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Abstract

Neuronal responses during sensory processing are influenced both by the organization of 

intracortical connections and the statistical features of sensory stimuli. How these intrinsic and 

extrinsic factors govern activity of excitatory and inhibitory populations is unclear. Using two-

photon calcium imaging in vivo and intracellular recordings in vitro, we investigated the 

dependencies between synaptic connectivity, feature selectivity and network activity in pyramidal 

cells (PCs) and parvalbumin-expressing fast-spiking (PV/FS) interneurons in mouse visual cortex. 

In PC populations, patterns of neuronal correlations were largely stimulus-dependent, indicating 

that their responses were not strongly dominated by functionally biased recurrent connectivity. In 

contrast, visual stimulation only weakly modified co-activation patterns of PV/FS cells, consistent 

with the observation that these broadly tuned interneurons received very dense and strong synaptic 

input from nearby PCs with diverse feature selectivities. Therefore feedforward and recurrent 

network influences determine the activity of excitatory and inhibitory ensembles in fundamentally 

different ways.

Introduction

The capacity of the neocortex to process sensory information depends on neuronal 

interactions between excitatory and inhibitory cell types. However, the relationships between 
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connectivity, receptive field properties and network dynamics of different cell types are not 

fully understood.

The large majority of cortical neurons are sparsely interconnected excitatory pyramidal cells 

(PCs) that typically exhibit selective responses to different sensory features, and provide the 

main route of information flow to and from cortical areas. The remaining ˜20% of cortical 

neurons consist of different subclasses of GABAergic inhibitory interneurons, which 

influence the firing and sensory responses of nearby PCs1–6.

In contrast to PCs, parvalbumin-expressing (PV) fast-spiking (FS) interneurons, which form 

the largest inhibitory subgroup1,2, form denser connections within local circuits7–9. The 

fraction of local excitatory inputs sampled by FS cells remains unclear, since reports vary 

from 19 %10 up to 60 %7 even in primary visual cortex (V1) of the same species (rat). The 

differences in connectivity between PCs and FS interneurons may influence the specificity 

by which these neuronal subpopulations respond to sensory stimuli, and the extent to which 

their co-activations are determined by sensory drive.

In V1, most layer 2/3 PCs respond selectively to oriented grating stimuli, possibly reflecting 

their non-random connectivity, whereby feedforward inputs from layer 4 and recurrent 

inputs from layer 2/3 are provided preferentially by neurons with similar response 

preferences11–15. On the other hand, there is considerable debate about the selectivity of 

visual responses and the functional organization of connectivity of PV/FS interneurons. In 

V1 of higher mammals, where neurons are arranged in functional columns, FS interneurons 

are often selective for orientation16–18. In mouse V1, where neurons with different 

orientation preferences are locally intermixed, PV/FS cells and inhibitory neurons in general 

are reported to be more broadly tuned19–21 (but see ref. 22). These findings suggest that FS 

interneurons receive non-selective excitatory input from the surrounding network23, and 

hence are more sharply tuned in species with orientation maps, but less well tuned in mice 

where neighboring PCs exhibit diverse visual feature selectivity20. However, others find 

sharp orientation tuning of many PV/FS interneurons in mouse V122, suggesting that they 

receive input from sub-networks of PCs with similar orientation preference10. Discerning 

between these apparently conflicting results is crucial for understanding the specificity by 

which these inhibitory neurons respond to sensory stimuli and influence responses of other 

neurons in the network. It is therefore important to determine the response selectivity of a 

defined population of inhibitory neurons and, at the same time, any functional biases of their 

connectivity in the local circuit.

With differences in their local connectivity, populations of PCs and PV/FS interneurons may 

also be expected to differ in their network interactions and in the way their activity patterns 

are influenced by sensory stimuli. The organization of intracortical connections is thought to 

be reflected in patterns of spontaneous activity24. Some studies report similar patterns of 

spontaneous and evoked activity24–29, suggesting that intracortical connections influence 

activity patterns, such that a neuron is likely to fire with the same interacting partners 

(ensemble) in the presence and absence of sensory input. In contrast, other studies show that 

even functionally similar neurons can fire independently of each other and that the strength 

of correlated firing in pairs of neurons can be influenced by sensory input30–35. At the level 
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of local circuits, therefore, the degree to which sensory-evoked co-activations are influenced 

by intrinsic biases in connectivity, and how this relates to cell type, remain unresolved.

In this study we investigated the relationship between local synaptic connectivity, sensory 

response properties and the structure of network correlations in populations of PCs and 

PV/FS interneurons in the same neuronal circuit. We applied two-photon calcium imaging36 

in layer 2/3 of mouse V1 to record spontaneous and visually evoked population activity with 

single-cell resolution37,38, as well as to identify PV neurons genetically labeled with a red 

fluorescent protein39. We then used patch-clamp recordings in slices of the same tissue to 

determine local connectivity between a subset of neurons whose visual response properties 

were characterized in vivo. We found fundamental differences in both local synaptic 

connectivity and stimulus-dependence of neuronal co-activations in populations of PCs and 

PV/FS interneurons, indicating that the balance between feedforward and recurrent input 

differ across cortical cell types during processing of visual information.

Results

Visual responses of PV interneurons

We first measured the orientation tuning of genetically targeted red fluorescent PV cells, 

using PV-Cre mice crossed to a Cre-responsive reporter line (Ai9-lsl-tdTomato)39. 

Immunocytochemistry confirmed that red cells in layer 2/3 were almost exclusively PV-

containing (92 %, Supplementary Fig. 1). Electrophysiological properties of most red cells 

were typical of fast-spiking (FS) interneurons and none showed characteristics of excitatory 

pyramidal cells (Supplementary Fig. 1). We simultaneously imaged calcium signals and 

recorded action potential (AP) firing in PV cells by carrying out in vivo two-photon targeted 

loose-patch recordings of red cells in monocular V1 that was bulk labeled with injections of 

the calcium indicator dye OGB-1-AM (Fig. 1a-e). Confirming previous results20, changes in 

AP firing were reflected in the calcium signal, even for neurons with high firing rates (Fig. 

1b-e, Supplementary Figs. 2, 3 and 4). For both putative PCs and fast-spiking PV cells the 

preferred orientation and the orientation selectivity (OSI) calculated from calcium signals 

were highly similar to values obtained from spiking responses (Fig. 1f,g). Calcium transient 

amplitude correlated well with the number of recorded APs for all cells (Fig. 1d, 

Supplementary Fig. 2e). Interestingly, the slope of this correlation varied between cells, 

partly depending on the maximum firing rate. When the size of the calcium transients was 

plotted against AP number normalized to the maximum firing rate (for the range of gratings 

presented), a relatively similar (and nearly linear) relationship was apparent for all PV cells 

(Fig. 1e). A clear correspondence was also observed between recorded APs and firing rate 

inferred from the calcium signal using a fast non-negative deconvolution method40 (see 

Methods) for both putative PCs (Supplementary Fig. 2) and PV neurons (Supplementary 

Fig. 4).

Having thus established that the calcium signal is a good indicator for changes in AP firing 

for neurons with very different firing frequencies, we used two-photon imaging to measure 

orientation selectivity for significantly responsive (see Methods) populations of PV neurons 

and neurons not expressing the red protein (Fig. 1h-j), which primarily (≥ 90 %) represent 

excitatory PCs2, and will therefore be referred to as PCs in the remainder of the manuscript. 
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As expected, most PCs responded selectively to oriented gratings and, exhibited on average, 

high orientation selectivity41 (Fig. 1i,j, median OSI = 0.60). As a population, PV neurons 

responded much less selectively to moving gratings, as the majority showed broader 

orientation tuning (Fig. 1i,j, median OSI = 0.26), as was also apparent from the cell-attached 

recordings (Fig. 1g, median OSIspiking = 0.13). However, it should be noted that many PV 

neurons did exhibit some orientation preference, including a smaller fraction more selective 

for orientation (Fig. 1i,j; OSI > 0.4 in 13/71 or 18% of significantly responsive PV neurons).

Cell type specific differences in synaptic connectivity

In layer 2/3 of rodent V1, PCs connect to each other sparsely7,11,12,23 whereas FS 

interneurons, which typically express PV and constitute up to 10% of the cortical neuronal 

population2, are more densely connected to the surrounding network7–9. PCs may form 

selectively interconnected subnetworks consisting of neurons with similar visual feature 

selectivity12, while FS interneurons receive functionally unbiased input from surrounding 

pyramidal neurons and are hence more broadly tuned20,23. To test these hypotheses directly, 

we developed an approach to map synaptic connectivity between nearby neurons (<50 µm 

apart) whose visual response properties had been functionally characterized in vivo11. We 

identified the same neurons in slices that had been imaged in vivo, and therefore were able 

to directly relate connectivity of different neurons to their orientation tuning (Fig. 2, also see 

Methods). By patch clamp recordings from up to four neurons simultaneously, connectivity 

was assessed by stimulating one neuron at a time and observing postsynaptic potentials 

(PSPs) in each of the other neurons in turn. The presence or absence of short-latency PSPs 

enabled us to determine the incidence and strength of synaptic connections. With this 

approach, we tested the dependency of connection probability on orientation tuning of PCs 

and FS interneurons.

We previously found that layer 2/3 PC-PC connections in mouse V1 were weak and sparse 

(19%, 45 connections out of 235 tested; Fig. 2d, e), and preferentially but not exclusively 

formed between neurons with smaller difference in preferred orientations11 (ΔOri, Fig. 2h). 

In contrast, here we show that PV/FS interneurons received input from neighboring PCs 

with remarkably high probability (88%, 36 of 41 tested, data from wild-type and PV-Cre-lsl-

tdTomato mice, see Methods; Fig. 2d). Figures 2a, f and g show the orientation tuning 

curves for 17 FS cells together with the tuning profiles of PCs responsive to moving gratings 

from which they received excitatory connections. PV/FS interneurons exhibited weak biases 

towards orientation (OSI range: 0.11 – 0.51; median = 0.22), and received inputs from both 

sharply and more broadly tuned PCs (OSI range: 0.07 – 1.00; median = 0.68) preferring a 

wide range of orientations/directions (Fig. 2a,f,g). As shown in our previous study, among 

orientation selective PCs (OSI > 0.4), the connectivity rate decreased monotonically with 

increasing difference in ΔOri11 (P = 0.04, Cochran-Armitage test for trend, Fig. 2h). In 

contrast, no trend was observed for PC-PV/FS connection probability (P = 0.53, Cochran-

Armitage test), because almost all PCs provided input to neighboring PV/FS interneurons 

irrespective of how similarly they responded to visual stimulation or how selectively they 

responded to grating orientation (Fig. 2h). Moreover, the strength of most PC-PV/FS 

connections was an order of magnitude higher than PC-PC connections (median EPSP 

amplitude of PC-FS = 1.36 mV vs 0.20 mV for PC-PC connections; P < 10-8, rank sum test, 
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Fig. 2e), a finding consistent with previous results in rat V17. We additionally tested if the 

strength of connections from PCs to PV/FS cells or their short-term plasticity (paired-pulse-

ratio, PPR) depended on the similarity of orientation tuning between two neurons (Figs. 

2i,j), but did not find significant trends (P > 0.1).

These results indicate that FS neurons receive very dense and strong input from nearby 

pyramidal neurons with diverse selectivities and preferences for stimulus orientation, and 

this connectivity likely contributes to the broader tuning of FS interneurons.

Relationship between spontaneous and evoked activity

We next investigated the extent to which differential connectivity profiles of PCs and PV/FS 

cells may influence the activity dynamics of these two neuronal populations. We recorded 

spontaneous calcium signals in the dark in layer 2/3 of V1 in PV-Cre-lsl-tdTomato mice and 

computed correlations of time-varying calcium signals for each neuronal pair over the 

duration of each recording (spontaneous correlation). Pair-wise correlations provided an 

indication of which neurons were likely to be co-active spontaneously. Given that 

spontaneous activity patterns have been suggested to reflect underlying connectivity in the 

network24,25, we expected the relationship between spontaneous correlations and visual 

response similarity to resemble the relationship we had observed between visual response 

similarity and synaptic connectivity11 (Fig. 2). To test this, we plotted the correlation 

strength of neuronal pairs during spontaneous activity against signal correlation (correlation 

of average responses, see Methods), which provides a measure of the similarity of neuronal 

responses to drifting gratings. We quantified the relationship between spontaneous 

correlation and signal correlation for pairs of PCs, pairs of PV cells and pairs consisting of 

one PC and one PV cell, by computing the correlation (R) and the slope of the linear fit (Fig. 

3a-c). To visualize data from all animals in a single plot, we additionally normalized the 

pair-wise correlation values by calculating z-scores separately for each region (Fig. 3d, see 

Methods), because the average correlation strength varied between regions and animals (see 

also Fig. 4b) and pooling the raw data together could introduce additional dependencies. 

Surprisingly, we found only a very weak relationship between spontaneous and signal 

correlation for PC pairs (Fig. 3a-d, median R = 0.18, median slope = 0.04; pooled data: R = 

0.10; P < 10-4); PCs with similar responses to drifting gratings were only slightly more 

likely to fire together spontaneously than neurons with very different visual responses, and 

the scatter of data points was very large. A somewhat stronger relationship was apparent for 

pairs consisting of one PC and one PV cell (Fig. 3a-d, median R = 0.33, median slope = 

0.14; pooled data: R = 0.22, P < 10-4). In contrast to PCs, there was a strong relationship 

between signal and spontaneous correlation for PV cell pairs, whereby cells responding 

more similarly to gratings were more correlated during spontaneous activity, while those 

responding less similarly were less correlated during spontaneous activity (Fig. 3a-d, median 

R = 0.68, median slope = 0.49; pooled data: R = 0.61, P < 10-4).

These results could be influenced by a well documented relationship between correlation 

strength and cortical distance30. We also found a negative relationship between the strength 

of correlation of the activity of cell pairs with and without visual stimulation and cell 

distance. This negative relationship was stronger and 2-3 fold steeper for PV cell pairs than 

Hofer et al. Page 5

Nat Neurosci. Author manuscript; available in PMC 2019 February 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



for PC pairs (Supplementary Fig. 5a-c, spontaneous activity: PV, R = -0.32, slope = -0.009; 

PC, R = -0.12, slope = -0.003). However, restricting our dataset to cell pairs less than 50 μm 

apart did not alter the relationship between response similarity and spontaneous correlations 

(Supplementary Fig. 5d-f compare to Fig. 3d), ruling out that they were mostly brought 

about by distance effects.

Taken together, the weak relationship between spontaneous correlation and visual response 

similarity in populations of PCs suggests that biased local connectivity among these neurons 

(Fig. 2) does not appear to have a strong impact on the pattern of network co-activations. In 

contrast, there was a strong relationship between spontaneous correlation and visual 

response similarity of PV cells, suggesting that very dense and strong excitatory input from 

the local network strongly influences their activity during visual stimulation.

Structure of PV cell correlations is less stimulus independent

The results from the previous section suggest that PV cells are influenced more by local 

network connectivity than PCs. In order to investigate the significance of this difference for 

visual processing, we tested the similarity between spontaneous activity patterns and those 

evoked by different types of visual stimuli by presenting both episodically drifting whole-

field gratings and sequences of naturalistic movies (Fig. 4a-f, see Methods).

Spontaneous activity was characterized by brief (< 1 s), sporadic events involving multiple 

neurons, separated by periods in which few neurons were active (Fig. 4a). Presentation of 

visual stimuli resulted in reproducible patterns of activity and changed network activity in 

different ways: episodically presented drifting gratings induced epochs of many active 

neurons (Fig. 4c, corresponding to the periods of grating drift) alternated with periods of 

almost complete lack of activity in the population (corresponding to periods of no drift). 

This strong periodic recruitment of the circuit caused the overall strength of time-varying 

response correlations (total correlations) of calcium signals between PCs to increase 

compared to those during spontaneous activity (Fig. 4b,d, spontaneous: R = 0.12; gratings: R 

= 0.20, group medians of imaged regions, P = 0.005, sign rank test). In contrast, 

continuously presented natural movies significantly de-correlated responses of PCs (Fig. 

4e,f, natural: R = 0.09, P = 0.007).

Between PV neurons, time-varying response correlations were on average considerably 

stronger than between PCs during all conditions (Fig.4b,d,f, spontaneous: R = 0.20; 

gratings: R = 0.31; natural: R = 0.18; group median of imaged regions, P < 0.0005), and 

during visual stimulation even stronger than correlations between PV neurons and the 

surrounding neuropil (Supplementary Fig. 6). Pairs consisting of one PC and one PV cell 

showed intermediate correlation strength during all conditions (Fig.4b,d,f). Together, these 

results are consistent with the connectivity profile of PCs and PV cells in the local circuit: 

PV cells share more common input (Fig. 2), and are more interconnected42,43, and 

therefore exhibit more correlated activity.

To test whether neurons tended to be similarly co-active or co-inactive during spontaneous 

activity and during visual stimulation, we determined how the structure of correlations of PC 

or PV cell populations changed across stimulus conditions. Figure 4g shows matrices of 
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pair-wise correlations for all cell pairs in one imaged region from recordings of spontaneous 

activity and during stimulation with episodically drifting gratings or natural movies. If 

neuronal ensembles which fire together without visual input are also likely to be co-active 

during visual stimulation, correlation matrices for the different conditions would appear 

similar. This was the case for populations of PV interneurons, but not for PCs (Fig. 4g). To 

obtain a quantitative measure of similarity between spontaneous and sensory-evoked co-

activation patterns, we calculated the correlation coefficient of the off-diagonal elements 

between the different matrices, which we term pattern correlation (Fig. 4h). When 

comparing correlations between PCs across imaged regions, we found that visual 

stimulation strongly altered correlation patterns present during periods of spontaneous 

activity (Fig. 4h and Supplementary Fig. 7, group median pattern correlation: spontaneous 

versus gratings = 0.31, spontaneous versus natural movie = 0.30). Equally large differences 

in correlation patterns were apparent when comparing population activity driven by different 

stimuli (Fig. 4h and Supplementary Fig. 7, group median pattern correlation: gratings versus 

natural movie = 0.29). Therefore, there appears to be only a weak resemblance between 

patterns of PC co-activations during spontaneous and different stimulus regimes, suggesting 

that biased local connectivity does not strongly influence how PC populations respond to 

external input, which allows individual neurons to participate in different ensembles.

In contrast, the degree of correlated activity between pairs of PV cells was largely 

maintained regardless of whether they were active spontaneously or driven by a visual 

stimulus (Fig. 4g,h). If two PV cells were strongly correlated during one stimulus condition, 

they were likely to be strongly correlated in another. Thus, while the patterns of correlated 

activity among PCs were different between spontaneous and different visually-evoked states, 

the co-activation patterns in networks of PV cells were very similar (Fig. 4h and 

Supplementary Fig. 7, group median pattern correlation: spontaneous versus gratings = 0.73, 

spontaneous versus natural movie = 0.67, gratings versus natural movie = 0.73). 

Interestingly, pattern correlations for PC/PV cell pairs showed intermediate values (Fig. 4h, 

group median pattern correlation > 0.47 across all conditions), indicating that the groups of 

PCs associated with the firing of PV neurons tended to change during different conditions, 

but not as much as the co-activation patterns in populations of PCs. Calculating pattern 

correlations across different conditions from inferred spikes instead of the raw calcium 

signals produced similar results (Supplementary Fig. 8).

Together, these results indicate that the patterns of network co-activations of PCs were more 

strongly influenced by visual input than co-activations patterns of PV cells, which appeared 

similar across conditions and suggests that PV cell activities were strongly determined by 

intrinsic connectivity.

Structure of noise correlations

Although biased recurrent connectivity may not dominate response patterns of PCs, it may 

still influence them. The differences in total correlations described above do not differentiate 

whether changes in co-activation patterns are a result of a change in feedforward input due 

to different stimuli or a change in the state of network activity due to regrouping of local 

ensembles. To test this, we separated the total correlations between cell pairs into signal and 
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noise components: signal correlations arise from correlations in the stimulus itself and/or 

similarity in preferred stimulus features (such as orientation), while noise correlations arise 

from mutual connectivity and/or shared inputs that are reflected in the trial to trial variability 

of responses. Noise correlations were much higher for PV than for PC pairs (Fig. 5a,b, P < 

0.001 for all comparisons). The magnitude of average noise correlations for each group of 

cell pairs was not different between the two visual stimulation protocols (Fig. 5a,b, P > 0.3 

for all comparisons).

Comparing the pattern of noise correlations between different stimulus conditions to the 

pattern of spontaneous correlations allowed us to explore if the extensive restructuring of PC 

co-activations (Fig. 4h) arose primarily from changes in stimulus-evoked response patterns 

(signal correlation) or also from changes in the structure of noise correlation. For PCs, the 

pattern of pair-wise noise correlations in the population was relatively different from 

spontaneous correlation patterns for both stimulus conditions (Fig. 5c, group median pattern 

correlation spontaneous versus gratings = 0.37, spontaneous versus natural movie = 0.36), 

while for PV cells the pattern of noise correlations was more similar (Fig. 5c, group median 

pattern correlation spontaneous versus gratings = 0.66, spontaneous versus natural movie = 

0.60). In fact, for both PC and PV cell populations the similarity of noise correlation patterns 

(Fig. 5c) was not significantly different from those obtained from total pair-wise correlations 

(compare to Fig. 4h, P > 0.08 for all comparisons).

For PCs, the differences in patterns of noise correlation and spontaneous correlation 

indicates that even the component of co-activation patterns that is not directly evoked by the 

visual stimulus is different from spontaneous co-activation patterns. Moreover, the structure 

of PC-PC noise correlations changed also between grating stimuli and natural movies (Fig. 

5c, group median pattern correlation = 0.26), suggesting that different types of feedforward 

input not only regroup the local population of PCs into different ensembles, but also place 

the local circuit into very different activity states with changed network interactions. PV 

cells, in contrast, behaved differently: their co-activation patterns were largely maintained in 

the absence or presence of feedforward input.

Discussion

We found fundamental differences in synaptic connectivity, visual response properties and 

network dynamics between populations of layer 2/3 excitatory PCs and inhibitory PV/FS 

interneurons in mouse V1. Co-activations of sparsely but selectively connected PCs were 

strongly dependent on stimulus identity, and only weakly reflected biased local connectivity. 

In contrast, the pattern of co-activations of densely connected and more broadly tuned 

PV/FS cells was weakly dependent on visual input, and appeared to largely reflect local 

network activity.

The contribution of inhibition during sensory processing in V1 will crucially depend on the 

tuning properties of interneurons. There is considerable debate about the selectivity of 

PV/FS interneurons, which provide rapidly acting, soma-targeted inhibition of PCs1,20–22. 

We used cell-attached recordings and two-photon calcium imaging in mice expressing 

tdTomato in PV neurons, which mostly comprised FS cells, and found that their calcium 
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signals reliably reflected changes in firing rate. We found that PV/FS cells exhibited a range 

of tuning widths. While a small subset of cells was more selective for stimulus orientation, 

the great majority was more broadly tuned (Fig. 1). This result was additionally confirmed in 

both wild-type and PV-tdTomato mice by in vitro electrophysiological identification of FS 

cells, whose orientation tuning had been functionally characterized in vivo (Fig. 2).

The broader tuning of most PV/FS cells in mice is consistent with their synaptic connectivity 

profile in the local network. We found that FS interneurons received highly dense, local 

excitatory connections (see also ref. 23) that were on average an order of magnitude stronger 

than connections between PCs. We found this arrangement of PC-to-FS connections to be 

much denser than in rat visual cortex7, which may reflect either a difference between species 

or a consequence of fewer severed connections between neurons due to our recording deeper 

in the slice. Importantly, in combined in vivo and in vitro experiments on the same tissue, we 

have shown directly that predominantly broadly tuned PV/FS cells indiscriminately sample 

strong inputs from a local population of PCs with a diverse range of orientation preference 

and selectivity. Our data support the idea that local inhibition in V1 is recruited non-

specifically and primarily reflects the strength of firing in the local network20, but argues 

against distinct subnetworks of excitatory and inhibitory neurons sharing the same 

preference for visual features10,22. Our results additionally provide a prediction for the 

width of orientation tuning of FS interneurons in carnivore V1 which, unlike in mice, 

contains functional columns: given similarly dense PC-FS connectivity, the tuning of FS 

neurons is expected to be narrow in iso-orientation domains, but broader in pinwheel 

centers, which may explain mixed reports regarding the selectivity of FS neurons in the 

cat16–18.

How do these fundamental differences in synaptic connectivity and feature selectivity of PCs 

and PV/FS cells relate to their network dynamics? Neuronal responses during sensory 

processing are likely to be influenced both by the intrinsic organization of intracortical 

connections and the statistical features of sensory stimuli that provide the main feedforward 

drive to the cortical circuit. The extent to which these intrinsic and extrinsic factors dominate 

cortical activity is still not resolved. On one hand, several reports suggest that patterns of 

evoked activity resemble those occurring spontaneously, and that the structure of neuronal 

correlations remains similar irrespective of the presence or absence of a sensory drive24–29. 

On the other hand, other studies report that sensory stimuli or changes in brain state can alter 

the strength of neuronal correlations and network interactions30–32,44–46. The different 

extents to which sensory input restructures patterns of cortical network activity as reported 

by different studies could be attributed to various factors other than cell type such as 

different animal species, cortical areas, cortical layer, and the spatial scale, coverage and 

resolution of the methods used. While our study cannot account for all these factors, our data 

make a clear distinction between the behavior of layer 2/3 PC and PV/FS cell assemblies.

In populations consisting of inhibitory PV/FS cells, correlations in both overall activity and 

trial-to-trial variability were similar during periods of spontaneous and visually evoked 

activity. This agrees with the very dense sampling of local excitatory connections by PV/FS 

cells, such that nearby PV cells share a substantial amount of common input, and are 

therefore more correlated than those separated by greater distances (Supplementary Fig. 5). 
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These results are also consistent with the observation that spontaneously occurring action 

potentials of neighboring FS cells in mouse somatosensory cortex are synchronized and are 

driven by highly correlated depolarizations44. Membrane potential synchronization may be 

additionally augmented by electrical coupling42,43. Therefore, the co-activation patterns of 

nearby PV/FS cells are not strongly altered by sensory drive. Instead this weak stimulus-

dependence of PV/FS cell correlations is consistent with the notion that activity of these 

interneurons is largely dominated by local activity in the network. While neighboring PV/FS 

neurons may additionally receive selective feedforward or long-range excitatory 

connections, these inputs are apparently not sufficient to substantially de-correlate their 

firing (on the scale of 100s ms).

In populations of PCs, we found a very weak relationship between the similarity of visual 

responses (signal correlation) and the magnitude of spontaneous firing rate correlations, 

suggesting that neurons preferring similar visual features tended to be only slightly more co-

active spontaneously. Importantly, the structure of both firing rate (total) and noise 

correlations was only weakly related between the spontaneous state and during presentation 

of drifting gratings and naturalistic movies, indicating that the same neuronal subsets were 

rarely similarly co-active during these conditions. These results suggest that the cortical 

representation of a visual stimulus in PC populations does not strongly reflect the existing 

biases of their recurrent connectivity. Since the connections between nearby PCs in layer 2/3 

are both sparse and weak (Fig. 2), the fraction of shared local input between a pair of PCs is 

likely to be small, allowing feedforward or other inputs to influence and potentially 

decorrelate their firing. At present, however, it is not possible to identify the main sources of 

correlated variability of PCs beyond ruling out a dominant role of biased local connections, 

whose influence may be additionally attenuated by active mechanisms of 

decorrelation33,35. Our data support the idea that regrouping of PCs into different 

ensembles is strongly governed by the statistics of sensory input, which is in agreement with 

reports on state- or stimulus-dependence of neuronal interactions30–32,44,45.

These data reveal fundamentally different operational regimes of excitatory and inhibitory 

neurons during sensory processing. Similar patterns of co-activation of PV/FS cells across 

stimulus conditions contrasted with the strong dependence of PC co-activations on sensory 

drive whereby unique stimuli can be represented with unique PC response patterns. These 

attributes of PC activity may offer significant advantages for sensory coding, as, ensembles 

of PCs are much more informative about the identity of a stimulus than PV/FS cells 

(Supplementary Fig. 9). Thus, in a sparsely active local network composed of PCs with 

diverse receptive fields, the variability and independence of responses may act to reduce 

local activity correlations and improve the efficiency of population coding34,47.

Methods

Animals and Surgical Procedures

All experimental procedures were carried out in accordance with institutional animal welfare 

guidelines and licensed by the UK Home Office. Experiments were performed on C57Bl/6 

mice or PV-Cre x lsl-tdTomato transgenic mice. Generation and characterization of the PV-

Cre-lsl-tdTomato transgenic mouse line was described previously (original name: Pvalb-2A-

Hofer et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2019 February 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Cre;Ai939). Briefly, the PV-Cre mouse line was generated by constructing a targeting vector 

in which the T2A-Cre sequence was fused in-frame to the 3’ end of the PV coding sequence, 

transfecting the targeting vector into the G4 129/B6 F1 hybrid ES cell line, and selecting 

properly recombined ES clones to produce the mouse line. The PV-Cre mice were then 

crossed with the Ai9 lsl-tdTomato reporter line39 to produce the double transgenic PV-Cre-

lsl-tdTomato mice for experiments.

Mice were initially anesthetized with a mixture of Fentanyl (0.05 mg/kg), Midazolam (5.0 

mg/kg), and Medetomidin (0.5 mg/kg). At the time of imaging, the injectable anesthetic had 

mostly worn off and light anesthesia was maintained by isoflurane (0.3 -0.5%) in a 60:40% 

mixture of O2:N2O delivered via a small nose cone. Surgery was performed as described 

previously38. Briefly, a small craniotomy (1-2mm) was carried out over primary visual 

cortex and sealed after dye injection with 1.6% Agarose in Hepes-buffered ACSF and a 

cover slip.

Dye Loading and two-photon Imaging

For bulk loading of cortical neurons36 the calcium-sensitive dye Oregon Green Bapta-1 AM 

(OGB-1 AM, Molecular Probes) was first dissolved in 4 μl DMSO containing 20% Pluronic 

F-127 (Molecular Probes), and further diluted (1/11) in dye buffer (150 mM NaCl, 2.5 mM 

KCl, and 10 mM HEPES [pH 7.4]) to yield a final concentration of 0.9 mM. 

Sulforhodamine 101 (50μM, Molecular Probes) was added to the solution for experiments in 

C57Bl/6 mice to distinguish neurons and astrocytes48. The dye was slowly pressure injected 

into the right visual cortex at a depth of 170-200 μm with a micropipette (3–5 MΩ, 3-10 psi, 

2–4 min) under visual control by two-photon imaging (10× water immersion objective, 

Olympus). Activity of cortical neurons was monitored by imaging fluorescence changes 

with a custom-built microscope and a mode-locked Ti:sapphire laser (Mai Tai, Spectra-

Physics) at 830 nm or 930 nm through a 40× water immersion objective (0.8 NA, Olympus). 

Scanning and image acquisition were controlled by custom software written in LabVIEW 

(National Instruments).

In vivo cell-attached recordings

Loose-seal cell-attached recordings in vivo were performed on OGB-1 loaded neurons in 

layer 2/3 with micropipettes of 4-7 MΩ, pipette solution containing (in mM): 150 NaCl, 2.5 

KCl, 10 Hepes, 1 MgCl2, 1 CaCl2 (300mOsm) and 25 μM Alexa Fluor 594. The craniotomy 

was covered with agar. Neurons were targeted visually with two-photon imaging at 830 or 

930 nm. Signals were recorded using a ELC-03XS amplifier (NPI) and Igor Pro NClamp/

Neuromatic software (Jason Rothman, UCL), band-pass filtered between 0.3 and 5 kHz and 

digitized at 10kHz.

Visual Stimulation

Visual stimuli were generated using MATLAB (Mathworks) Psychophysics Toolbox49, and 

displayed on a LCD monitor (60 Hz refresh rate) positioned 20 cm from the left eye, roughly 

at 45 degree to the long axis of the animal, covering ˜105×85 degrees of visual space. At the 

beginning of each experiment, the appropriate retinotopic position in visual cortex was 

determined using small grating stimuli at 12-24 neighboring positions. Only cortical regions 
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in the monocular part of primary visual cortex were included in the analysis. The monitor 

was repositioned such that the preferred retinotopic position of most imaged neurons was 

roughly in the middle of the monitor. Calcium signals were measured in the dark (monitor 

and room lights turned off) for 6-12 minutes, and in response to sequences of full-field 

grating stimuli and natural movies. Square wave gratings (0.035 cycles/°, 2 cycles/s) drifting 

in eight different directions were shown episodically at 100% contrast, with the grating 

standing for 4 s (occasionally, a grey screen was used instead of the standing grating) before 

moving for 2 s (8 stimulus repetitions). Naturalistic movies consisted of 16 s sequences of 

either moving scenes in a mouse cage or compilations of David Attenborough’s Life of 

Mammals (BBC), adjusted to 70% mean contrast, continuously looped 19 times. The first 

stimulus repetition was removed from analysis to exclude onset-related responses. For the 

functional characterization of neurons prior to in vitro connectivity mapping, square wave 

gratings drifting in eight different directions were randomly interleaved, with the grating 

standing for 1.4-1.9 s before moving for 0.9-1.5 s (6-8 repetitions per grating).

Data Acquisition and Analysis

Imaging frames of 256×256 pixels or 256×128 pixels were acquired at 7.6 or 15.2 Hz, 

respectively. Image sequences recorded at 15.2 Hz were subsequently re-sampled to 7.6 Hz. 

After each recording the focal plane and imaging position was checked and realigned with 

the initial image if necessary. Image sequences were aligned for tangential drift and 

analyzed with custom programs written in ImageJ (NIH), MATLAB and LabVIEW. Cell 

outlines were detected using a semi-automated algorithm based on cell intensity, size, and 

shape, and confirmed by visual inspection. After erosion of the cell-based regions of interest 

(ROIs) (to minimize influence of the neuropil signal around the cell bodies) all pixels within 

each ROI were averaged to give a single time course (ΔF/F), which was additionally high-

pass filtered at a cut-off frequency of 0.02 Hz to remove slow fluctuations in the signal. 

Non-responsive neurons were excluded from further analysis, by testing whether, for each 

cell, a significant calcium response was observed relative to baseline for at least one grating 

direction and for one or more frames of the natural movie sequence (one-way ANOVA, P < 

0.0001).

For determining neuronal response preferences to drifting gratings from average responses 

for in vivo to in vitro connectivity mapping experiments, spike trains were inferred from 

calcium signals using a fast non-negative de-convolution method which approximates the 

most likely spike train for each neuron, given the fluorescence observations40. This method 

yields spike probabilities that approximate the number of action potentials per imaging 

frame, or inferred firing rate. For pyramidal neurons, τ (decay constant of calcium 

transients) was set to 0.8 s, and calcium signal baseline was the mean of all values from the 

calcium trace. For PV-positive or fast-spiking neurons τ was set to 2 s, and the baseline was 

determined as the 10th percentile of all values. These settings resulted in the best 

correspondence between inferred spike probability and real spike rate measured during 

simultaneous calcium imaging and cell-attached recordings (Supplementary Fig. 2 and 4, 16 

pyramidal cells from 7 mice, 12 PV cells from 6 mice). We found that for pyramidal neurons 

inferred spike probabilities of 0.022 or less, and for PV cells probabilities of 0.008 or less, 

were typically not associated with actual spikes, and were therefore set to 0. To relate 
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inferred spiking probability to actual spike rate for pyramidal neurons (Supplementary Fig. 

2f) empirically recorded spikes were attributed to inferred spiking values if they occurred 

with a time difference Δt of less than 195 ms and were not already assigned to a previous 

inferred spike. The average calcium signal from the same time window shifted by one bin 

was taken to compare calcium transient amplitude and real spike rate (Supplementary Fig. 

2e). The algorithm detected 100% of bursts of three or more spikes, 95 ± 2 % (Mean ± 

SEM) of bursts of two spikes, and 53 ± 6 % of single spikes, with a false-positive rate of 

0.049 ± 0.009 Hz. Since PV cells showed on average much higher spike rates, spikes were 

not attributed to inferred spikes, but inferred spiking values or real spikes were summed, and 

the calcium signal averaged in time bins of 393 ms for comparison (Fig. 1d,e, 

Supplementary Fig. 4c,d). For PV cells the algorithm detected 92 ± 2 % of all spikes with a 

false-positive rate of 0.25 ± 0.03 Hz. Since spike rates were much higher for PV cells than 

for pyramidal cells (average spike rate during stimulation with episodically drifting gratings 

for pyramidal neurons: 0.57 ± 0.09 Hz; PV neurons: 8.2 ± 1.8 Hz), false positive rates as a 

fraction of total spike count were roughly similar for the two cell types.

Among cells responsive to grating stimuli, the average firing rate, average inferred firing rate 

or the average calcium signal over the duration of grating drift was taken as the response to 

each grating stimulus. Responses from different trials were averaged to obtain the 

orientation tuning curve. This orientation tuning curve was then Fourier interpolated to 360 

points, and the preferred direction was determined by the angle at which the interpolated 

tuning curve attained its maximum. The preferred orientation was taken as the modulus of 

the preferred direction to 180 degrees. Orientation selectivity index (OSI) was calculated as 

(Rbest-Rortho)/(Rbest+Rortho), where Rbest is the interpolated response to the best direction, 

and Rortho is the average of interpolated responses to the directions orthogonal to best 

responding direction.

Correlations, Pattern correlations and matrix reordering

Pair-wise correlations were calculated using Pearson’s correlation coefficient from calcium 

signals of two cells over the duration of the whole recording (total correlation). Signal 

correlation was calculated from average responses across trials of drifting gratings or natural 

movies, and noise correlations were determined by subtracting the average response from 

the responses in each trial and calculating the correlation coefficient of the mean-subtracted 

response over the time course of the recording. For Figure 3d, correlation coefficients of all 

cell pairs from each imaged region were first z-scored (each value was normalized by 

subtracting the population mean and dividing by the variance), before pooling the data from 

all the regions in a single plot.

For visual comparison, the correlation coefficients were displayed in matrix form (Fig. 4g), 

whereby each element is the correlation coefficient for a pair of neurons. Neurons were 

ordered such that the strongest values were close to the diagonal for one stimulus condition; 

we used a search algorithm in order to maximize the Frobenius inner product between the 

actual pairwise correlation matrix and a Toeplitz matrix whose values decay exponentially 

from the diagonal28. In order to aid direct visual comparison, this ordering was applied to 
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the correlation matrices of other conditions. The similarity between two matrices (pattern 

correlation) is the correlation coefficient of their off-diagonal elements.

Immunocytochemical and Electrophysiological characterization of layer 2/3 PV neurons

For immunocytochemical analysis transgenic animals were perfused with 4% 

paraformaldehyde in PBS and 50 μm-thick coronal slices were obtained from the visual 

cortex. Free-floating sections were incubated (4°C, 48 hours) in PBS and Triton X-100 

(0.2% v/v) solution containing primary antibodies against parvalbumin (mouse anti-PV, 

1:1000, Swant #PV235, Switzerland). Fluorescent conjugates were used to visualize PV 

immunoreactivity (AlexaFluor 488-conjugated goat anti-mouse, 1:1000, 4°C, overnight, 

Invitrogen, California). Primary and secondary antibodies were initially tested for optimal 

dilution. Mounted sections were analyzed using two-photon scanning microscopy at 930nm 

wavelength, with a filter set suitable for separating AlexaFluor 488 and tdTomato 

fluorescence emission. In superficial layers (< 200 μm from the pial surface), which 

correspond to the regions recorded during in vivo calcium imaging, tdTomato was 

coexpressed with parvalbumin in 92 % of the tdTomato-expressing cells (88 out of 96) and 

in 100 % of the parvalbumin-positive cells (Supplementary Fig. 1f, top and middle panels). 

In deeper layers, however, the co-localisation was poorer (Supplementary Fig. 1f, bottom 

panels), possibly due to expression of PV in some layer 5 pyramidal neurons during 

development50.

Three adult PV-Cre-lsl-tdTomato mice were used for electrophysiological characterization of 

PV neurons. The mouse brain was removed and dissected rapidly in ice-cold artificial 

cerebrospinal fluid (ACSF) containing (in mM) 125 NaCl, 2.5 KCl, 1 MgCl2, 1.25 

NaH2PO4, 2 CaCl2, 26 NaHCO3, 25 Dextrose; osmolarity 315-325 mOsm, bubbled with 

95% O2/5% CO2, pH 7.4. Visual cortex slices (300 µm) were cut coronally (HM 650 V 

Vibration Microtome, MICROM) and incubated at 34 °C for thirty minutes before they were 

transferred to the recording chamber. Recording pipettes were filled with (in mM): 5 KCl, 

115 K-Gluconate, 10 K-HEPES, 4 Mg-ATP, 0.3 Na-GTP, 10 Na-Phosphocreatine; 40 µM 

Alexa Fluor 594 and 0.1% w/v Biocytin; 290–295 mOsm, pH 7.2. The chloride reversal 

potential was ˜-85.2 mV. Liquid junction potential was not corrected for. Cells were 

approached under visual guidance using laser-scanning Dodt contrast imaging, and 

simultaneous two-photon imaging allowed detection of fluorescence from tdTomato-

expressing cells. Whole-cell recordings were carried out in 32 °C ACSF, using Multiclamp 

700b amplifiers (Axon Instruments) and custom software running on IGOR Pro 

(WaveMetrics Inc.). Step currents from -200/-100/-50 pA to 700/350/175 pA at 50/25/12.5 

pA increments were injected to determine I-V relationship. Spike threshold was measured 

from the inflexion point of the minimally suprathreshold trace. Spike height was the 

difference between spike threshold and peak. Spike half-width was measured at the mean of 

threshold and peak. Cells were classified according to firing pattern1 (Supplementary Fig. 

1a-e). For accurate measurement of spike parameters, cells were included only if the series 

resistance was less than 30 MΩ.
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In vitro mapping of connectivity between neurons functionally characterized in vivo 

Connectivity mapping experiments were performed both in C57Bl/6 mice (8 FS cells) and 

PV-Cre x lsl-tdTomato transgenic mice (11 PV cells) as described before11. Briefly, after 

vivo two-photon calcium imaging of visual responses, small volumes of red fluorescent 

microspheres (Lumafluor, Florida) were injected into the imaged region to facilitate 

identification of the region in the coronally sliced brain. Whole-cell recordings from up to 

four cells simultaneously were carried out in the vicinity of the microsphere tract. The 

presence of synaptic connections was tested by evoking five spikes at 30-Hz in each cell, 

repeated 30-90 times. Paired-pulse ratio (PPR) was calculated as the amplitude of the second 

evoked EPSP over that of the first one. After connectivity mapping, step currents were 

injected to obtain I-V relationship. Cells were classified according to firing pattern and spike 

shape1. Out of 19 PV/FS interneurons patched whose responses were characterized in vivo 

(of which 17 were significantly responsive to drifting gratings), 5 were classic non-

accommodating, 5 were delayed classic non-accommodating, 4 were accommodating, and 

IV curve was not obtained for 5 cells (lost after connectivity mapping). To match the same 

neurons imaged in vivo and recorded from in vitro, we performed three-dimensional image 

registration of in vivo and in vitro image stacks by affine transformation subsequent to the 

experiment. To relate connectivity to functional properties, the asymptotic Cochran-

Armitage test for trend was used to test for significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Calcium imaging and electrophysiological recordings of visually evoked responses in 
Parvalbumin (PV)-expressing neurons.
a. Image of an OGB-1 labeled PV-positive (PV) neuron in a Cre-PV-lsl-tdTomato mouse 

from which a cell-attached recording was made. Scale bar, 20 μm b. Average calcium signal 

(ΔF/F, top) and action potential (AP) rate per imaging frame (bottom) from simultaneous 

calcium imaging and electrophysiological recording from a PV neuron during stimulation 

with drifting gratings. Scale bars, 5% ΔF/F, 4 spikes per bin, bin size 131 ms. The directions 

of drifting gratings are indicated on top, dashed lines show drift onset. c. Polar plot of 

normalized responses to different grating directions from neuron in b, calculated from APs 

(black solid line) and calcium signal (red dashed line). d, e. Average peak calcium signal 

plotted against absolute AP number (d) or against normalized AP number (normalized to 

maximum number of APs) (e) for each of 12 PV neurons from 6 mice, calculated for bins of 

393 ms. Error bars are omitted for clarity. f, g. Correspondence of preferred grating 

orientation (f) and orientation selectivity index (OSI, see methods) (g) calculated from 

calcium signal and from APs for 9 PV neurons (red circles) and 7 PCs (green diamonds) that 

were visually stimulated and responsive to moving gratings. h. Image of OGB-1 AM labeled 

tissue, including four PV neurons (red) in layer 2/3. Scale bar, 20 μm i. Average calcium 
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traces (ΔF/F) from three PV (red, left) and two PV-negative neurons (putative PCs, green, 

right) during stimulation with episodically presented drifting gratings (8 directions, 6 

repetitions). The directions of drifting gratings are indicated on top, dashed lines show drift 

onset. j. Orientation selectivity index (OSI) for PCs (green) and PV interneurons (red), 

which significantly responded to grating stimuli (ANOVA, P < 0.0001). OSI for highly-

selective, sharply-tuned neurons approaches 1, whereas OSI for broadly-tuned, non-selective 

neurons approaches zero. Black lines indicate median OSI. PC: median OSI = 0.60, PV: 

median OSI = 0.26; 15 regions, 7 animals, P < 10-6).
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Figure 2. Assessing synaptic connectivity in vitro between neurons functionally characterized in 
vivo.
a. Images of OGB-1 labeled V1 tissue in a slice (top, left) and of the same cells in vivo 

before slicing (bottom, left, after registration of the image stacks, see Methods), white 

circles denote matched neurons in vivo and in vitro, which were targeted for whole-cell 

recording and filled with Alexa 594 (top, right). Three pyramidal cells (PCs) and one fast-

spiking interneuron (FS) were patched. Bottom, right: Polar plots of normalized responses to 

gratings drifting in 8 different directions, illustrating their orientation/direction preference 

and tuning. b. Action potential firing pattern in response to depolarizing current injection for 
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the cells from a. Scale bars: 20 mV, 50 ms. c. Average traces of postsynaptic potentials in the 

FS interneuron in response to spike-evoking current injections in each of the three PCs from 

a, showing that all three were providing synaptic input onto the FS neuron. Scale bars: left 

panel: 40 mV, 50 ms; right panel: 2 mV for upper two traces, 0.2 mV for bottom trace; 50 

ms. d. Probability of finding synaptic connections between pairs of PCs and from PC to 

PV/FS neurons. e. Amplitudes of excitatory postsynaptic potentials (EPSPs) between PCs 

and from PCs to PV/FS cells. Black lines depict median amplitudes. f. Another example of 

connectivity between six PCs and one PV/FS interneuron and their orientation preferences. 

Five out of the six PCs provided input onto the PV/FS neuron, which was held in whole-cell 

mode continuously while two sets of three PCs were patched and their connectivity assayed 

sequentially. g. Polar plots with normalized responses to drifting grating stimuli (8 

directions) of 15 additional visually-responsive PV/FS interneurons (red lines) overplotted 

with normalized responses of the PCs that were found to provide synaptic input onto them 

(green lines). PCs which provided stronger connections (> 2mV EPSP amplitude) are 

indicated by darker and thicker green lines. h. Relationship between connection probability 

and difference of preferred orientation (ΔOri) for pairs of orientation-tuned (OSI > 0.4) PCs 

(green), from PCs to PV/FS interneurons (black, filled bars) and from PCs to PV/FS 

interneurons with OSI > 0.25 (black, open bars). Two PCs were more likely to be connected 

if they preferred similar grating orientations. Connection probability from PC onto PV/FS 

cells was not dependent on response similarity, irrespective of response selectivity. i. 
Connection strength (EPSP amplitude) from PCs to PV/FS cells plotted against difference in 

preferred orientation of each cell pair (ΔOri). Closed circles, pairs with OSI ≤ 0.25; open 

circles, pairs with OSI > 0.25. Strength of input was not dependent of orientation preference 

similarity: all cell pairs, P = 0.59, only cell pairs with OSI > 0.25, P = 0.94, Kruskal-Wallis 

test. j. Relationship between paired-pulse ratio of synaptic connections from PCs to PV/FS 

cells and ΔOri. Degree of facilitation (PPR>1) or depression (PPR<1) of synapses was not 

related to response similarity to gratings: all cell pairs, P = 0.54, only cell pairs with OSI > 

0.25, P = 0.11, Kruskal-Wallis test. Black lines depict median amplitudes, dotted lines 

median amplitudes for pairs with OSI > 0.25. Bins include difference in preferred 

orientation values of 0 to 22.5° (zero degree bin), 22.5° to 67.5° (45 degree bin), and 67.5° 

to 90° (90 degree bin).
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Figure 3. Relationship between response similarity and pair-wise correlations during 
spontaneous activity.
a,b. Spontaneous pair-wise correlation coefficients plotted against pair-wise signal 

correlation coefficients (obtained from averaged responses to gratings drifting in eight 

different directions) from two different imaging regions, for pairs of PV-negative neurons 

(PC, green), mixed pairs of one PC and one PV-positive (PV) neuron (black), and pairs of 

PV neurons (red). c. Boxplots of the correlation coefficients (R) and slopes of the 

relationship between spontaneous correlations and signal correlations from all imaged 

regions. d. Pooled data from all PC pairs (green), mixed pairs (black) and PV cell pairs (red) 

normalized for comparison across animals and imaged regions by computing z-scores (see 
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Methods). PC-pairs: R = 0.10, slope = 0.11; PC/PV-pairs: R = 0.22, slope = 0.37; PV-pairs: 

R = 0.61, slope = 1.08. 15 regions, 7 animals, 7285 PC cell pairs, 2562 PC/PV cell pairs, 

187 PV cell pairs.
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Figure 4. Comparison of population activity patterns with and without visual stimulation.
a,c,e. Calcium signals of 30 PC (top) and 6 PV (bottom) neurons simultaneously imaged in 

darkness with the monitor switched off (a), and during stimulation with episodically drifting 

gratings (c), or with natural movie sequences (e). Schematic stimulus sequence is shown 

above each plot. b,d,f. Strength of pair-wise time-varying (total) correlations from calcium 

signals for PC pairs (left), PV pairs (right) and mixed PC/PV pairs (middle) during 

spontaneous activity (b), and during visual stimulation with gratings (d), or natural movies 

(f). Circles depict median values of each imaged region, colored lines indicate group 
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median. Grey lines connect values obtained from the same imaged region. g. Matrices of 

pair-wise response rate correlation coefficients between significantly responsive PV and PC 

neurons of one imaged region. Cells were ordered such that the strongest correlations during 

spontaneous activity were close to the diagonal in the spontaneous condition, and the same 

order was applied to correlation matrices of the other conditions. Positions on the diagonal 

were set to the lowest value. h. The similarity between two matrices is the correlation 

coefficient of their off-diagonal elements (pattern correlation). Comparisons were made 

between correlation matrices of spontaneous and each of the evoked conditions, and between 

different visually evoked conditions for PC cells (green), PV cells (red) and for matrices 

from mixed PC/PV pairs (black). Boxplots represent median values of all imaged regions 

that included three or more responsive PV cells (vertical lines are group medians, 6 animals, 

13 regions).
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Figure 5. Comparison of spontaneous and noise correlation patterns during visual stimulation.
a,b. Noise correlation coefficients from calcium signals during stimulation with drifting 

gratings (a) or with natural movie sequences (b) for PC cell pairs (left, green) and PV cell 

pairs (right, red). Circles depict median values of each imaged region, colored lines indicate 

group median. c. Similarity of matrices of noise correlations during visually-evoked 

conditions (see Methods) and correlations during spontaneous activity (left and middle) and 

similarity of noise correlation matrices during grating and natural movie stimulation (right) 

for PC (green) and PV (red) cell populations. Pattern correlation values are correlation 
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coefficients of off-diagonal matrix elements for each imaged regions with three or more 

responsive PV cells, 6 animals, 13 regions.
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