissue water, thereby generating an

endogenous intravascular tracer [28, 29]. Assuming that the

magnetically labeled arterial blood exchanges with tissue

water at the level of the capillaries, CBF can in principle be

quantified from a labeling experiment and a control exper-

iment without magnetically labeled water protons, based on

the theory of diffusible tracer kinetics [28, 30, 31].

ASL has been applied in a number of experimental

stroke studies to estimate CBF in relation to angiogenesis.

In conjunction with an increased vascular density, which is

clearly visible on the surface of the ipsilateral brain surface

in Fig. 3a, Lin et al. demonstrated a significantly enhanced

CBF in the perilesional cortex from day 1 to 14 after

transient MCA occlusion in rats (Fig. 3b, c) [18]. Chopp

and co-workers have reported that treatment with the va-

sodilatator sildenafil enhanced angiogenesis and selectively

increased the CBF level in the ischemic boundary in rats

after embolic stroke [17, 32]. Furthermore, co-localization

of the area with CBF improvement with regions with

increased fractional anisotropy of white matter tissue was

reported, pointing towards a link between angiogenesis and

neuronal reorganization [32, 33].

Despite the significant information on tissue perfusion,

MRI-based measurement of hemodynamics provides rela-

tively low specificity for angiogenesis. For example, CBV

and CBF increases may also arise in response to autoreg-

ulatory vasodilation or vessel recruitment due to arterio-

genesis. Therefore, alternative MR methodologies that

allow assessment of structural features of the microvascu-

lature that may be more specifically related to angiogenesis

have been recently proposed, which will be the subject of

the following paragraph.

Steady state susceptibility contrast-enhanced MRI

As opposed to measurement of tissue perfusion from the

dynamics of MR signal decay due to first passage of a

contrast agent in DSC-MRI, ssCE-MRI allows estimation

of blood volume, microvessel density and vessel size from

steady state contrast-induced signal changes. In ssCE-MRI,

Fig. 3 Longitudinal changes in

vascular density and CBF after

60 min of transient MCA

occlusion in rats. Excised rat

brains clearly show enhanced

vascular density on the cortical

surface of the ipsilateral

hemisphere after MCA

occlusion (a). Relative CBF

maps (b) calculated from ASL

experiments demonstrate a

significantly increased CBF in

the ipsilateral cortex from day 1

up to day 14 after MCA

occlusion (c). Reproduced from

Ref. [18] with permission from

Lippincott Williams and

Wilkins
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transverse relaxation rates R2 and R2
* are measured before

and after administration of an intravascular contrast agent

that establishes a high susceptibility difference, for quan-

titative purposes [34], and has a long blood half-life, for a

prolonged acquisition time-window [35–37]. To that aim,

ultrasmall superparamagnetic iron oxide (USPIO) particles

have been most frequently applied [23]. The long circu-

lating USPIOs generate a static magnetic field inhomoge-

neity around the vessels. Such field inhomogeneities affect

spin echo and gradient echo transverse relaxation rates (R2

and R2
*, respectively) in a different way, dependent on

many factors including concentration and susceptibility of

the contrast agent, vessel diameter, fractional blood vol-

ume, tissue diffusion coefficient, magnetic field strength

and MR imaging protocol (see references [38–41] for

detailed MR physical background information on intra-

vascular susceptibility contrast mechanisms). With math-

ematical modeling and Monte Carlo simulations it has been

shown that changes in the transverse relaxation rate R2 (i.e.

DR2), as a result of the application of an intravascular

susceptibility contrast agent, are predominantly sensitive to

small vessels (\ 10 lm), while changes in the transverse

relaxation rate R2
* (i.e. DR2

*) are sensitive to vessels of all

sizes [34, 38–42]. This sensitivity of DR2 for small vessels

was exploited by Dunn et al. to enable quantification of the

CBV increase associated with hypoxia-induced angiogen-

esis in rat brain, based on measurements of DR2 in brain

parenchyma and serum, and a verified linear dependence

between DR2 and contrast agent concentration [43]. When

the local DR2
* and susceptibility difference (Dv) are known,

it has been shown from theory and simulations that the total

blood volume fraction (BVf) can be estimated from the

following equation [40, 41, 44].

BVf ¼ 3=4ðpÞDR�2=ðcDvB0Þ ð1Þ

In rat brain tumors, blood volume fractions determined

using Eq. 1 were shown to correlate reasonably well with

histological measurements [45, 46].

Beside estimation of blood volume, ssCE-MRI can pro-

vide specific details on vascular morphology. Dennie et al.

have demonstrated that the ratio of the change in R2
* and R2

before and after contrast agent injection, i.e. DR2
*/DR2,

directly relates to microvessel morphology [47], as had

originally been predicted based on mathematical modeling

[38]. A significant correlation between an increase of the

DR2
*/DR2 ratio and an increase of the average histological

vessel diameter was observed inside tumor tissue [47],

which was attributed to enlarged diameters of angiogenic

vessels [44–47]. Tropres et al. further developed this con-

cept of vessel size imaging based on steady state contrast-

enhanced relaxation rate shifts [44, 48], and defined the

vessel size index (VSI), a measure of the average vessel

radius [48].

VSIðlmÞ ¼ 0:425ðD=cDvB0Þ1=2ðDR�2=DR2Þ3=2 ð2Þ

Although good correlations between VSI and the

histological vessel size have been reported [44],

calculations of VSI have been based on estimations of

the intravascular susceptibility difference (Dv) before and

after injection of contrast agent, and the local diffusion

coefficient (D) [34, 48, 49]. Since Dv is difficult to

determine under most in vivo conditions, Jensen and

Chandra introduced the ratio Q : DR2/(DR2
*)2/3, which for

a sufficiently high Dv, only depends on intrinsic tissue

properties, and which should correlate with microvessel

density (MVD) [49].

MVDðmm�2Þ � Q3=ð4:725DÞ ð3Þ

Wu et al. have assessed the MVD in normal mouse brain

based on the ratio Q, using a literature value for

D = 0.664 lm2/ms [50]. This provided an average brain

MVD of 282 ± 43/mm2, which is in reasonable agreement

with histologically determined values.

Recently, two studies have employed ssCE-MRI to

assess vascular remodeling after experimental stroke [51,

52]. In a serial study in rats recovering from transient

cerebral ischemia performed by Lin et al., an initial

decrease in vascular density (based on the Q value) and an

increase in vessel size (based on VSI) was observed in the

reperfused cortex at day 1 and 3 [52]. Immunohistological

analysis confirmed a similar decrease in microvessel den-

sity and increase in size of vessels with a diameter larger

than 30 lm. These observations were explained by a more

pronounced effect of edema on compression of small

capillaries as compared to large-sized vessels, leading to a

shift in the calculated average vessel size. A significant

increase of total CBV from day 3 to 14 in the affected

hemisphere, based on DR2
*, was speculated to be caused by

improvement of collateral circulation in the relatively large

microvessels. At days 14 and 21, increases in DR2

(microvascular CBV) and Q (microvascular density) were

noticed in the reperfused cortex, which was attributed to

the surge of angiogenesis. In contrast, Bosomtwi et al.

observed a lowered Q-based and histology-based MVD in

recovered ischemic tissue at 2 weeks after embolic stroke

in rats [51]. A possible explanation is that only a small part

of the recovered region was highly angiogenic, which may

have been obscured by the analysis of a relatively large

region-of-interest [51].

The potential of ssCE-MRI to monitor changes in CBV,

microvessel density and vessel size in a single experiment,

is demonstrated in Fig. 4. We performed ssCE-MRI in rats

at 7 days after 60 min transient unilateral MCA occlusion.

R2 and R2
* maps were acquired pre- and post-administration

of 16.5 mg/kg USPIO (Guerbet, Aulnay-sous-Bois,

France). Figure 4 shows exemplary data from a rat with a
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subcortical infarct. The pre-contrast R2 map clearly depicts

a unilateral lesion in the caudate putamen, characterized by

a decreased R2 value, i.e. prolonged T2, associated with

vasogenic edema [13] (Fig. 4a). A hyperintense spot in the

center of the lesion, which also revealed a high R2
* value on

the pre-contrast R2
* map (Fig. 4b), corresponded with a

bleeding identified with histology (Fig. 4g). The increased

R2
(*) can be explained by accumulation of paramagnetic

deoxygenated blood [53]. The DR2
* value (Fig. 4d), directly

related to total BVf (Eq. 1), was increased in the lesion as

compared to the contralateral hemisphere, suggestive of

hyperperfusion. The ipsilateral hypothalamic region dis-

played an elevated DR2 (Fig. 4c), which also revealed a

high Q value (Fig. 4f), suggestive of an enhanced micro-

vascular CBV and microvessel density, respectively. These

findings are in agreement with results presented by Lin

et al. [52] as discussed in the previous paragraph. The

relatively high pre-contrast R2
* value in this region may

have been caused by an enhanced venous blood volume, as

was suggested by Ding et al. [33], which will be further

elaborated on in the next section. The DR2
*/DR2 map shows

a low value in this area, pointing toward a low average

vessel size (Fig. 4e). In contrast, a high DR2
*/DR2 value was

observed in the remaining part of the lesion, which sug-

gests that the average vessel size was relatively high.

Histology confirmed substantial presence of larger vessels

in the lesion (Fig. 4g1), as well as an increased microvessel

density (Fig. 4g4) in the area with a high Q value. Con-

tralaterally, normal vessel size (Fig. 4g2) and densities

(Fig. 4g5) were observed. Perls’ Prussian Blue staining

confirmed that USPIO had not extravasated (data not

shown).

Fig. 4 MRI and histology of a coronal rat brain slice at 7 days after 60-

min unilateral MCA occlusion, resulting in a subcortical infarct. Pre-

contrast R2 map displays the subcortical lesion with decreased R2 (a).

The hyperintense spot inside the lesion on the pre-contrast R2 and R2
*

maps reflects a bleeding (a and b). The enhanced R2
* in the ipsilateral

hypothalamus may be a sign of increased venous blood volume (b).

This area exhibited an increased DR2 value after administration of a

superparamagnetic blood pool agent (USPIO), pointing toward an

increase in the density of microvessels with a relatively small diameter

(c). The high contrast-induced DR2
* in the entire lesion is reflective of

increased total blood volume (d). The high DR2
*/DR2 ratio in the lesion

is indicative of a relatively large vessel diameter (e), as was confirmed

by histology with vessel staining with von Willebrand Factor (DAB-

enhanced; brown) (nuclei were stained with hematoxylin (blue)) (g1).

The ipsilateral hypothalamic region exhibited a low value on the DR2
*/

DR2 map, indicating a low vessel diameter. A high Q value was

observed in this area (f), indicative of an enhanced MVD, which was

confirmed by histology (g4). Contralaterally, normal vessel size (g2)

and density (g5) were observed (R2, R2
*, DR2 and DR2

* are in units sec-1,

Q is in units sec-1/3)
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MRI of blood–brain barrier permeability and tissue

oxygenation

Next to assessment of hemodynamic and morphologic

changes related to vascular remodeling, MRI can provide

information on BBB permeability and oxygenation state of

brain tissue, which both are involved in the process of

angiogenesis. BBB permeability can be investigated by

dynamic contrast-enhanced MRI (DCE-MRI), in which

changes in MR signal, as a result of leakage of an intra-

vascularly injected contrast agent into the interstitial space,

are dynamically monitored [54]. The oxygenation state of

brain tissue can be investigated by exploiting the high

magnetic susceptibility of deoxygenated hemoglobin [55].

Since venous blood is rich of deoxygenated hemoglobin,

blood oxygenation level-dependent (BOLD) MRI may

detect newly developed vasculature that is rich of venous

blood [33]. Both methods will be briefly introduced in

relation to their potential to evaluate angiogenesis after

stroke.

Dynamic contrast-enhanced MRI

DCE-MRI measures the time-course of contrast-induced

changes of the T1 relaxation time constant due to contrast

agent extravasation into tissue. Since the tissue T1 is

directly related to the intravascular and parenchymal con-

centration of the contrast agent, one can estimate the blood-

to-brain transfer constant, Ki, by locally assessing the

dynamics of the signal intensity of a time-series of T1-

weighted MR images, or T1 maps, with tracer kinetic

models [54, 56, 57]. In experimental stroke research, DCE-

MRI with gadolinium chelates has been employed to

quantify BBB integrity [16, 17, 27, 33, 52, 58–61]. BBB

breakdown develops within hours after the onset of brain

ischemia [16, 58, 62], which has been associated with a

variety of pathophysiological processes, including the ini-

tial inflammatory response and upregulation of the vascular

permeability factor VEGF [10, 63]. Interestingly, a sig-

nificant increase of Ki has been observed with DCE-MRI at

later time points after stroke as well, which has been

hypothesized to be associated with angiogenesis [17, 27,

33, 52, 59]. Chopp and co-workers have reported that Ki

peaks around 2 weeks after experimental stroke, coincident

with increases in CBF, CBV and vessel density in the same

regions, and they have proposed Ki as an additional marker

for angiogenesis [27, 59]. Experimental angiogenesis-pro-

moting treatment with sildenafil was reported to accelerate

the dynamics of the BBB leakage [33] (Fig. 5).

Blood oxygenation level-dependent MRI

With BOLD MRI, the local magnetic field disturbances

induced by the relatively high magnetic susceptibility of

deoxygenated hemoglobin are exploited, which provides T2

contrast on spin echo images [64] and T2
* contrast on gra-

dient echo images [55]. The effect observed on gradient

echo images is much larger, since apart from dephasing

Fig. 5 Maps of Ki and T2
* at different time points (1 day–6 weeks)

after unilateral embolic stroke in a saline–treated control rat (C) and

in a sildenafil-treated rat (T). In the control rat (first row), Ki inside the

lesion was elevated from 1 week on, indicative of BBB disruption,

which peaked between 2 and 5 weeks after stroke. In a rat treated

with angiogenesis-promoting sildenafil (second row), increase of Ki

was observed earlier and lasted shorter. Red arrows indicate

significantly increased Ki values. In these presumably angiogenic

regions, T2
* values were significantly decreased, at 4 or 2 weeks after

stroke in saline- (third row) and sildenafil-treated rats (fourth row),

respectively. Red arrows indicate significantly decreased T2
* values.

Reproduced from Ref. [33] with permission from Lippincott Williams

and Wilkins
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due to diffusion through local magnetic field gradients, all

static dephasing is refocused in spin echo images [40, 64].

Ding et al. have recently evaluated the potential of T2
*-

weighted imaging to identify angiogenesis in post-stroke

rat brain [33]. They observed a shorter T2
*, indicative of

more deoxygenated blood, in perilesional areas of placebo-

and sildenafil-treated rats starting at 1 and 2 weeks after

stroke, respectively, which was hypothesized to arise from

maturing angiogenic venous structures. This was verified

with susceptibility weighted imaging, a variant of T2
*-

weighted MRI that includes phase information [65, 66],

which clearly enhanced the contrast of the areas with

increased magnetic susceptibility [33]. Furthermore,

regions exhibiting a decreased T2
* value spatially matched

with regions with high vascular permeability, based on Ki

measurements (Fig. 5). In another study from the same

group, T2
* shortening in the ischemic hemisphere corre-

sponded spatiotemporally with increasing CBF and tissue

fractional anisotropy, which would reflect a close rela-

tionship between angiogenesis and neuronal remodeling

[32] (Table 1).

Discussion and future perspectives

In the search for neuroprotective and neurorestorative

therapies aiming to improve functional outcome after

stroke, a better understanding of the endogenous processes

involved in spontaneous recovery after stroke is of major

importance. A healthy tissue perfusion status, responsible

for providing nutrients and oxygen and allowing clean-up

of waste products, is critical for mediating functional

recovery after brain injury. This process could be signifi-

cantly augmented by vascular remodeling through angio-

genesis. Therefore, the prospect to noninvasively assess

physiological and structural characteristics of such events

would improve our knowledge on brain plasticity, and may

eventually help us to direct functional outcome of stroke to

our benefit. This review illustrates how MRI can be applied

to noninvasively monitor the evolution of various post-

ischemic processes related to angiogenesis in the brain. The

presented studies demonstrate that MR imaging enables

assessment of a variety of (micro)vascular characteristics,

such as cerebral blood flow and volume, vascular density

and vessel size, BBB integrity and blood oxygenation.

Despite its potential, we need to also be aware of several

pitfalls and limitations related to the application of MRI as

a tool for evaluating angiogenesis after stroke. For exam-

ple, an increase in Ki, i.e. contrast agent leakage, and

shortening of T2
*, i.e. more deoxygenated blood, which has

been found in relation to angiogenesis [33], may also arise

as a result of BBB disruption and hemorrhage in response

to vascular pathology [67]. Furthermore, MRI measure-

ments of tissue perfusion and microvascular characteristics

(CBF, CBV, Ki, MVD and VSI) rely on algorithms that are

based on relatively basic biophysical and mathematical

models that may be inaccurate under complex or altered

conditions, as is the case in stroke pathophysiology. The

methodological difficulties related to the models used in

DSC-MRI and ASL to quantify perfusion, especially under

abnormal flow conditions, have been extensively reviewed

[21, 22, 68–70]. Furthermore, from a physiological point of

view, an increase in CBF and CBV, which has been

associated with post-stroke angiogenesis, may not be

exclusively specific to neovascularization, as vasodilatation

of existing vessels and collateral flow may also contribute.

Hence, the combination of perfusion imaging with addi-

tional MR methods that provide information on micro-

vessel density and vessel size may help elucidating the

complex interdependence between CBF, CBV, MVD and

Table 1 MRI techniques, parameters, and contrast types and mechanisms to assess tissue characteristics related to vascular remodeling through

angiogenesis

MRI technique Parameter Contrast References

Physiological MRI Mechanism Type

Angiography Vascular anatomy – Tracer inflow Endogenous/

exogenous

[20]

DSC-MRI CBF DR2
* Dv, contrast passage Exogenous [17, 18, 32, 52, 78]

CBV

ASL CBF Magnetically labeled

arterial water

Tracer inflow Endogenous [18, 32, 33, 78]

ssCE-MRI BVftotal DR2
* Dv, pre- and post-contrast Exogenous [45, 46]

BVfmicrovascular DR2 [43]

Vessel size DR2
*/DR2 [34, 44–48]

Vessel density DR2/(DR2
*)2/3 [49–52]

DCE-MRI BBB permeability Ki T1, pre- and post-contrast Exogenous [16, 17, 27, 33, 52, 54, 57–61]

BOLD Oxygenation DR2, DR2
* Dv, deoxyHb Endogenous [33, 55, 64, 79]
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VSI. This can be accomplished with ssCE-MRI, as dis-

cussed in this review. Theoretical modeling as well as

Monte Carlo simulations have demonstrated the ability to

quantify MVD and VSI with ssCE-MRI [34, 42, 44, 48,

49], however, in practice MVD and VSI are typically

qualitatively expressed [47, 52]. Quantification of micro-

vessel density and size based on in vivo MRI measure-

ments have been reported based on assumptions of the

diffusion coefficient D and susceptibility difference Dv [50,

51]. Since D may considerably change under specific

pathological conditions, and post-contrast Dv will vary

between subjects, it can be expected that defining D and Dv
based on literature values will affect the accuracy of

quantitative MVD and VSI measurements. In addition,

large variations of Q values, as well as DR2
*/DR2 ratios,

have been reported for rat brain [44, 48–52], which may be

explained by additional biophysical assumptions and gen-

eralizations. First, the vascular network is assumed to

consist of randomly oriented straight cylinders, ignoring

the influence of curvature. Second, the vessel diameter

within tissue-of-interest is often approximated at a single

diameter. Third, isotropic diffusion is assumed. Fourth,

computations rely on an intact BBB. Obviously, variations

and alterations in these factors can lead to under- or

overestimation of MVD and VSI calculations. Elucidation

of the influence of these aspects in ssCE-MRI is critical for

adequate use of this promising approach in assessing vas-

cular characteristics in healthy and pathological brain.

A promising new MRI approach that may enable direct

detection of angiogenesis is molecular imaging with contrast

agents that are targeted to specific molecular markers of

vascular remodeling. In oncology, MR-based molecular

imaging with amb3-integrin-targeted paramagnetic nano-

particles has already demonstrated its potential to monitor

tumor angiogenesis [71–73]. A clear example of the poten-

tial of in vivo molecular imaging of angiogenesis after stroke

has recently been presented by Cai et al., who used positron

emission tomography (PET) to measure upregulation of

VEGF receptors with radioactively-labeled VEGF in the

ischemic rat brain. For noninvasive monitoring of kinetics of

expression of molecular markers, nuclear imaging tech-

niques are valuable, however, their relatively low resolution,

requirement of a radioactive tracer and lack of anatomical

reference, are significant drawbacks that may be overcome

by development of MR-based molecular imaging. A

potential innovative way to monitor the onset of vascular

remodeling in a very early stage with MRI, may be

accomplished with MR reporter genes, which allow nonin-

vasive assessment of expression of a gene of interest toge-

ther with synthesis of an MR detectable by-product, such as

endogenous paramagnetic ferritin [74–76].

In conclusion, in this review we have presented recent

developments in the field of MR imaging that enable in

vivo assessment of different physiological parameters,

e.g. tissue perfusion and microvascular morphology, that

can shed light on various aspects related to angiogenesis

after stroke. These developments may provide important

new insights into the role of vascular remodeling in brain

plasticity and functional recovery after stroke, and may

be valuable for monitoring of possible future therapies

designed to promote (neo)vascularization in stroke

patients.
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