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Abstract: The endogenous protease furin is a key protein in many different diseases, such as cancer
and infections. For this reason, a wide range of studies has focused on targeting furin from a
therapeutic point of view. Our main objective consisted of identifying new compounds that could
enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with
a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that
inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of
physiological and purified recombinant furin by screening selected compounds, Clexane, and these
drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate.
The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were
assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were
selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and
Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition,
these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In
conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition,
these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency
when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.

Keywords: furin; virtual screening; inhibitors; CMK

1. Introduction

Furin is a proprotein convertase whose main function consists of cleaving zymogens
that, after cleavage, acquire biological active function [1]. The furin cleavage site in sub-
strates presents arginine at the first and fourth amino acids from the N-terminal region [2].
Among these substrates, we highlight growth factors, cytokines, coagulation proteins,
albumin, hormones, metalloproteinases, and many types of receptors [3]. Since furin acts
on a wide variety of substrates, it regulates many different processes. For example, furin
regulates pancreatic granular acidification and, consequently, it also affects insulin secre-
tion [4]. This enzyme is also implicated in proliferation and apoptosis processes, as in
granulosa cells from ovaries in rats [5]. Even during embryonic development, furin plays
an important role, since it increases the migration and expansion of human trophoblast
cells [6].
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Apart from its physiological relevance, furin is also a key molecule in cancer devel-
opment and infectious diseases. In the case of cancer, it promotes carcinogenesis and
invasion in many types of tumors [7]. For example, in non-small-cell lung cancer, furin
expression is correlated with tumor invasion [8]. In head and neck squamous cell carci-
nomas, furin promotes tumor proliferation and invasiveness [9–11]. In colon cancer, this
enzyme is important for tumor growth, metastasis, and angiogenesis [12,13]. With respect
to infectious diseases, many pathogen molecules can be activated when cleaved by furin,
acquiring the conformation they need to promote infection [1]. This has been related to
many types of bacterial toxins, such as AB toxins [1], which need to be cleaved to become
active [14]. Other examples are diphtheria and Pseudomonas toxins [15,16]. In the case of
viruses, glycoproteins located at the envelope are also processed by furin [1], as in infections
caused by herpesvirus [17], coronavirus [18], or bornavirus [19]. Specifically, S protein
from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is another protein
activated by furin [2]. In the infectious process, when S protein joins to its cellular receptor,
angiotensin-converting enzyme 2 (ACE2), it exposes the binding site between S1 and S2
domains, which is then accessible to proteases such as furin. When that binding site is
cleaved, S2 acquires the capacity to initiate membrane fusion between the host cell and
virus, which injects its genetic material into the cytoplasm [20]. Based on these data, furin
is considered as an enzyme implicated in SARS-CoV-2 infection and its consequent disease
called COVID-19, which has led many countries to their sanitary capacity limits, even
going so far as to misadjust the preventive system in many nations [21]. This pandemic
spread very rapidly throughout the world. Since its emergence in December 2019, 16.5
million people were infected in just 8 months, seriously affecting the elderly population
and health professionals who were in contact with SARS-CoV-2 patients [22]. Due to these
data and the lack of vaccines during the first months after the pandemic started, different
known biomolecules were used as potential anti-COVID-19 agents, such as herbs from
Chrysanthemi flos, Erigeron breviscapus, or Coptidis rhizome [23]. To date, the World Health
Organization has reported more than 5.5 million deaths globally [24], and the demonstrated
capacity of SARS-CoV-2 to generate new variants keeps health organizations on alert since
different mutations from these variants can affect vaccine efficacy [25].

Considering all these data concerning furin implication in different diseases, especially
in the recent pandemic called COVID-19, different drugs have been studied to inhibit it,
such as diminazene, which is currently used as an anti-parasitic drug, Decanoyl-Arg-Val-
Lys-Arg-chloromethylketone (CMK), modified α1-antitrypsin Portland [2] or low molecular
weight heparin (LMWH) [26]. Diminazene was discovered as a furin inhibitor by virtual
screening and validated in an inhibition assay against purified furin [2]. CMK has already
been tested as a furin inhibitor that, in addition, is capable of avoiding SARS-CoV-2 S protein
cleavage in a cellular model with a 50 µM concentration [27]. The drug α1-antitrypsin
Portland inhibits furin by slow and strong binding, and it exerts a suicide inhibitory
mechanism as do other serine protease inhibitors [28]. A study on heparin supports its
effect on inhibiting some furin-mediated pathways, but it also highlights that this effect is
not caused by direct inhibition of furin [29].

In this study, we aimed to discover new compounds that could enlarge the furin
inhibitor arsenal. Taking this objective into account, QSAR-based Virtual Screening (QBVS)
was carried out to propose potential drugs that could interfere with or block the active
center of furin. In addition, this study tested for the first time LMWH’s capacity to directly
inhibit furin activity. As a secondary objective, we assayed coadjuvants among compounds
from QBVS, LMWH, and CMK as furin inhibitors, since CMK, by inhibition of this enzyme,
avoids SARS-CoV-2 S protein cleavage [27].

2. Results
2.1. Virtual Screening

Following the procedure outlined in the methods section, several individual models
were developed. Table 1 shows only the best (based on ROCED values) and the most
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diverse models. The low values of CCR and AUC, and the high values in ROCED of the
Y-randomization test show a low-chance correlation in the five models (see Table 2).

Table 1. Best QSAR models selected and consensus model with its statistical parameters (only values
of CCR, AUC, and ROCED are shown).

Train Test External

n CCR a AUC b CCR AUC ROCED CCR AUC ROCED

QSAR1 6 0.96 0.97 0.92 0.89 0.27 0.73 0.82 0.81

QSAR2 6 0.96 0.96 0.92 0.9 0.27 0.79 0.8 0.66

QSAR3 8 0.91 0.96 0.92 0.86 0.34 0.7 0.77 1.04

QSAR4 9 0.98 0.97 0.92 0.85 0.25 0.73 0.71 0.79

QSAR5 11 0.98 0.98 0.9 0.86 0.23 0.7 0.7 0.91

Consensus - 0.98 1 0.89 1 0.35 0.73 1 0.79
a CCR: correct classification rate; b AUC: area under ROC curve.

Table 2. Leave-one-out cross-validation and Y-randomization parameters of QSAR models.

LOOcv
a Train Test External

CCR b ROCED CCR AUC c CCR AUC ROCED CCR AUC ROCED

QSAR1 0.93 0.19 0.62 0.67 0.5 0.59 2.67 0.5 0.65 2.72

QSAR2 0.89 0.31 0.63 0.68 0.5 0.59 2.68 0.5 0.65 2.89

QSAR3 0.79 0.67 0.65 0.71 0.5 0.59 2.68 0.5 0.61 2.71

QSAR4 0.89 0.24 0.66 0.72 0.5 0.6 2.69 0.5 0.62 2.77

QSAR5 0.86 0.35 0.68 0.75 0.5 0.61 2.72 0.49 0.6 2.76
a LOOcv: leave-one-out cross validation; b CCR: correct classification rate; c AUC: area under ROC curve.

With these obtained QSAR models, consensus model virtual screening was carried
out against the compounds of natural origin from the FoodBank database (FDB, https:
//foodb.ca/, accessed on 1 July 2020) to extract possible candidates as furin inhibitors.
Table 3 shows the seven most active compounds.

Table 3. List of compounds obtained in the consensus model virtual screening.

FDB ID a Compound Activity
Vote b

Probability
Mean c

(%) in
Domain d

FDB030264 15,15′-dihydroxy-β-
carotene 1 0.897 100

FDB001534 Lactucaxanthin 1 0.867 100

FDB002245 Kukoamine A 1 0.867 100

FDB002479 (3S,3′R,4xi)-beta,beta-
Carotene-3,3′,4-triol 1 0.865 100

FDB007276 Lutein ester 1 0.865 100

FDB014726 Zeaxanthin 1 0.863 100

FDB015828 7,8-
Dehydroastaxanthianthin 1 0.862 100

a The FDB identification number; b the activity classification of the consensus model; c the mean of probabilities
for the five models selected (consensus model); d the percentage of five models (consensus model) in which the
compounds are in the applicability domain.

https://foodb.ca/
https://foodb.ca/
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2.2. Inhibitors of Furin

Among the compounds highlighted by virtual screening, just Kukoamine A (Cat#CFN93215;
ChemFaces, Wuhan, Hubei, China) and Zeaxanthin (Cat#Q444; AK Scientific, Inc., Union City,
CA, USA) inhibited both recombinant and physiological furin, and they did so in a dose-
dependent manner. In the case of Kukoamine A, the IC50 for recombinant furin was 1.07 mM
(95% CI; 0.817–4.577), whereas the IC50 for physiological furin was 193.2 µM (95% CI; 165.5–229)
(Figure 1A). With respect to Zeaxanthin, the IC50 for recombinant furin was 90.55 µM (95%
CI; 64.87–753), whereas the IC50 for physiological furin was 49.55 µM (95% CI; 38.85–64.52)
(Figure 1B). In addition to the compounds selected by virtual screening, furin inhibition by
Clexane (LMWH) was also tested. The IC50 for recombinant furin was 31.648 µM (95%
CI; 10.08–53.22), whereas the IC50 for physiological furin was 6.45 µM (95% CI; 6.142–6.784)
(Figure 1C).
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Figure 1. Dose-dependent inhibition of furin activity by Kukoamine A, Zeaxanthin, and Clexane. (A)
Kukoamine A inhibited the activity of both recombinant and physiological furin. (B) Zeaxanthin
inhibited the activity of both recombinant and physiological furin. (C) Clexane inhibited the activity
of both recombinant and physiological furin. Vertical dotted line represents IC50 value for each
compound. mRFU/min: millirelative fluorescence units/minute; Log: decimal logarithm.
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2.3. Adjuvant Effect of Selected Compounds in the Inhibition of Furin

In addition to the effect of the single compounds on the inhibition of furin, we decided
to test their coadjuvants with CMK, a known furin inhibitor that also avoids SARS-CoV-2
S protein cleavage [27]. The addition of Zeaxanthin, Kukoamine A, or Clexane IC50 to
CMK increased physiological furin inhibition (Figure 2). The IC50 for CMK alone was 4.205
µM (95% CI; 2.991–6.002), whereas the addition of Zexanthin, Kukoamine A or Clexane
reduced the IC50 to 1.488 µM (95% CI; 0.885–2.501), 0.749 µM (95% CI; 0.552–0.998) or 0.096
µM (95% CI; 0.037–0.160), respectively. This showed an adjuvant effect on physiological
furin inhibition using CMK in combination with Zeaxanthin, Kukoamine A, or Clexane.
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Figure 2. Adjuvant inhibition of physiological furin using CMK in combination with Clexane, Kukoamine
A, or Zeaxanthin. mRFU/min: millirelative fluorescence units/minute; Log: decimal logarithm.

2.4. Cell Viability in Presence of Zeaxanthin and Kukoamine A

As the effects of CMK and heparin have already been tested on human cell lines [27,30],
we decided to check if Zeaxanthin and Kukoamine A could alter cell viability at tested
concentrations for physiological furin inhibition. Kukoamine A significantly reduced 293T
cells’ viability at double IC50 and full IC50 concentrations (Figure 3). However, a half IC50
concentration did not affect cell viability, as the percentage of live cells was similar to cells
in the absence of any compound (87.55% ± 1.48% (half of the IC50) vs. 94.25% ± 3.18%
(no Kukoamine A)). In the case of Zeaxanthin, a half IC50 concentration caused a slight
reduction in cell viability in comparison to cells in the absence of bioactive compounds
(81.1% ± 4.1% (half of the IC50) vs 94.25% ± 3.18% (no Zeaxanthin)) (Figure 3). The
Zeaxanthin IC50 concentration reduced cell viability by 61%, whereas double the IC50
concentration reduced it to nearly total death.
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Figure 3. Viability percentage of 293T HEK cells at different Kukoamine A or Zeaxanthin con-
centrations. Y-axis represents cell count by cytometer, whereas X-axis shows 7-AAD fluorescence
intensity. Autofluorescence sample delimits 7-AAD positive and negative cell regions. Positive
control represents cells without bioactive compounds. Each sample type was duplicated.

2.5. Molecular Docking

Furin inhibitors that were predicted by virtual screening and that were experimentally
confirmed were submitted to molecular docking calculations, and the resulting poses can
be observed in Figures 4 and 5 for Zeaxanthin and Kukoamine A, respectively. It can be



Int. J. Mol. Sci. 2022, 23, 2796 7 of 16

appreciated that both compounds extensively blocked access to the active site by means of
hydrogen bonds and hydrophobic interactions, thus inhibiting furin’s catalytic action.
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Figure 4. Obtained docking pose for Zeaxanthin into the active site of furin. The carbon skeleton of
Zeaxanthin is depicted in grey, while the carbon skeleton of catalytic triad residues is depicted in
pink. Main interaction residues are shown in lines represented in orange. Hydrogen interactions are
represented by red dashed lines, while hydrophobic interactions are shown by purple dashed lines.
The secondary structure of the protein is shown in cartoon representation.
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Figure 5. Obtained docking pose for Kukoamine A into the active site of furin. The carbon skeleton
of Kukoamine A is depicted in green, while the carbon skeleton of catalytic triad residues is depicted
in pink. Main interaction residues are shown in lines represented in orange. Hydrogen interactions
are represented by red dashed lines, while hydrophobic interactions are shown by purple dashed
lines. The secondary structure of the protein is shown in cartoon representation.
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3. Discussion

Proprotein convertase furin is a very versatile protease. It exhibits different functions
that become essential in both health and disease. Among the pathophysiological processes
in which furin has a crucial role, there are many types of cancer where furin cleaves and
activates a wide range of proteins that promote tumor phenotypes [31]. However, due
to its heterogeneous functions, furin represses the tumorigenic properties of some cancer
cells and its inhibition can lead to aggressive phenotypes in other tumors [31]. Furin is
also involved in some infectious diseases. Viral substrates have gained importance among
furin targets as they become activated as infectious proteins when they are cleaved [1].
This relates to viruses from different families, involving infections provoked by Ebola [32],
Influenza A [33], or Metapneumovirus [34].

In an endeavor to propose furin inhibition as a possible therapeutic target, there
have been projects aimed at studying the biological effects of this inhibition in different
pathological models. For example, furin autoinhibitory propeptide has been used to reduce
metalloproteinase-9 activity in vitro in breast cancer [35,36]. In clinical trials concerning
patients with Ewing’s sarcoma cancer, one of the strategies consisted of silencing furin
by short hairpin RNAs [37]. In a murine model infected with Pseudomonas aeruginosa,
nona-D-arginine-mediated furin inhibition diminished corneal adverse effects [38]. In the
recent pandemic context, furin inhibition has also been tested as a possible preventive
strategy against infection with SARS-CoV-2, by the usage of drugs such as CMK [27].

In this study, we aimed to identify new furin inhibitors that could be added to the
arsenal of compounds that target furin from a therapeutic point of view. From a virtual
screening, we selected a series of candidate compounds, which were tested for the inhibition
of purified recombinant and physiological secreted furin. Among these compounds, we
selected Zeaxanthin and Kukoamine A, since they were the most effective inhibitors of both
physiological and recombinant furin. In addition to these compounds, Clexane, a LMWH,
directly inhibited purified recombinant furin but also furin substrate proteolysis in the U-
251 MG secretome. These results support that Clexane can directly act against furin. Its IC50
was lower than those of Kukoamine A or Zeaxanthin. Zeaxanthin, as with other carotenoids,
is highlighted for its antioxidant and preventive properties against cardiovascular or ocular
diseases as well as cancer [39]. In the context of viral infections, lower levels of Zeaxanthin
have been reported in the serum of patients infected by the human immunodeficiency virus
(HIV), in comparison with noninfected subjects [40]. Although its IC50 value reduced the
viability of healthy cells tested in our assay, Zeaxanthin is an FDA-approved drug for which
concentrations of up to 100 µM have been administered daily in clinical trials in patients
with age-related macular degeneration, with no adverse effects reported [41,42]. In the case
of Kukoamine A, some studies support its antitumor properties in glioblastoma [43] and
its neuroprotective effects [44]. Similarly, Zeaxanthin’s and Kukoamine A’s IC50 values
considerably reduced 293T HEK cell viability. However, some assays that administered
Kukoamine A to rats or mice in doses between 5 and 20 mg/kg highlighted only its
protective effects, with no significant reported adverse effects [45,46]. Clexane is a well-
known venous thromboembolism prophylactic drug [47], but despite its reported abilities
to inhibit some furin-mediated pathways, a direct effect of LMWH on this enzyme has not
been described [29]. However, our results with purified recombinant furin and Clexane
could tip the scale towards a direct interaction. It is important to note that, although we
have only tested Clexane, similar effects would be expected with other LMWHs.

Secondarily, we showed that Kukoamine A, Zeaxanthin, and Clexane increased CMK
efficiency over furin, and CMK avoided SARS-CoV-2 S protein proteolysis through furin
inhibition [27]. These results suggest that these new inhibitors could be considered, indi-
vidually or in combination, as potential drugs against COVID-19. In this context, these
compounds would bypass the immune escape carried out by SARS-CoV-2 variants, since
they act on furin and not on the virus. However, future and extensive studies should be
undertaken in order to examine these potential applications. In any case, drug coadjuvants
are of vital importance, especially when dealing with infectious diseases, since excessive
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use of single-compound-based therapies is potentially responsible for the drug-resistant
generation of many types of pathogens [48–50].

The main limitations of this study are related to the high IC50s for the furin inhibitors
proposed by virtual screening, taking into account that the QSAR models used to select
the compounds were built considering active compounds with IC50/Ki values lower than
0.1 uM. However, there are clinical trials of our selected compounds using concentrations
similar to those tested in our experiments. On the other hand, although the selected
compounds could potentially be used against COVID-19, it would be necessary to test
in clinical trials whether they could prevent contagion and whether they would also be
effective in reducing viral replication once contagion has occurred. In addition, we do not
know the adverse effects of these drugs in this context. In the specific case of heparin, there
are numerous adverse effects described in addition to its contraindication with the use of
other drugs [51].

In conclusion, we have identified Kukoamine A, a natural origin compound; Zeaxan-
thin, an FDA-approved drug; and Clexane, a known antithrombotic compound, as new
furin direct inhibitors. In addition, Clexane, Zeaxanthin, and Kukoamine A are able to
increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S
protein proteolysis and could be tested in clinical trials for COVID-19 prevention.

4. Materials and Methods
4.1. Virtual Screening

The chemical substances, as well as the activity values (Ki, IC50, and % inhibition),
were extracted from the CHEMBL database (https://www.ebi.ac.uk/chembl, accessed on 1
July 2020), for a total of 148 chemicals. All data, both chemicals and activities, were curated
for the three activity sets. The data curation was carried out to reduce misannotation
and rounding unit errors [52]. The chemical dataset was curated following the protocols
proposed by Fourches et al. [53,54]. These protocols included the structural normalization of
specific chemotypes, such as aromatic and nitro groups, and the removal of inorganic salts,
organometallic compounds, etc. Standardizer was used for chemical curation (Standardizer
17.21.0, ChemAxon https://www.chemaxon.com, Budapest, Hungary, accessed on 1 July
2020). To select the endpoint, the following method was carried out: we used data with
values of Ki as the main dataset, using a threshold of pKi ≥ 7 to select actives (45 actives
and 66 inactives). Next, we included chemicals with pIC50 values that were not in the main
dataset, choosing a threshold of pIC50 ≥ 7 to select active compounds (3 actives and 10
inactives were included). Then, we included chemicals that were not present in the main
dataset using % inhibition ≥ 50% as the active selection threshold (0 actives and 7 inactives
were included).

More than 5000 different descriptors were calculated for the 131 compounds using
DRAGON software [55]. The descriptors with low variance or that were highly correlated
with each other (r2 > 0.95) were removed. As the QSAR models were based on the principle
of similarity (similar substances present similar activities), and to avoid heterogeneities in
the data, the so-called activity cliffs (similar substances with very different activity) and out-
liers (substances very different from the rest of the compounds) were removed. The activity
cliff elimination of inactive chemicals was conducted using the Castillo-González et al. [56]
method with a threshold value of 101.21. The outlier selection was carried out with the
applicability domain (AD) protocol defined by Melagraki et al. [57,58] with Z = 0.5 (see
applicability domain section). Once the analysis was completed, 18 compounds were
eliminated (15 activity cliffs and 3 outliers). To ensure that the data will result in effective
QSAR modeling, they must present a MODI value [59] greater than 0.65; for our data, the
value obtained from MODI was 0.76.

The 113 chemicals selected were randomly divided into three subsets: training (80%),
test (10%), and external (10%). With these three subsets, we used linear discriminant
analysis for the QSAR model development and a genetic algorithm for the descriptor
selection technique using the ROCED [60] parameter as a fitness function. We computed

https://www.ebi.ac.uk/chembl
https://www.chemaxon.com
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models using between 2 and 11 descriptors. Moreover, selectivity, specificity, correct
classification rate (CCR), and area under the ROC curve (AUC) were calculated for training,
test, and external sets.

In addition, the leave-one-out (LOO) approach was conducted on the training set to
assess the internal predictivity. In this approach, one compound of the training set was
omitted, and the statistical parameters were recalculated with the remaining substances.
This process was conducted for all training sets, and the values of the sensitivity, specificity,
AUC, and ROCED were reported. High values of sensitivity and specificity and an AUC
with a low value for ROCED are indicative of a model’s robustness.

To avoid models producing good classification due to chance, the Y-randomization
technique was carried out. The activity values of the training set were randomized (Yrnd).
This process was conducted 300 times and the average values of the sensitivity (Sensrnd),
specificity (Sprnd), and ROCEDrnd for both training and test sets, as well as the AUC values,
were reported. A high average in ROCED and a low average in sensitivity, specificity, and
AUC are indicative of a good QSAR model.

To obtain the most statistically robust and predictive models, we employed the combi-
natorial QSAR strategy. For this purpose, the most different models based on the canonical
measure of distance (CMD) [61] were chosen to preserve the most information and diversity
and to construct a consensus model.

In this study, we defined AD as a distance threshold ∆T between a compound of
interest and its nearest neighbors of the set considered. It was calculated as

∆T = yZσ (1)

where y and σ are the mean and the standard deviation of the distances that are below
the mean of the distance matrix, and Z is defined at 0.5. For outlier exclusion, we defined
the AD in the entire descriptor space, and a chemical that presented a Euclidean distance
with its nearest neighbor that was higher than this value was considered as an outlier.
For chemical prediction in the virtual screening test, we defined the AD in the selected
descriptor space of the model, and for chemicals that presented a Euclidean distance with
their nearest neighbors in the training set higher than this value, no prediction was made.
Compound class (i.e., active or inactive) assignment in the virtual screening was based
on the majority vote across the independent models developed with one condition: the
chemical must be inside the applicability domain defined above. To prioritize compounds
with the same activity vote, we sorted them by the mean value of probability given by
each model.

4.2. Secretome Collection from U-251 MG Cells

The human glioblastoma cell line U-251 MG expresses human physiological furin,
which can be secreted or retained intracellularly [62]. The U-251 MG cells (European
Collection for Authenticated Cell Cultures) were first cultured in Corning® T-75 flasks
(catalog #430641; ThermoFisher Scientific, Waltham, MA, USA) with DMEM (Dulbecco’s
Modified Eagle’s Medium) containing 4.5 g/L glucose (Gibco Thermo Fisher, Madrid,
Spain), supplemented with 10% fetal bovine serum (Gibco Thermo Fisher, Madrid, Spain),
1% GlutaMax (Gibco Thermo Fisher, Madrid, Spain), 1% nonessential amino acids (Gibco
Thermo Fisher, Madrid, Spain) and 0.1% gentamicin (Gibco Thermo Fisher, Madrid, Spain).
When 100% confluence was reached, the medium was recovered and centrifuged for 5′ at
280 g to discard cell debris, and finally, supernatant (secretome) was collected. The activity
of secreted furin was confirmed by using a fluorogenic specific substrate (pERTKR-AMC
fluorogenic peptide substrate; ES013; LOT#PYO02; R&D Systems, Minneapolis, MN, USA)
(Figure A1). These results were achieved by incubating U-251 MG secretome concentrated
10X with 50 µM furin substrate in a 96-well black plate (10030581, ThermoFisher Scientific,
Waltham, MA, USA), and then, measuring fluorescence in a Multiskan Go (ThermoFisher
Scientific, Waltham, MA, USA) plate reader at 380 and 460 nm for emission and excitation
wavelengths, respectively, at 37 ◦C for 30 min.
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4.3. Furin Inhibition Assay

Clexane (LMWH, enoxaparin sodium, Clexane, Sanofi Aventis S.A., Barcelona, Spain)
and each candidate compound selected by virtual screening were assayed as inhibitors of
human recombinant furin (1503-SE-010; Lot#INK2320031; R&D Systems) and physiological
furin secreted from U-251 MG cells. For both types of furin, the fluorogenic specific
substrate (mentioned above) was used. In the inhibition assays, activity buffer (Tris Base
25 mM (BP152-1; LOT#165920; Fisher BioReagents), CaCl2 1 mM and Brij-35 (Cat. No.
20150; ThermoFisher Scientific, Waltham, MA, USA) 0,5% (w/v), pH 9) was the medium
for recombinant furin, whereas distilled water was used for U-251 MG secretome since it
showed less furin activity in the presence of activity buffer. Compounds were reconstituted
in their appropriate solvents (distilled water, ethanol, PBS, etc.), according to the supplier’s
instructions. In a 96-well black plate, U-251 MG secretome concentrated 10× or 3.6 nM
human recombinant furin were incubated with different compound concentrations for 10
min at room temperature, and then, 50 µM furin specific fluorogenic substrate was added
to every well, except one blank. Fluorescence was recorded in the Multiskan Go plate
reader at 380 and 460 nm for emission and excitation wavelengths, respectively, at 37 ◦C
for 30 min.

4.4. IC50 Calculation

The IC50 was calculated only for those compounds that inhibited recombinant and
physiological furin. For each compound concentration, furin activity’s maximum velocity
(mRFU/min) was recorded. Then, by using GraphPad software (v. 8), the correlation
between the decimal logarithm (compound concentration) and furin activity’s maximum
velocity was calculated by nonlinear regression (curve fit) for XY analyses. From this
statistical method, the IC50 was calculated with a 95% confidence interval (CI).

4.5. Furin Inhibition Assay in Coadjuvants

Since furin inhibition by CMK had been tested only in physiological conditions [27],
adjuvant inhibition assays were performed with furin from the U-251 MG secretome. Inhibi-
tion was assessed by using different concentrations of CMK (Cat.No. B5437; APExBIO) and
the IC50 concentrations of selected virtual screening compounds or Clexane. In a 96-well
black plate, various CMK (0–50 µM) concentrations were incubated with the IC50 con-
centrations of the rest of the compounds and with 10× U-251 MG secretome as described
above. After 10 min incubation at room temperature, 50 µM furin specific fluorogenic
substrate was added and the plate was read in a Multiskan Go plate reader at 380 and
460 nm for emission and excitation wavelengths, respectively, at 37 ◦C for 30 min.

4.6. Cell Viability in Presence of Selected Furin Inhibitors

New furin inhibitors identified by virtual screening were tested in cell viability assays.
The 293T HEK cell line (human embryonic kidney cell line purchased from American
Type Culture Collection) was used as healthy cell model. They were cultured in DMEM
containing 4,5 g/L glucose, supplemented with 10% fetal bovine serum, 1% GlutaMax,
and 0,1% gentamicin. They were maintained in Corning® T-75 flasks (catalog #430641;
ThermoFisher Scientific, Waltham, MA, USA) at 37 ◦C and 5% carbon dioxide. At 100%
cellular confluence, cells were subcultured in 12-well plates (flat bottom, sterile, NUNC
brand, Biolab, Madrid, Spain) at 100,000 cells/mL for 24 h. Then, different concentrations
(double, half, and full IC50 concentrations for physiological furin) of furin inhibitors were
added to cells for 24 h, and cells were collected afterward. The experiment was run in
duplicates. Then, the cell pellet was resuspended in running buffer (autoMACS ® Running
Buffer–MACS Separation Buffer; order no.:130-091-221; Miltenyi Biotec, Madrid, Spain)
and 7-AAD (Cat: 51-68981E; BD Biosciences, Madrid, Spain). Finally, this solution was
evaluated in a flow cytometer (BD Accuri™ C6 Plus Flow Cytometer; BD Biosciences,
Madrid, Spain) to calculate mortality rates. A blank solution with cell pellet resuspended
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in running buffer was used to discard cell autofluorescence. The results were analyzed in
FlowJo software (v. 10).

4.7. Molecular Docking

To provide mechanistic insights into the structure and main interactions established
between furin and characterized inhibitors derived from virtual screening, molecular
docking calculations were carried out.

The selected inhibitors were set up for docking simulations using AmberTools (AMBER
2017, University of California, San Francisco, CA, USA) [63]. Molecular parameters were
calculated by computing partial charges by the MMFF94 force field, by adding hydrogen
atoms, and by minimizing energies (default parameters) [64].

The crystal structure of furin (Protein Data Bank code 5MIM) was used to build the
protein model system. At an early stage, bond orders were assigned, hydrogens were
added, and cap termini were included with the Protein Preparation Wizard module as
implemented in Maestro (Schrödinger Release 2021-2: Maestro, Schrödinger, LLC, New
York, NY, USA) [65]. Protonation states of all side chains were subsequently defined using
PROPKA3.1. Partial charges over all atoms were finally assigned within the AMBER99
force field scheme as implemented in AmberTools. Docking simulations were performed
with Lead Finder software v1.1.20 [66] via MetaScreener (https://github.com/bio-hpc/
metascreener, accessed on 20 December 2021) in the coordinates of the active site of the
protein. All docking parameters were set to default for the calculations. The best-ranked
docking score pose for every compound was retained for further analysis.

5. Patents

Two patents in connection with these findings were filed in Spain, 20 September
2021: (a) 10. H. Pérez-Sánchez, I. Martínez-Martínez, D. Zaragoza-Huesca, C. Martínez-
Cortés, A.J. Banegas-Luna, A. Pérez-Garrido, J.M. Vegara-Meseguer, J. Peñas-Martínez, M.
C. Ródenas-Bleda, S. Espín-García, “Zeaxantina para la prevención y tratamiento de la
infección viral, preferiblemente por coronavirus”, P202130873 (2021), and (b) 11. H. Pérez-
Sánchez, I. Martínez-Martínez, D. Zaragoza-Huesca, C. Martínez-Cortés, A.J. Banegas-
Luna, A. Pérez-Garrido, J. Vegara-Meseguer, J. Peñas-Martínez, M. C. Ródenas-Bleda,
S. Espín-García, “Kukoamina A para la prevención y tratamiento de la infección viral,
preferiblemente por coronavirus”, P202130872 (2021).
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Figure A1. Furin substrate proteolytic cleavage by U-251 MG secretome. This figure compares 

proteolytic activity between the U-251 MG secretome and a blank solution of distilled water (the 

same medium as the solvent for the secretome). RFU: relative fluorescence units; min: minutes. 
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