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Synergistic integration of electromagnetic (EM) and mechanical properties of metamaterials, a concept
known as smart metamaterials, promises new applications across the spectrum, from flexible waveguides to
shape-conforming cloaks. These applications became possible thanks to smart transformation optics (STO),
a design methodology that utilizes coordinate transformations to control both EM wave propagation and
mechanical deformation of the device. Here, we demonstrate several STO devices based on extremely auxetic
(Poisson ratio 21) elasto-electromagnetic metamaterials, both of which exhibit enormous flexibility and
sustain efficient operation upon a wide range of deformations. Spatial maps of microwave electric fields
across these devices confirm our ability to deform carpet cloaks, bent waveguides, and potentially other
quasi-conformal TO-based devices operating at 7 , 8 GHz. These devices are each fabricated from a single
sheet of initially uniform (double-periodic) square-lattice metamaterial, which acquires the necessary
distribution of effective permittivity entirely from the mechanical deformation of its boundary. By
integrating transformation optics and continuum mechanics theory, we provide analytical derivations for
the design of STO devices. Additionally, we clarify an important point relating to two-dimensional STO
devices: the difference between plane stress and plane strain assumptions, which lead to elastic
metamaterials with Poisson ratio 21 and 2‘, respectively.

T
ransformation optics1 (TO) provided a new way to design sophisticated electromagnetic devices using the
form invariance of Maxwell’s equations under coordinate transformations1,2. To implement the intricate
gradient permittivity and/or permeability distributions designed by the TO theory, many researchers

employed the novel concept of artificially structured metamaterials, which consist of deeply subwavelength unit
cells coupling with electromagnetic waves collectively as an effective medium. From the first introduction of TO
theory1, various TO applications have been suggested using metamaterials, such as cloaking1,3–17, arbitrary light
guiding18,19, extreme imaging lenses20–23, and other interesting approaches to manipulating light24,25. Amongst
those applications, invisibility cloaks1,2 contributed most significantly to the continued public curiosity and led to
the expansion of related research fields26,27. The omnidirectional TO cloak1 effectively compresses an object to
appear as a singular point, making it invisible from all directions; however it requires a wide range of refractive
index between zero and unity, which is very difficult to achieve in realistic media without significant loss or
dispersion3–5. This grand challenge has been tackled by only a handful of experimental efforts in the microwave6,7

and optical8 frequency domains. On the other hand, the carpet cloak device compresses an object to a flat sheet,
which requires only modest ranges of material properties9. Moreover, for the TE polarization (out of plane E-
field), a carpet cloak transformation can be implemented entirely without magnetic properties; consequently,
they have been designed with large operational bandwidth and negligible attenuation10–17. The absence of mag-
netic response in carpet cloak is best understood using the conformal2 and quasi-conformal9 TO theory; it turns
out to be closely related to the local isotropy of the underlying coordinate transformation28. Since exact conformal
maps are very restrictive, the majority of devices based on locally isotropic metamaterials resort to quasi-
conformal maps (QCM)9. QCM-based TO has already enabled numerous electromagnetic devices made of
dielectric materials only, such as carpet cloaks10–17, arbitrary-shape waveguides18,19, or lenses20, all of which can
operate with low loss and broad bandwidth.

If a quasi-conformal transformation optics (QCTO)-based device has a deviation of its boundary shape, for
example, resulting from an elastic deformation, the device requires a complete redesign in order to preserve its
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functionality. To prevent degraded performance and maintain original
function under an external load or other elastic deformation, self-
adjustable metamaterials are necessary. Recently, a concept of smart
metamaterials was introduced, which was conceived to enable shape
reconfigurability of QCTO-based devices28. It was suggested that, in
two dimensions - that is, for devices having long extruded shapes and
limited to in-plane wave propagation – so-called hyperauxetic (having
Poisson ratio less than 21) materials would be necessary for an exact
implementation of this idea. Here, we present a rigorous derivation of
Smart Transformation Optics (STO) in two dimensions, and clarify
the effect of choosing a plane stress vs plane strain configuration on
the mechanical properties of smart metamaterials.

In a smart TO device, the boundary mechanical load should deform
each unit cell so that the new distribution of electromagnetic prop-
erties would implement the desired TO map; in our case, TO maps
must be limited to conformal or quasi-conformal transformations. In
general, it is very difficult to integrate TO and solid mechanics,
because the stress and strain distributions of a loaded structure in
mechanical deformation are solutions of complicated equations -
the generalized Hooke’s law, which is the governing equation of elas-
todynamics for linear elastic materials29. By noting the fact that the
sum of angle changes (a 1 b, in Fig. 1a) between unit cell’s four sides
is represented as shear strain Uxy~azb

� �
in solid-mechanical

deformation, the quasi-conformality (a 1 b 5 0) was numerically
tested through multiphysics simulation (COMSOL) for 2D materials
(in xy-plane) without longitudinal (z-direction) deformation28. Thus,
the auxetic material with large absolute value of negative Poisson’s
ratio (PR, n), which is extremely difficult to realize, is the necessary
building block of STO devices based on (quasi-)conformal maps: it
provides nearly zero shear strain, causing the unit cells to compress or
expand virtually isotropically regardless of the deformation.

For the derivation of smart transformation optics, it is convenient
to use explicit coordinates in the original flat space ~X

� �
and the

mechanically deformed space ~x0~~Xz~u
� �

, where the vector field ~u
is the displacement field, as described in Fig. 1b29. Displacement, or
strain, enters the generalized Hooke’s law, which determined the
equilibrium configuration of the device given the boundary condi-
tions and volumetric mechanical loads for the static deformations of
linear elastic homogeneous isotropic materials, the complicated
stress-strain relations reduce to the Cauchy-Navier equations of
elasticity for displacements. The design of a transformation optical
device is converted to the calculation of 2D Laplace’s equations,
+2

X~x
0~0 in xy-plane, to evaluate the coordinate grids deformation

during the transformation from a flat space ~X
� �

to a distorted space

~x0~~Xz~u
� �

30,31. This method suggests that the calculation of the
material parameters for a TO device is equivalent to the computation
of spatial deformation field governed by the 2D Laplace’s equation
with proper boundary conditions. Starting from the elastostatic gov-
erning equation, after showing Laplace’s equations of a deformed
coordinate ~x0ð Þ, we analytically derive the general solutions of smart
TO devices by integrating transformation optics and solid mechanics.

The non-auxetic approximate smart cloak demonstrated in
Ref.28, which was made of silicone rubber with a not-so-large dielec-
tric constant (ed 5 2.88), required an additional structural part (a
triangular patch) at the bottom of the carpet cloak to achieve the
extremely small value of the transformation Jacobian, which was
necessary to realize the desired effective permittivity range for cloak-
ing28. The deformation range for smart cloaking, defined as the range
of allowed elastic deformation while it can automatically implement
a valid QCM, is also limited to a narrow range. However, to achieve a
versatile – and exact - smart TO device, such as, for example, a fully

Figure 1 | Schematic and material property change induced by elastic deformation. (a) Schematic of the elastic deformation of a unit cell. (b) The

coordinate transformation between the coordinates before ~X
� �

and after ~x0~~Xz~u
� �

the elastic deformation. (c–d) The effective permittivity ratio

e0eff

eref

 !
generated by an elastic deformation versus the deformed area change (J 5 det(F)), in comparison with the quasi-conformal-mapped permittivity

ratio (1/J). (c) When the dielectric constant changes as ed 5 3, 10, 50 for a fixed volume fraction of fd 5 0.5. (d) When volume fraction changes as fd 5 0.1,

0.3, 0.5 for a fixed dielectric constant of ed 5 10.
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flexible waveguide, it is not possible to use the patch method because
deformations may appear at various, unpredictable different loca-
tions in the waveguide. In addition, we would have to increase the
deformable range of smart TO at the same time. Although it is known
that a highly negative PR structure (n , 210) with extremely high
permittivity is a good candidate for smart metamaterials, it is tech-
nically very difficult to realize. Because high permittivity material is
not easily available in nature, it is important to design an efficient
auxetic structure that allows the highest effective permittivity out of a
given dielectric material.

Here, we demonstrate a versatile smart TO device by making any
range of elastic deformation automatically implement QCM without
any additional structural part. We fabricated an auxetic two-dimen-
sional (2D) plate of n , 21 which enables us to achieve the max-

imized possible effective permittivity e0eff ~ed

� �
out of an elasto-

electromagnetic metamaterial made of a specific material ed 5 10.2
(PTFE ceramic, ROGERS Corp.). The extreme auxetic property (n ,
21) and the compressible structure without empty space allow us to
create an exact, wide-deformation-range QCTO device from a single
sheet of an elasto-electromagnetic metamaterial, without resorting to
the patching method used in Ref. 28. Our measured 2D E-field map-
ping data at 7 , 8 GHz show that our auxetic structure has smart TO
electromagnetic properties for elastic deformation, such as smart
cloaking and smart arbitrary waveguiding. Using the elastostatic
governing (Cauchy-Navier) equations in solid mechanics, we show
that the deformed coordinates ~x0~~Xz~u

� �
of a 2D plate, made by

arbitrary elastic deformation, satisfy 2D Laplace’s equations,
+2

X~x
0~0, for specific materials of n , 21 or n , 2‘ in plane stress

or plane strain conditions, respectively. By integrating transforma-
tion optics and solid mechanics, we analytically derive the general
solutions of smart TO devices.

Results
General solutions found so that elastic deformations automa-
tically implement quasi-conformal transformations. The govern-
ing equations of elastodynamic problems of linear elastic materials
are the generalized Hooke’s law, sij 5 Cijklekl (i, j, k, l 5 1, 2, 3), that
relates stress (sij) and strain (eij) with the elastic modulus tensor
(Cijkl). To represent the coordinate transformation made by an
elastic deformation from an original flat space Xi to the trans-
formed space x0i ~Xizuið Þ, we have to simplify the generalized
Hooke’s law by solving directly for the displacements (ui), instead
of stress and strain. For the elastostatic deformations of a linear
elastic homogenous isotropic solid with Poisson’s ratio (n) at
uniform temperature (T 5 const), the governing equations reduce
to the Cauchy-Navier equations of elasticity as following29,

Cijkl
L2uk

LXiLXl
~r0

L2uj

Lt2
:0 ð1Þ

where Cijkl is the elastic modulus tensor, ui displacement vector, and
r0 mass density.

If we consider a two-dimensional (2D in xy-plane) plate with finite
thickness, the longitudinal (z-direction) deformation is allowed and
it is represented as the well-known plane stress condition in solid

mechanics s33~s23~s13~0,
L

Lx3
~0

� �
29. The mechanical loads

are assumed to be constant throughout the thickness and the thick-
ness of the plate can vary32. From Eq. (1), we obtain following two
equations as explained in detail in Methods,

L2u1

LX1
2 z

L2u1

LX2
2

� �
~{

1znð Þ
1{nð Þ

L2u1

LX1
2 z

L2u2

LX1LX2

� �
, ð2Þ

L2u2

LX1
2 z

L2u2

LX2
2

� �
~{

1znð Þ
1{nð Þ

L2u1

LX1LX2
z

L2u2

LX2
2

� �
: ð3Þ

In the limiting case of n R 21,
L2u1

LX1
2 z

L2u1

LX2
2 ~

L2u2

LX1
2 z

L2u2

LX2
2 ~0,

i.e., the elastic deformation always satisfies 2D Laplace’s equations in
xy-plane, so that +2

X~u~+2
X
~Xz~u
� �

~+2
X~x
0~0. Because we use sliding

boundary condition (roller boundary condition in solid mechanics)
in this case, the Laplace’s equation along with this proper boundary
condition enables us to consider arbitrary elastic deformations equi-
valent to the quasi-conformal transformations30,31. By integrating TO
and solid mechanics, this directly certifies that the elastic deforma-
tion (inside xy-plane) of a plate with finite thickness automatically
implements quasi-conformal transformation if the material is auxe-
tic as n R 21 when the longitudinal deformation (z-direction) is
allowed.

If we consider another 2D plate in xy-plane constrained to have no
longitudinal (z-direction) deformation, it is represented by the plane

strain condition in solid mechanics e33~e23~e13~0,
L

Lx3
~0

� �
29.

It typically represents a cross section that cuts an infinite or very long
depth such that we can ignore any end effects, in other words, a unit-
depth model32. From Eq. (1), we get following relations as derived in
Methods,

L2u1

LX1
2 z

L2u1

LX2
2

� �
~{

1
1{2nð Þ

L2u1

LX1
2 z

L2u2

LX1LX2

� �
ð4Þ

L2u2

LX1
2 z

L2u2

LX2
2

� �
~{

1
1{2nð Þ

L2u1

LX1LX2
z

L2u2

LX2
2

� �
ð5Þ

In the limiting case of n R 2‘, the elastic deformation satisfies 2D
Laplace’s equations in xy-plane, so that +2

X~u~+2
X
~Xz~u
� �

~+2
X~x
0

~0. This shows that the elastic deformation (inside xy-plane) of a
plate automatically implements quasi-conformal transformation if
the material is auxetic as n R 2‘ when the longitudinal deformation
(z-direction) is not allowed.

General solutions consistently produce zero shear strains. If elastic
deformation satisfy quasi-conformal transformation, shear strain

Uxy~azb~tan{1 Luy

Lx

� ��
1z

Lux

Lx

� �	 

ztan{1 Lux

Ly

� ��	�

1z
Luy

Ly

� �
is supposed to be 028, which makes shear modulus

(G 5 shear stress/shear strain) become very large compared to bulk
modulus (K). In this limiting case of G?K for linear homogeneous
isotropic materials, Young’s modulus (E) and Poisson’s Ratio (n)

result in E~
9KG

3KzG
*9K, n~

3K{2G
2 3KzGð Þ*{1. Hence, the QCM

condition leads to the requirement of auxetic materials with n , 21,
if we allow the longitudinal deformation, i.e., plane stress condition.
In our previous work, on the other hand, we considered a 2D system
with longitudinal independence, constrained to the plane strain

condition. For a material of given PR (n), the effective PR n2D
eff

� �
under 2D plane strain constraint is derived to be n2D

eff ~
n

1{n
, as

explained in Methods. This constraint to a 2D system without
longitudinal deformation requires highly negative n such as 210 to

get n2D
eff ~

n

1{n
close to 21.

Design of optimized electromagnetic properties for auxetic TO
devices. An auxetic metamaterial can be designed by employing an

www.nature.com/scientificreports
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elastic and electromagnetic crystal, made of an incompressible
dielectric material (ed) with volume fraction of fd and air or free
space (ea < 1). The elastic deformation can be defined by the
deformation gradient tensor, Fij~Lx0i

�
LXj, and the effective

permittivity ratio of this crystal after e0eff

� �
and before (eref) the defor-

mation leads to e0eff

.
eref ~ eaz ed{eað Þfd=det Fð Þf g= eaz ed{ðf

eaÞfdg28. When we change the dielectric constant as ed 5 3, 10, 50
for a fixed volume fraction of fd 5 0.5, as presented in Fig. 1c, we

plotted the effective permittivity ratio
e0eff

eref

 !
versus the deformed

area change (J 5 det(F)), in comparison with the quasi-conformal-
mapped permittivity ratio (1/J). This implies that the higher dielectric
constant matches more precisely to the TO rule. On the other hand,
while we change the volume fraction as fd 5 0.1,0.3,0.5 for a fixed
dielectric constant of ed 5 10, as given in Fig. 1d, we also compared the

effective permittivity ratio
e0eff

eref

 !
with the quasi-conformal-mapped

permittivity ratio (1/J). This indicates that the higher volume fraction
matches more precisely to the TO rule. Finally the higher permittivity
and volume fraction are more desirable to realize auxetic structures
which have self-adjusting TO properties for elastic deformations.

Fabrication of an auxetic structure (n , 21) allowing the highest
permittivity for a given material. To fabricate a real auxetic smart
metamaterial sample, we used a rigid dielectric material with high
permittivity of ed 5 10.2 (PTFE ceramic, ROGERS Corp.). We made
an array structure of a unit cell with four vertical rigid rods,
alternatively cross-linked at the top and bottom, as described in
Fig. 2a. If we compress (stretch) one leg among the four legs along
the plane, the top joint of four legs lifts up (lowers down). Thus, all
the linked four legs are going to have the same tilting angles (h) at the

side view (see Fig. 2b), resulting in a reduced (expanded) square at the
top view in 2D xy-plane (see Fig. 2c). Because the lateral extension is
the same as the axial extension, the cross-linked four legs can be
considered as a unit cell of a 2D auxetic material of Poisson’s ratio
n , 21 in xy-plane. To get enough range of effective permittivity
variation for a TO device including a carpet cloak, we choose initial
volume fraction as fd , 0.5 at the initial tilting angle of h0 , 4u and
the background permittivity of eref , 5. If we elastically deform the
sample, the tilting angle changes from h0 to h and the effective

permittivity of the deformed unit cell becomes e0eff ~
fd

J
ed{1ð Þz1

where Jacobian J~
l1 sin hzl2 cos hf g2

l1 sin h0zl2 cos h0f g2 , volume fraction

fd~
l2ð Þ2

l1 sin h0zl2 cos h0f g2 , l1 the vertical length, and l2 the

diagonal width of a rod. Figures 2d,e are the photographs of our
200 mm 3 100 mm sample with l1 5 10 mm, l2 5 1.5 mm before
and after an elastic deformation. We can clearly see the auxetic
behavior of our sample, especially from the movie in
Supplementary Information. Because we have a realistic bottleneck
to find a feasible dielectric material of high permittivity, it is
important that our auxetic structure can shrink into a dielectric
structure without any empty space, which enables us to achieve the

maximized possible effective permittivity e0eff ~ed

� �
made of a

specific material with dielectric constant of ed.

Experimental demonstration of a versatile smart TO device. To
demonstrate a versatile TO device, our auxetic device is used in our
experiments for both smart electromagnetic cloak and smart
arbitrary waveguide at the same time. We place the sample in a
microwave 2D E-field mapping apparatus and get the E-field
mapping data of incident and scattered electromagnetic waves

Figure 2 | Schematic and photographs of an auxetic smart TO device. (a) Array schematic of a unit cell with four vertical rigid rods, alternatively

cross-linked at the top and bottom. Right figure describes the changed shape after a shrinkage deformation induced by axial compression (green arrow in

left figure). (b–c) (b) A side view and (c) a top view of a unit cell. l1, l2 are the vertical length and the diagonal width of a rod, respectively.

(d–e) Photographs of our 200 mm 3 100 mm auxetic sample with l1 5 10 mm, l2 5 1.5 mm (d) before and (e) after an elastic deformation.

www.nature.com/scientificreports
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through our sample. We deformed our auxetic sample by a metallic
bump parameterized as y 5 h ? cos2(xp/100) in milimetres.
Figures 3a–e are the electromagnetic cloaking results for 45u
incident wave, while we change the bump height (h) as h 5 0 mm,
5 mm, 10 mm, 15 mm, and 20 mm, respectively. When we deform
the auxetic structure by a bump, it redistributes the unit cells to
satisfy quasi-conformality, consistently with our theoretical
prediction (see the photographs of the first column). In the E-field
mapping data at 7 GHz (see the second column) and 8 GHz (see the
third column), the scattered waves simply reflect and do not split for

a wide range of bump heights from h 5 0 mm to 20 mm, in other
words, the varying bumps are electromagnetically smart-cloaked.
Without an auxetic cloak, as described in Fig. 3f, a perturbation of
the metallic surface (h 5 10 mm) causes a strongly scattered
secondary beam with a power gap in a homogeneous medium of
10 mm-thick silicone rubber plate (ed , 2.9) at 8 GHz.

We also measured the electromagnetic wave propagation through
the same auxetic sample, as presented in Figs. 4a–e, while we bend
the sample at the angles of 0u, 30u, 45u, 60u, and 90u between the input
and output facets (see the first column). The E-field mapping data

Figure 3 | Experimentally measured E-field mapping of smart cloaking. (a–e) Experimentally measured electromagnetic cloaking results for 45u
incident wave at 7 GHz and 8 GHz, while we change the bump height (h) as (a) h 5 0 mm, (b) 5 mm, (c) 10 mm, (d) 15 mm, and (e) 20 mm,

respectively. (f) Without an auxetic cloak, a beam incident on the bump of h 5 10 mm in a homogenous medium of silicone rubber at 8 GHz. The

photograph of our sample in each case is given in the first column.

www.nature.com/scientificreports
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are experimentally obtained at 7 GHz (see the second column) and
8 GHz (see the third column). The phases of electromagnetic
waves continuously maintain through the auxetic sample for any
bending angles, i.e., ‘‘smart arbitrary waveguiding’’ behaviors.
Figures 4f–g provide the electromagnetic wave propagation data
through a homogenous waveguide made of silicone rubber medium
at 8 GHz for 45u and 90u bending angles. The internally reflected
waves at the boundary interfaces of the waveguide interfere with the
propagating waves, which produce phase fringe patterns of wave
propagations inside the waveguide. These results experimentally
show that, for an auxetic metamaterial made of a high permittivity

dielectric material, the elastic deformation automatically implements
quasi-conformality in the broadband microwave regime.

Discussion
We have made a 2D-auxetic metamaterial structure, whose unit cell
consists of four vertical rigid rods, cross-linked at the top and bottom,
and achieved Poisson’s ratio n , 21 for arbitrary deformations in the
xy-plane. Since this structure exhibits smart elasto-electromagnetic
behavior only when the dielectric inclusions have a very high dielec-
tric constant, it is important to choose a geometry that minimizes
empty space. Our choice of the high-index dielectric is the PTFE

Figure 4 | Experimentally measured E-field mapping of smart arbitrary waveguiding. (a–e) Experimentally measured electromagnetic wave

propagation through the same auxetic sample at 7 GHz and 8 GHz, while we bend the sample at the angles of (a) 0u, (b) 30u, (c) 45u, (d) 60u, and (e) 90u
between the input and output facets. (f–g) Without the auxetic sample, experimentally measured electromagnetic wave propagation through a

homogenous waveguide made of silicone rubber at 8 GHz for (f) 45u and (g) 90u bending angles. The photograph in each case is given in the first

column.

www.nature.com/scientificreports
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ceramic with ed 5 10.2 (Rogers Corp.). When we deform our auxetic
carpet cloak sample with variable-height metallic bumps, our mea-
sured E-field maps at 7 , 8 GHz indicate that the incident beam
undergoes only a specular reflection without side lobes. This beha-
vior is observed for a wide range of bump heights from h 5 0 mm to
20 mm. We also measured electromagnetic wave propagation
through the smart waveguide sample, while we bend the sample at
the angles of 0u, 30u, 45u, 60u, and 90u between the input and output
facets. From the E-field mapping data at 7 , 8 GHz, the proper
phases of electromagnetic waves are continuously maintained
through the range of bending angles, i.e., the waveguide is entirely
flexible. These experimental results show that, for an auxetic meta-
material made of a high permittivity dielectric material, the elastic
deformation automatically implements quasi-conformality in the
broadband microwave regime. The higher permittivity and volume
fraction are more desirable to realize auxetic structures which have
self-adjusting TO properties for elastic deformations.

In this work, using the elastostatic Cauchy-Navier equations29, we
prove that the deformed coordinates of a 2D plate, made by arbitrary
elastic deformations, satisfy Laplace’s equations for specific materials
of n 5 21 or n 5 2‘ in plane stress or plane strain conditions. The
Laplace’s equations along with sliding boundary condition allow us
to prove analytically that the elastic deformation of a plate is auto-
matically quasi-conformal.

Methods
Derivation of Laplace’s equations from elastostatic governing equations. For plane

stress condition, s33 5 s31 5 s23 5 0,
L
Lz

~0 and stress-strain relation is29

s11

s22

s12

2
64

3
75~

E
1{n2

1 n 0

n 1 0

0 0
1{n

2

2
664

3
775

e11

e22

2e12

2
64

3
75: ð6Þ

For plane strain condition, e33 5 e31 5 e23 5 0,
L
Lz

~0 and stress-strain relation is29

s11

s22

s12

2
64

3
75~

E
1znð Þ 1{2nð Þ

1{n n 0

n 1{n 0

0 0
1{2n

2

2
664

3
775

e11

e22

2e12

2
64

3
75: ð7Þ

Cauchy-Navier equations of motion, i.e., elastostatic equations become

Cijkl
L2uk

LxiLxl
~r0

L2uj

Lt2
:0: ð1Þ

(1) Plane stress configuration: s33 5 s31 5 s23 5 0,
L

Lx3
~0:

(1) If j 5 1, Cauchy-Navier equations of motion become Ci1kl
L2uk

LxiLxl
~

r0
L2u1

Lt2
~0.

(1) When we use the relation of
L

Lx3
~0, it simplifies to

C1111
L2u1

Lx1
2
zC2111

L2u1

Lx1Lx2
zC1112

L2u1

Lx1Lx2
z

C2112
L2u1

Lx2
2
zC1121

L2u2

Lx1
2
zC2121

L2u2

Lx1Lx2
z

C1122
L2u2

Lx1Lx2
zC2122

L2u2

Lx2
2
zC1131

L2u3

Lx 2
1

z

C2131
L2u3

Lx1Lx2
zC1132

L2u3

Lx1Lx2
zC2132

L2u3

Lx2
2
~0:

ð8Þ

For linear elastic materials, four rank (3 3 3 3 3 3 3) elastic modulus tensor

Cijkl is simplified as a matrix (6 3 6) Cab by a relationship of (ij) R a, (kl) R b

so that 11ð Þ, 22ð Þ, 33ð Þ, 23,32ð Þ, 13,31ð Þ, 12,21ð Þf g? 1,2,3,4,5,6ð Þ, respect-

ively29. Because the matrix Cab consists of components from the stress-strain

relations of plane stress configuration in Eq. (6), we get each coefficient as

followings,

C1111~C11~
E

1{n2
, C2111~C1121~C1112~C61~C16~0, C1131 5 C15 5 0,

C2112~C2121~C66~
E

2 1znð Þ , C2131 5 C65 5 0, C1122~C12~
En

1{n2
, C2122

5 C62 5 0, C1132 5 C14 5 0, C2132 5 C64 5 0.

(1) If we insert all these coefficients into Cauchy-Navier equations, we get

E
1{n2

L2u1

Lx1
2
z

E
2 1znð Þ

L2u1

Lx2
2
z

E
2 1znð Þ

L2u2

Lx1Lx2
z

En

1{n2

L2u2

Lx1Lx2
~0,

L2u1

Lx1
2
z

L2u1

Lx2
2

� �
~{

1znð Þ
1{nð Þ

L2u1

Lx1
2
z

L2u2

Lx1Lx2

� �
: ð9Þ

In the limiting case of n R 21, finally we obtain 2D Laplace’s equation of u1 as
follows

L2u1

Lx1
2
z

L2u1

Lx2
2
?0: ð10Þ

If j 5 2, Cauchy-Navier equations become Ci2kl
L2uk

LxiLxl
~r0

L2u2

Lt2
~0, then

after simplifying with
L

Lx3
~0, we get

C1211
L2u1

Lx1
2
zC2211

L2u1

Lx1Lx2
zC1212

L2u1

Lx1Lx2
z

C2212
L2u1

Lx2
2
zC1221

L2u2

Lx1
2
zC2221

L2u2

Lx1Lx2
z

C1222
L2u2

Lx1Lx2
zC2222

L2u2

Lx2
2
zC1231

L2u3

Lx1
2
z

C2231
L2u3

Lx1Lx2
zC1232

L2u3

Lx1Lx2
zC2232

L2u3

Lx2
2
~0:

ð11Þ

From the stress-strain relations of plane stress configuration, we obtain each

coefficient as followings,

C1211 5 C61 5 0, C2211~C21~
En

1{n2
, C1212~C1221~C66~

E
2 1znð Þ , C2212 5

C2221 5 C1222 5 C26 5 C62 5 0, C1232 5 C64 5 0, C1231 5 C65 5 0, C2231 5

C25 5 0, C1221~C66~
E

2 1znð Þ , C2221~C1222~C26~C62~0, C2222~C22~

E
1{n2

, C2232 5 C24 5 0.

(1) After inserting all these coefficients into Cauchy-Navier equations, we get

En

1{n2

L2u1

Lx1Lx2
z

E
2 1znð Þ

L2u1

Lx1Lx2
z

E
2 1znð Þ

L2u2

Lx 2
1

z
E

1{n2

L2u2

Lx2
2
~0,

L2u2

Lx1
2
z

L2u2

Lx2
2

� �
~{

1znð Þ
1{nð Þ

L2u1

Lx1Lx2
z

L2u2

Lx2
2

� �
: ð12Þ

In the limiting case of n R 21, we also get 2D Laplace’s equation of u2 as
follows,

L2u2

Lx1
2
z

L2u2

Lx2
2
?0: ð13Þ

(2) Plane strain configuration: e33~e31~e23~0,
L

Lx3
~0.

(2) For j 5 1, we get coefficients of Cauchy-Navier equations, Ci1kl
L2uk

LxiLxl
~

r0
L2u1

Lt2
~0 after simplifying with

L
Lx3

~0, as following,

C1111~C11~
E 1{nð Þ

1znð Þ 1{2nð Þ , C2111~C1121~C1112~C61~C16~0,C1131~C15~0,

C2112~C2121~C66~
E

2 1znð Þ , C2131~C65~0, C1122~C12~
En

1znð Þ 1{2nð Þ ,

C2122~C62~0, C1132~C14~0, C2132~C64~0.
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(2) After inserting above coefficients, the Cauchy-Navier equations finally become

E 1{nð Þ
1znð Þ 1{2nð Þ

L2u1

Lx 2
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z
E

2 1znð Þ
L2u1

Lx 2
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z

E
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Lx1Lx2
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L2u2

Lx1Lx2
~0,

L2u1

Lx 2
1

z
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Lx 2
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� �
~{

1
1{2nð Þ

L2u1

Lx 2
1

z
L2u2

Lx1Lx2

� �
: ð14Þ

In the limiting case of n R 2‘, we obtain Laplace’s equation
L2u1

Lx 2
1

z
L2u1

Lx 2
2
?0

from Eq. (14).

(2) For j 5 2, we get coefficients of Cauchy-Navier equations, Ci2kl
L2uk

LxiLxl
~

r0
L2u2

Lt2
~0 after simplifying with

L
Lx3

~0, as following,

C1211~C61~0, C2211~C21~
En

1znð Þ 1{2nð Þ , C1212~C1221~C66~
E

2 1znð Þ ,

C2212~C2221~C1222~C26~C62~0, C1232~C64~0, C1231~C65~0, C2231~

C25~0, C2221~C1222~C26~C62~0, C2222~C22~
E 1{nð Þ

1znð Þ 1{2nð Þ , C2232~

C24~0.

(2) The Cauchy-Navier equations finally become

En
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In the limiting case of n R 2‘, we obtain Laplace’s equation
L2u2

Lx 2
1

z
L2u2

Lx 2
2
?0

from Eq. (15).

Derivation of effective 2D Poisson’s ratio n2D
eff

� �
in plane stress and plane strain

configurations. Let’s consider a planar material in xy-plane. To calculate 2D

Poisson’s ratio inside xy-plane, we compress the material in x-direction, i.e., sx(s11)

? 0, then calculate the planar Poisson’s ratio defined as n2D
eff ~{ey

�
ex .

(1) Plane stress condition

(1) From the stress-strain relations, we get e11~ex~
1
E

sx , e22~ey~
{n

E
sx .

Thus, the effective 2D Poisson’s ratio becomes n2D
eff ~{

ey

ex
~n. For the plane

stress condition, the effective 2D PR is the same as the Poisson’s ratio of the

linear elastic homogeneous isotropic material.
(2) Plane strain condition

(2) From the stress-strain relations, we get e11~ex~
1{n2ð Þ

E
sx , e22~

ey~
{n 1znð Þ

E sx . Thus, the effective 2D Poisson’s ratio becomes n2D
eff ~

{
ey

ex
~

n

1{n
. For the plane strain condition, the effective 2D PR is different

from the Poisson’s ratio of the linear elastic homogeneous isotropic material.

In this case, when n is highly negative number, such as 210, n2D
eff is getting close

to 21.

Electric field measurements. Using a phase-sensing, near-field microwave scanning
system within a planar waveguide, we map the TE field distribution of the scattering
region, including the incident and scattered beams. The microwaves are launched into
the planar waveguide from a standard X-band coax-to waveguide coupler. The sample
was tested with 7–8 GHz waves, then capturing the TE field distribution in the xy-plane.

Auxetic crystal fabrication. For a double-periodic and uniform auxetic crystal, we
use PTFE ceramic (ed 5 10.2, ROGERS Corp.) with 1.2 mm side length square. The
ceramic was cut into slices of 10 mm length, then alternatively bonded to each other
at the top and bottom using scotch wood adhesive (AD6005, 3M Corp.).

1. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science
312, 1780–1782 (2006).

2. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).
3. Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with

metamaterials. Nat. Photon. 1, 224–227 (2007).
4. Jiang, W. X. et al. Invisibility cloak without singularity. Appl. Phys. Lett. 93, 194102

(2008).
5. Alu, A. & Engheta, N. Multifrequency optical invisibility cloak with layered

plasmonic shells. Phys. Rev. Lett. 100, 113901 (2008).
6. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies.

Science 314, 977–980 (2006).
7. Edwards, B., Alu, A., Silveirinha, M. G. & Engheta, N. Experimental verification of

plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett.
103, 153901 (2009).

8. Smolyaninova, V., Smolyaninov, I. & Ermer, H. Experimental demonstration of a
broadband array of invisibility cloaks in the visible frequency range. New J. Phys.
14, 053029 (2012).

9. Li, J. & Pendry, J. B. Hiding under the carpet: A new strategy for cloaking. Phys.
Rev. Lett. 101, 203901 (2008).

10. Liu, R. et al. Broadband ground-plane cloak. Science 323, 366–369 (2009).
11. Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of

dielectrics. Nat. Mater. 8, 568–571 (2009).
12. Gabrielli, L. H., Cardenas, J., Poitras, C. B. & Lipson, M. Silicon nanostructure

cloak operating at optical frequencies. Nat. Photon. 3, 461–463 (2009).
13. Gharghi, M. et al. A carpet cloak for visible light. Nano Lett. 11, 2825–2828 (2011).
14. Ergin, T., Stenger, N., Brenner, P., Pendry, J. B. & Wegener, M. Three-dimensional

invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).
15. Ma, H. F. & Cui, T. J. Three-dimensional broadband ground-plane cloak made of

metamaterials. Nat. Commun. 1, 21 (2010).
16. Chen, X. et al. Macroscopic invisibility cloaking of visible light. Nat. Commun. 2,

176 (2011).
17. Zhang, B., Luo, Y., Liu, X. & Barbastathis, G. Macroscopic invisibility cloak for

visible light. Phys. Rev. Lett. 106, 033901 (2011).
18. Landy, N. I. & Padilla, W. J. Guiding light with conformal transformations. Opt.

Exp. 17, 14872–14879 (2009).
19. Gabrielli, L. H., Liu, D., Johnson, S. G. & Lipson, M. On-chip transformation

optics for multimode waveguide bends. Nat. Commun. 3, 1217 (2012).
20. Kundtz, N. & Smith, D. R. Extreme-angle broadband metamaterial lens. Nat.

Mater. 9, 129–132 (2010).
21. Roberts, D., Kundtz, N. & Smith, D. R. Optical lens compression via

transformation optics. Opt. Exp. 17, 16535–16542 (2009).
22. Smith, D. R., Urzhumov, Y. A., Kundtz, N. B. & Landy, N. I. Enhancing imaging

systems using transformation optics. Opt. Exp. 18, 21238–21251 (2010).
23. Mei, Z. L., Bai, J., Niu, T. M. & Cui, T. J. A Planar Focusing Antenna Design with

the Quasi-Conformal Mapping. PIER 13, 261–273 (2010).
24. Hu, H., Ji, D., Zeng, X., Liu, K. & Gan, Q. Rainbow Trapping in Hyperbolic

Metamaterial Waveguide. Sci. Rep. 3, 1249 (2013).
25. Garcı́a-Meca, C. et al. Squeezing and expanding light without reflections via

transformation optics. Opt. Exp. 19, 3562–3575 (2011).
26. Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9, 45

(2007).
27. Urzhumov, Y. A. & Smith, D. R. Fluid flow control with transformation media.

Phys. Rev. Lett. 107, 074501 (2011).
28. Shin, D. et al. Broadband electromagnetic cloaking with smart metamaterials. Nat.

Commun. 3, 1213 (2012).
29. Bower, A. F. Applied Mechanics of Solids (CRC, Boca Raton, 2009).
30. Hu, J., Zhou, X. & Hu, G. Design method for electromagnetic cloak with arbitrary

shapes based on Laplace’s equation. Opt. Exp. 17, 1308–1320 (2009).
31. Chang, Z., Zhou, X., Hu, J. & Hu, G. Design method for quasi-isotropic

transformation materials based on inverse Laplace’s equation with sliding
boundaries. Opt. Exp. 18, 6089–6096 (2010).

32. Comsol, A. B. Structural Mechanics Module User’s Guide (Comsol A. B.,
Stockholm, 2012).

Acknowledgments
This research was supported by Basic Science Research Program through the National
Research Foundation of Korea grants funded by the Ministry of Education
(NRF-2012R1A1B3003933), the Pioneer Research Center Program through the National
Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning
(NRF-2013M3C1A3065045), and the Low Observable Technology Research Center
program of Defense Acquisition Program Administration and Agency for Defense
Development. Y.U. and D.R.S. acknowledge support from the U.S. Army Research Office
(Grant No. W911NF-09-1-0539).

Author contributions
D.S. designed, performed experiments and collected the data. K.K. derived the general
solutions. D.S. and Y.U. made numerical simulations and theoretical analysis. D.L.
contributed to experiments. Y.U., D.S., K.K. and D.R.S. edited manuscript. K.K. and D.R.S.
supervised the project.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4084 | DOI: 10.1038/srep04084 8



Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Shin, D., Urzhumov, Y., Lim, D., Kim, K. & Smith, D.R. A versatile

smart transformation optics device with auxetic elasto-electromagnetic metamaterials. Sci.
Rep. 4, 4084; DOI:10.1038/srep04084 (2014).

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-nd/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4084 | DOI: 10.1038/srep04084 9

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 1 Schematic and material property change induced by elastic deformation.
	Figure 2 Schematic and photographs of an auxetic smart TO device.
	Figure 3 Experimentally measured E-field mapping of smart cloaking.
	Figure 4 Experimentally measured E-field mapping of smart arbitrary waveguiding.
	References

