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When cells undergo large-scale senescence, organ aging ensues, resulting in irreversible organ pathology and organismal aging.
The study of senescence in cells provides an important avenue to understand the factors that influence aging and can be used
as one of the useful tools for examining age-related human diseases. At present, many herbal compounds have shown effects
on delaying cell senescence. This review summarizes the main characteristics and mechanisms of cell senescence, age-related
diseases, and the recent progress on the natural products targeting cellular senescence, with the aim of providing insights to
aid the clinical management of age-related diseases.

1. Introduction

Aging is not regarded as a disease but rather as a unique and
independent pathological state. It precedes the onset of
many other diseases and is an inevitable biological process.
Aging is a multifactor universal process that occurs at the
molecular, cellular, and tissue levels. It is characterized by
the loss and degeneration of constituent materials, tissue
structures, and physiological functions in the body [1, 2].

Research has demonstrated the important role of cellular
senescence in the aging process [3, 4]. Cellular senescence
was first described as permanent cell cycle arrest when cells
reach their replication limit (replication senescence). Even
under suitable growth conditions, senescent cells no longer
divide and the cell cycle enters an irreversible arrested state
[5]. During aging, persistent DNA damage response (DDR)
markers and senescence-associated secretory phenotype
(SASP) are accumulated in terminally differentiated cells
[6]. Cellular senescence also plays a physiological role in
the normal development of the body, such as in combination
with apoptosis to promote embryonic morphological devel-
opment [7, 8]. In mature tissues, cellular senescence is
mainly triggered by response to injury, thereby inhibiting
potentially dysfunctional cells. However, over time, the

abnormal accumulation of senescent cells can cause harmful
effects [9]. Cellular senescence is the main mechanism that
may lead to chronic diseases and age-related dysfunction
[10]. In vitro experiments in cells are an important method
to study cellular senescence, and these cell experiments
may help provide insights into the relationship between
senescence and age-related human diseases.

2. Main Indicators of Cell Senescence and the
Potential Mechanism

Currently, no universal marker is available to detect cell
senescence [11]. Given that biological markers expressed
by senescent cells might vary with cell type, stimulation,
and stimulation duration, several senescence-related
markers need to be evaluated to consolidate the cell senes-
cence phenotype [12].

2.1. Morphological and Metabolic Changes in Senescent Cells.
The morphology of senescent cells is drastically different
compared with that of normal cells (Figure 1). During senes-
cence, cell density decreases and cells undergo morphologi-
cal changes [ [13]]. Compared with normal cells, senescent
cells typically display an enlarged although flattened shape.
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The intercellular boundaries of senescent cells become
inconspicuous and extensive vacuolization occurs. The
integrity of nuclear membranes is damaged due to the loss
of lamin B1 expression. The nuclear membrane collapses
and chromatin agglutination and pyknosis occur [14].
Senescent cells accumulate defective mitochondria and
increased levels of reactive oxygen species (ROS). In senes-
cent human cells, the content of lysosomes increases and
lysosomal activity changes, which is manifested by an
increase in β-galactosidase (β-gal) activity at pH 6 [15]. This
specific β-gal activity was the first and is one of the most
widely used gold standards for evaluating cellular senes-
cence [16].

As the first evidence for β-gal accumulation in cell senes-
cence, Dimri et al. noted increased levels of β-gal in epider-
mal cells from the skin with age [15]. β-Gal is also
expressed in certain nonsenescent cells, including osteoclasts
and mature macrophages, under normal physiological condi-
tions [17]. Changes in conditions, such as pH and incubation
duration, can stimulate some normal cells to exhibit false-
positive results [18]. β-Gal, which is rarely seen in a neutral
pH environment under normal conditions, shows high enzy-
matic activity within 1 h in response to ionizing radiation
[19]. Recently, Cai and colleagues identified a new prodrug
SSK1 that is specifically cleaved by lysosomal β-gal into cyto-
toxic substances to stimulate apoptosis and the elimination of
senescent cells. In aged mice, SSK1 eliminated senescent cells
in various tissues, reduced levels of senescence-related genes
such as p16 and p21, reduced mild local and systemic inflam-
mation, and restored organismal function [20]. These find-
ings indicate that lysosomal β-gal may represent an
effective target for the selective elimination of senescent cells,

providing a new strategy for the development of antisenes-
cence drugs.

Recently, metabolomics analysis on human umbilical
vein endothelial cells (HUVECs) was carried out, from the
third to eighteenth population doublings, and enriched 14
overtly changed metabolic pathways in senescent cells [21].
This work provided a new perspective to understand the
mechanism of cell senescence.

2.2. p16Ink4a. p16Ink4a is a cyclin-dependent kinase inhibitor
that competitively binds with CDK4/6, thus inhibiting phos-
phorylation of the main substrate Retinoblastoma (Rb) [22].
Rb in the nonphosphorylated state binds to the transcription
factor E2F, thus inhibiting the expression of genes. The
expression of p16Ink4a increases with an increased number
of cell divisions [23]. In response to stress factors, most cells
trigger senescence through the p16Ink4a-Rb signaling cascade
[24]. This process arrests the cell cycle in the G1/S phase,
which leads to cell senescence [25] (Figure 2). Notably,
approximately 75% of human cancer cell lines contain muta-
tions or deletions in the p16 gene, which prevents these cells
from entering the senescence process. Therefore, p16 expres-
sion is used as a cell senescence biomarker.

A recent study used p16tdTom as a reporter allele and sen-
sitive tool to count, isolate, and identify single cells that
expressed p16INK4a [26]. Grosse and colleagues developed a
knock-in strategy to target p16 and monitor senescence.
The authors found that p16Ink4a was rarely expressed in
healthy, stress-free tissues and cells in young animals. As
mice age (10–12 months old), an increasing number of cells
in tissues undergoing senescence, damage, and initial tumor-
igenesis start to express p16Ink4a [27]. Elevated expression of
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Figure 1: Morphological and metabolic changes in senescent cells. Markers of cell senescence include changes in β-gal activity caused by
increased lysosome content and activity, the loss of lamin B1 caused by the changes in the nuclear envelope, the increase of lipofuscin
labeled by Sudan black B staining, and morphological changes, such as flat cell bodies. Senescence-associated secretory phenotype-
(SASP-) related factors, such as TNFα, IL-1α, IL-1β, and matrix metalloproteinase (MMP) and loss of nuclear localization of HMGB1
are also common markers of senescence.
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p16 may be a marker to eliminate senescent cells in mice
with a prolonged lifespan. However, this type of method
does not appear to be particularly accurate since p16 cells
are not eliminated in the colon, liver, and lymphocytes
[28]. Childs and colleagues described endothelial cells from
the p16-positive p16-3MR transgenic mice as senescent cells.
Following ganciclovir treatment in these mice, atherosclero-
tic plaques were retarded [29]. While there is currently no
method for targeting senescent cells that is very precise, tar-
geting p16 may be one of the best methods.

2.3. p21Cip1. The cyclin-dependent kinase inhibitor p21Cip1,
which is a transcriptional target of the p53 tumor suppres-
sor, regulates the cell cycle by binding and inhibiting its
partner cyclin, leading to the inhibited transition of cells
from G1 to S phase and from G2 to M phase [30–32]
(Figure 2). The p53 tumor suppressor is inactivated in most
tumors, and its expression is upregulated in senescent cells.
p53 protein levels are mostly regulated by ubiquitin-
mediated proteosomal degradation [33]. The MDM2 ubiqui-
tin ligase, which is highly expressed in most tumors, directly
binds with p53 protein to suppress p53 transcriptional activ-
ity and promotes the degradation of p53 by ubiquitin-
mediated degradation [34]. The p19Arf protein, which is
encoded by the Arf gene locus that overlaps with the Ink4a
gene locus, binds and inhibits MDM2 activity, subsequently
activating p53 signaling [35]. Upon DNA damage (e.g., ion-
izing radiation and telomere dysfunction), p19Arf is upregu-
lated to inhibit MDM2 and activate p53, which results in the
induction of the p53 downstream target p21Cip1. p21Cip1 also

functions in the inhibition of Rb phosphorylation; as
described above, once phosphorylated, Rb cannot bind with
E2F, which leads to cell cycle arrest in the G1 phase and cell
senescence [36]. Chakraborty et al. reported a senescence
characteristic cell phenotype in pancreatic and breast cancer
cells treated with erythronol. The authors found that β-gal
activity increased along with elevated expression of p21
and decreased amounts of CDK2 and cyclin D1 [37].

2.4. Telomere Shortening. Research has shown that telomeres
are damaged and become shortened as cells divide [38], and
the shortening or destruction of telomeres plays a critical
function in influencing cell senescence [39]. Telomerase is
a reverse transcriptase that is mainly responsible for telo-
mere lengthening, completely independent of replication
[40]. Telomerase activity is inhibited or lost after oxidative
damage [41–44], leading to the loss of the telomeric ends
in the chromosome replication process, therefore accelerat-
ing cell senescence [45]. Fouquerel et al. used a targeted
combination of telomeres and photochemically generated
singlet oxygen to selectively control the time and length of
oxidative stress applied to telomere sites [38]. The authors
repeatedly exposed cultured cancer cells to this targeted oxi-
dation process to simulate environmental stress and inflam-
matory conditions. In fact, even though telomerase, which is
responsible for telomere lengthening, was reactivated, the
telomeres still shorten as the cells divided. Quratul and col-
leagues found that in mouse cortical nerve cells, the primary
reason for telomere shortening with age is not due to telo-
merase activity (which remains almost constant) but may
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Figure 2: The main regulators of the cell cycle and their functions in senescence. The cyclin-dependent kinase inhibitors p16INK4A and
p21Cip1 are commonly used markers of senescence. Cell cycle arrest is induced by the inhibition of cyclin-dependent kinases (CDKs)
through the p53/p21Cip1 and/or Rb/p16INK4A pathways, which causes sustained DNA damage.
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be from changes in the telomere reverse transcriptase pro-
tein content (rather than the RNA component) in mouse
cortical nerve cell subchambers. The hTERT component of
telomerase selectively increases in cytoplasmic and
membrane-bound portions with age [46]. Galbiati et al. used
DNA in situ bridging to detect DNA breakage sites and ana-
lyzed adjacent sites [47]. This new localization method
might detect extreme telomeres that are present in cells.
However, in some nonsenescent cells expressing p16Ink4a,
telomere shortening and the loss of telomere function could
also be detected, and some stress-induced cellular senes-
cence was independent of the telomere shortening pathway
[48–50]. Although telomere shortening is detrimental for
healthy cells, targeting telomeres in tumor cells represents
a method to fight cancer. Drugs that activate and regulate
telomerase have been developed with the aim of designing
intervention strategies to protect telomeres in healthy cells
and target telomeres in cancer cells.

2.5. Senescence-Associated Secretory Phenotype- (SASP-)
Related Factors. During senescence, cells secrete many active
substances, such as soluble signaling messengers, proteases,
and extracellular matrix proteins. Among them, soluble factors,
such as cellular inflammatory factors, chemotactic cytokines,
growth factors, and immunoregulatory factors, promote cell
proliferation and inflammatory responses by changing the
microenvironment surrounding cells and promoting the can-
cerous transformation of cells [51]. For example, IL-6, one of
the important SASP factors that is directly regulated by DNA
damage signaling, is closely associated with cellular senescence
[52, 53]. SASP factors exhibit a dual regulatory role. SASP fac-
tors induce activation of the immune system to clear senescent
cells and the growth stagnation of senescent cells and participate
in tumor suppression. In addition, SASP factors secreted by
senescent cells are involved in the destruction of normal tissue
structures, induce epithelial-mesenchymal transition, and pro-
mote the proliferation of malignant tumors [54]. In some cases,
however, this property of senescent cells may help protect the
body in specific conditions. For example, following hemor-
rhagic shock in rats, liver cells immediately enter a state of
senescence to prevent organ failure, preserving organismal
homeostasis [55]. This could explain the distinct selection
mechanisms by which immune cells eliminate senescent cells;
senescent cells that promote the secretion of inflammatory sub-
stances are eliminated and cells induced to undergo senescence
for protective mechanisms may not be eliminated. However,
further research is required to address this possibility.

3. Diseases Related to Cellular Senescence

Senescent cells lose their ability to divide and undergo apo-
ptosis and remain in the body [56]. Accumulation of senes-
cent cells is associated with a series of age-related diseases
[22], such as cancer, atherosclerosis, liver fibrosis, and neu-
rodegeneration [57] (Figure 3). Therefore, better under-
standing of how senescent cells affect these diseases and
the development of methods to eliminate accumulated
senescent cells could be of significant potential for the man-
agement of many age-related pathologies.

3.1. Cancer. The relationship of cellular senescence with can-
cer varies depending on the physiological environment [58].
Cellular senescence in the early stage of tumorigenesis can
reduce the incidence of cancer. Cellular senescence involves
an irreversible block of cell proliferation, which also repre-
sents a powerful mechanism for autonomously inhibiting
cancer [59]. At the late tumor stage, senescent cells eventu-
ally show complex, multicomponent SASP. SASP alters the
behavior of adjacent cells and the tissue microenvironment.
A notable feature of SASP is the large number of proinflam-
matory factors, including chemokines, cytokines, and
damage-associated molecular patterns (DAMPs). Chronic
inflammation, as a common feature of aging tissues, is a
major risk factor for cancer in later life [5, 60].

Oncogenes induce cellular senescence in the early stage
of tumorigenesis. Senescent cells secrete active substances
that alter the microenvironment around cells, which pro-
motes proinflammatory responses and inhibits cell division
[61]. An inflammatory response is beneficial to eliminate
senescent and mutated cells and prevents tumor develop-
ment and protects bodily functions [7, 62]. In senescence-
related research in cancer patients, Srdic-Rajic found that
low-dose doxorubicin induced cell senescence and inhibited
cancer cell proliferation by promoting ROS production and
DNA damage [63]. Further research revealed the appearance
of proliferating cells during this process [64]. Later research
found that during low-dose chemotherapy, the choice of
proliferation or senescence cell fate depended on three dif-
ferent modalities of p21 kinetics. Drug-induced delayed or
acute expression of p21 leads to cell senescence, and the
intermediate p21 response often results in cell proliferation
[65]. Therefore, a p21 “golden zone” was established for
the continued proliferation of cells following drug treatment,
which provides new guidance for the improvement in
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Figure 3: Diseases related to cellular senescence. Although cellular
senescence is a normal process during development and tissue
remodeling, it is related to a decline in tissue function and
various disease states. These diseases include but are not limited
to cancer, atherosclerosis, liver fibrosis, neurodegenerative
diseases, and other diseases.
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clinical chemotherapy strategies and combination medica-
tions. Chen et al. found that knockout of the Pten gene
resulted in upregulated senescence markers in precancer-
ous tissues but not in deteriorating cancer tissues in a
mouse model of prostate cancer. After Pten-deficient cells
enter senescence in cell culture, cell senescence is reversed
by p53 inactivation [66]. A study using a mouse model
with p16Ink4a luciferase labeling to observe cellular senes-
cence and activation in real time revealed that senescent
cells accumulated significantly at the site of a transplanted
tumor formation in mice; this study represented the first
real-time observation of senescent cells in the early stage
of cancer in vivo [67]. Cellular senescence markers have
been employed as early tumor markers in clinical
applications.

Senescent cells accumulate in the later stages of tumori-
genesis and secrete a large number of inflammatory factors,
growth factors, and immunoregulatory factors, which pro-
vide an immunosuppressive microenvironment for tumor
cells. This microenvironment stimulates tumor cell transfor-
mation and promotes tumor cell proliferation, migration,
and invasion [68]. Although senescence therapy may be ini-
tially beneficial to inhibit the proliferation of tumor cells, it
might promote the acceleration of proliferation and malig-
nant transformation of nonsenescent tumor cells from the
stimulation and accumulation of cytokines [69]. In the long
term, senescent tumor cells might have certain side effects
on health [70]. Therefore, combining the treatment of
senescence-induced cancer with senolytics may prevent the
regrowth of senescent cancer cells [71]. The survival rate of
cervical cancer patients was closely related to the level of
age-related proteins in the serum; a higher expression of
age-related proteins was related to a lower survival rate of
patients. Following radiotherapy, the number of senescent
cells decreased and the survival rate of cancer patients
increased [72]. Together, these studies indicate that both
inducing the senescence of cancer cells and the targeted
removal of senescent cells could help to fight cancer, and
in-depth research into cellular senescence could be signifi-
cant for cancer prevention and treatment [73].

3.2. Atherosclerosis. Vascular senescence induces the devel-
opment of atherosclerosis. Senescence of vascular smooth
muscle and endothelial cells promotes the formation of ath-
erosclerotic plaques [74]. The numbers of mouse bone mar-
row–derived endothelial progenitor cells decreased with age,
and those endothelial cells could not be replaced after
peripheral damage. This was attributed to increased inflam-
mation caused by SASP factor stimulation and a reduction
in tissue homeostasis and tissue repair mediated by trans-
forming growth factor β (TGF-β) [75]. Therefore, athero-
sclerotic lesions appeared in the damaged area. However,
damaged blood vessel structures might be repaired better
after mice received bone marrow cell transplantation from
young healthy donors [76].

An independent study found that senescence foam
cells led to increased numbers of macrophages by pro-
moting an inflammatory response. This resulted in an
acceleration in the initial course of atherosclerosis and

released enzymes and matrix to degrade plaque in the
later stages to promote the instability and rupture of
fibrous caps [29].

3.3. Liver Fibrosis. Senescence of various cell types in the
liver has an important role in liver fibrosis [77]. In the
fibrotic areas of the liver, the telomeres of hepatocytes are
significantly shortened [78]. Senescent liver cells activated
surrounding stellate cells to secrete senescence-related active
factors, therefore changing the microenvironment in the
liver, which aggravated liver fibrosis [79, 80]. However, Kriz-
hanovsky’s group studied a mouse model of fibrosis and
indicated that the first cells to undergo senescence were acti-
vated stellate cells [81]. These cells secrete cytokines to pro-
mote natural killer cells to recognize and degrade fibrous
tissue and reduce the secretion of extracellular matrix, which
effectively limits fibrosis in the liver. However, in p53-
deficient murine hepatic fibrosis, continuous activation and
proliferation of stellate cells aggravated fibrosis [82]. There-
fore, liver fibrosis might be inhibited through the p53 signal-
ing cascade to reverse liver fibrosis [81]. Notably, senescent
cells have important physiological and structural functions,
such as liver sinusoidal endothelial cells that exhibit impor-
tant detoxification functions. The researchers used CD31
antibodies to stain the livers of mice with different genotypes
and found that the removed senescent sinusoidal endothelial
cells were not replaced by new cells (other CD31-positive
cells) but promoted tissue fibrosis, which leads to the deteri-
oration of health. The lack of replacement of CD31-positive
cells in the liver is due to their low proliferative activity and
the decline in the expression of a variety of Vegfs and their
receptors due to aging [27].

3.4. Neurodegenerative Diseases. In the nervous system, cel-
lular senescence leads to age-related neurodegenerative dis-
eases, including Alzheimer’s disease (AD), Parkinson’s
disease, and amyotrophic lateral sclerosis [83, 84]. Various
markers for senescence have been observed in patients with
neurodegenerative diseases. Previous studies showed a
causal relationship between the accumulation of senescent
cells and cognition-related neuronal loss [83]. However,
the precise role of senescent cells in the etiology of these
neurodegenerative diseases is unknown.

SASP signal activation–mediated neuroinflammation
and inflammasome lead to neuron loss [85]. For example,
oligodendrocyte precursor cells appear to exhibit a senes-
cence phenotype in AD [86]. Application of senescent cell
lysis therapy to AD mouse models led to significantly
reduced neuroinflammation and amyloid plaques [87]. In
the MAPTP301SPS19 model of tau-dependent neurodegener-
ative disease, the accumulation of p16INK4A-positive senes-
cent astrocytes and microglia was observed. The
elimination of these cells in INK-ATTAC transgenic mice
prevented glial hyperplasia. Elimination of these cells in
INK-ATTAC transgenic mice prevented gliosis, deposition
of neurofibrillary tangles caused by hyperphosphorylation
of soluble and insoluble tau, and degeneration of cortical
and hippocampal neurons, thus maintaining cognitive func-
tion [88]. Together, these results show the vital role of
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senescent cells in the initiation and progression of tau-
mediated diseases and the therapeutic potential of targeting
senescent cells for the treatment of these comorbidities.

3.5. Other Age-Related Diseases. The senescence of insulin-
secreting β cells in the pancreas is related to the progression
of type I and type II diabetes and affects the autoimmunity
and metabolic functions of the body, respectively [89]. Senes-
cence reduces the proliferation capacity of β cells and the secre-
tion of SASP components, thereby aggravating current
inflammation and tissue damage [90]. The body loses its ability
to keep blood sugar stable under aging, which leads to glucose
toxicity [91]. This stress causes the senescence of various types
of cells, such as fibroblasts, renal tubular epithelial cells, endo-
thelial cells, and mesenchymal stem cells, which leads to other
age-related diseases, such as vascular diseases and kidney dis-
eases [92]. Similar to results in AD, the application of senescent
cell lysis therapy in an animal model of diabetes showed prom-
ising effects in inhibiting the course of the disease [93].

In idiopathic pulmonary fibrosis, alveolar type II epithe-
lial cells proliferate into new type II epithelial cells or differ-
entiate into type I epithelial cells [94]. However, type II
epithelial cells with congenital regeneration defects of short
telomeres do not continue to proliferate or differentiate
and cannot form normal alveolar tissue. The specific knock-
out of the type II epithelial cell telomere protection protein
TRF2 in vitro causes DNA damage response and cell senes-
cence [95]. The DNA damage signal from the alveolar epi-
thelium can recruit macrophages and T cells to the alveolar
tissue, and telomere shortening–mediated stem cell senes-
cence upregulates the expression of proinflammatory cyto-
kines and induces inflammation. Senescence increases
oxidative stress, which directly leads to DNA damage [96].
Excessive oxidative stress has various adverse effects on cells,
such as the activation of redox sensitive signaling pathways
and the expression of cytokines and chemokines. Fibroblasts
activate and secrete large amounts of collagen fibers, which
leads to lung diseases such as idiopathic pulmonary fibrosis
[97]. Studies have shown that senescent fibroblasts are selec-
tively killed by dasatinib and quercetin (a senolytic) [98].
Eliminating senescent cells in INK-ATTAC transgenic mice
improved lung function and physical health [94].

Osteoarthritis (OA) is a chronic disease characterized by
the degradation of articular cartilage, causing pain and physi-
cal disability. Studies have found senescent chondrocytes in
the cartilage cells of patients with OA and these cells have
characteristics of age-related β-galactosidase positive staining,
shortened telomere length, and mitochondrial degeneration
[99]. In a mouse model of OA through anterior cruciate liga-
ment transection, senescent cells are accumulated in the artic-
ular cartilage and synovium. Selective removal of these cells
reduces the development of OA and relieves pain [100].

4. Common Modalities in Cell Senescence and
Related Nutritional Interventions

Cellular senescence occurs through long-term culture of pri-
mary cells (replication senescence). However, in response to
several stress factors (including oxidation, radiation, and

toxicity), cellular senescence can be triggered prematurely
[101]. In addition to the main senescent pathways, such as
p16 and p53-p21, the upregulation of SIRT1, eNOS phosphor-
ylation, SOD, GSH-Px, and E2F-1 and the downregulation of
miR-34a, NF-κB, MDA content, and caveolin-1 to delay senes-
cence have been reported in various senescent cell models.

Recent research has shown interest in drugs, such as rap-
amycin and metformin, and their ability to effectively pro-
long life and treat disease pathology. However, the
antiaging ability of these drugs is not unique [102]. From
>10,000 screening tests, a variety of plant extracts were iden-
tified with potent antiaging properties [103]. Many herbal
compounds exhibit anticell senescence effects [104]
(Figure 4). The development of new antiaging drugs from
natural plants and traditional Chinese medicine has gained
global attention [105]. These cell senescence interventions
that are extracted from plants include carbohydrates, poly-
phenols, peptides, sterol compounds, and vitamins
(Table 1). Our aim for Table 1 table is to highlight the cells
that are suitable for the study of cell senescence, which nutri-
tional interventions can act as positive effectors to interfere
with the aging process, which markers can be detected, and
whether their results can be compared with those of previous
studies.

4.1. Endothelial Cells. Vascular endothelial cells (VECs) are
the most widely studied cell type. VEC senescence is a com-
mon pathological basis for cardiovascular diseases. Under
chronic exposure to high glucose (HG) and a high-fat envi-
ronment, VECs can enter an early stage of senescence. Vas-
cular dysfunction occurs from changes in the levels of
vasodilators, contractile factors, antioxidant factors, and
coagulation factors [106–110]. After the senescence of
HUVECs was cultured in vitro, the cells were wider with flat
intercellular spaces. In addition, nuclei and nucleoli were
enlarged along with reduced levels of nitric oxide (NO)
and endothelial nitric oxide synthase (eNOS) activity [111].
NO is a vasodilator factor that promotes blood circulation
and helps to control blood pressure. In senescent cells, the
production of ROS is significantly increased, which reduces
the bioavailability of NO [112]. HG promotes mitochondria
to produce excessive ROS, therefore accelerating oxidative
damage and cell senescence [113, 114].

Dasatinib combined with quercetin is a recently identi-
fied senolytic strategy with pronounced antiaging effects.
Dasatinib is a small molecule tyrosine kinase inhibitor.
Quercetin is a natural flavonoid and reduces the survival
ability of senescent HUVECs to effectively trigger cell
death without discernable effects on nonsenescent cells
[115]. Curcumin, a natural polyphenol compound, delays
endothelial cell senescence induced by hydrogen peroxide
through SIRT1 signaling [116]. Recent studies found that
a combination of resveratrol, curcumin, and β-caryophyl-
lene reduced the levels of SASP factors, such as IL-1β
and IL-6, in senescent HUVECs [117]. Wang and associ-
ates found that Ginseng-Sanqi-Chuanxiong extracts regu-
lated mitosis through AMPK to prevent HG/palmitate-
induced endothelial senescence and the production of
mitochondrial ROS [118]. New strategic plans are required
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for the clinical prevention and treatment of
cardiovascular-related diseases, especially those related to
endothelial cell senescence.

4.2. Fibroblasts. The generation of senescent cell models
using fibroblasts is a common method to explore the biolog-
ical characteristics of senescence [119]. High levels of glu-
cose have been used to induce senescence in human
diploid fibroblasts [120]. An H2O2 administration method
has been reported to continuously track senescence in pri-
mary nonembryonic mouse fibroblasts. After staining with
SA-β-Gal, the percentage of senescent cells (positively
stained for SA-β-Gal) in the H2O2-induced group was
22.23% higher than that in the normal group [121]. Another
study used UV to irradiate mouse skin fibroblasts to obtain a
skin photo senescence model, and rosiglitazone was found to
alleviate senescence in this model [122]. However, other
studies used rosiglitazone to induce senescence in bone mar-
row cells [28]. One possibility for these contrasting findings
is that a single drug might have varying effects depending on
the cell types.

The senescent fibroblast models are also used for the
screening of antisenescence drugs. In a previous study in
which bleomycin-induced BJ fibroblasts were used to estab-
lish a senescent cell model, the authors screened 113 plant
components and obtained several drugs that effectively
inhibit SASP formation [123]. Recently, we found that pre-
treatment with KF-8, a polypeptide extracted from rice bran,
delays the H2O2-induced senescence of 3T3 cells by attenu-
ating NF-κB/p38 signaling and Nrf2 nuclear transport
[124]. Another study found that quercetin not only delays
the senescence of human primary dermal fibroblasts after
UV exposure but also delays the senescence of human pri-
mary dermal fibroblasts lacking HES1 (a growth control
transcription factor) [ [13]]. Moreover, when quercetin and

its derivative quercetin-caprylate was supplemented to
senescent fibroblasts, a rejuvenating effect was observed
[125]. Although quercetin has good anticellular senescence
effects, its poor oral bioavailability, due to poor water solu-
bility, cell membrane permeability, and short biological
half-life, limits its clinical application [126]. Other studies
have shown the benefit of resveratrol [127, 128] and fisetin
[102] from vegetables and fruits in the senescence of
fibroblasts.

4.3. Muscle Cells. Muscle tissue is mainly composed of
highly contractile, columnar muscle cells. The contraction
of muscles converts chemical energy into mechanical
energy, shortening muscle fibers, which causes various
body movements [129]. The senescence of myocardial cells
causes a series of physiological and pathological changes in
the heart, which lead to the onset of cardiovascular dis-
ease, and even mortality in severe cases. Recent evidence
suggests that ellagitannins found in pomegranates are con-
verted to Urolitin A in the gut. Urolitin A can slow the
senescence of muscle cells by improving mitochondrial
function [130]. In another independent study using palmi-
tate to induce muscle cell senescence, resveratrol delayed
senescence by altering autophagic flux [131]. The antise-
nescence ability of resveratrol has been verified in a variety
of cell models. Resveratrol has been found to significantly
extend lifespan in a variety of model organisms such as
yeast, nematodes, fruit flies, fish, mice, and rats [ [132,
133]]. The antisenescence mechanisms of resveratrol
mainly involve effects on oxidative stress, calorie restric-
tion, and telomeres. Resveratrol is an antioxidant that
ameliorates age-related diseases in mice by reducing ROS
production, scavenging free radicals, and stimulating bio-
synthesis of endogenous antioxidants [134–137]. However,
human trials are lacking.

Endothelium protection
Resveratrol
Curcumin
Salicin
Quercetin
gRb1
α-Mangostin
CGA
TSG

Neuroprotection
ASP
Catechin
gRb1
Phlorizin
Lycium barbarum

Fibroblast protection
Resveratrol
Curcumin
KF-8
Catechin
Vitamin C
Salidroside
Berberine
GL-PS

Myocyte protection 
Resveratrol
TRF
𝛼-tocopherol

Figure 4: Common research areas for cellular senescence and related nutritional interventions. Many cell models are used to study cellular
senescence, and the most widely used cell models are endothelial cells, fibroblasts, muscle cells, and nerve cell models. A variety of plant
extracts with effective antiaging properties have been identified. Many herbal extracts exhibit antiaging effects. Natural nutritional
interventions for cellular senescence mainly included carbohydrates, polyphenols, peptides, sterol compounds, and vitamins.
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Calorie restriction is the only known nutritional inter-
vention that has the potential to slow down senescence. A
recent study in humans has confirmed that cutting calorie
intake by 15 percent over two years can slow aging and
metabolism, as well as prevent age-related diseases [138].
Resveratrol has been found to have a similar effect to caloric
restriction and regulates lifespan through Sir2/SIRT1,
AMPK, NF-κB, and other signaling pathways [139].

4.4. Nerve Cells. Nerve tissues, composed of signal-
transmitting neurons and the supporting glial cells, are basic
components of the central and peripheral nervous system.
The topic of cell senescence and neuronal regeneration is
rapidly evolving in the neuroscience field. The decline of
cognitive function and memory is closely associated with
the senescence of hippocampal nerve cells and a decrease
in the numbers of new neurons during aging [140, 141].
Naturally abundant compounds in plant-based foods have
been found to have a wide range of health benefits and
may be environmental determinants of brain structure and
cognitive function. For example, resveratrol in red grape
skin and epigallocatechin gallate (EGCG) in green tea have
been shown to influence hippocampal neurogenesis in adults
[142, 143]. Recently, quercetin, which is abundant in apple
peel, was found to promote hippocampal precursor survival
and neuronal differentiation in adult mice. The 3, 5-
dihydroxybenzoic acid in apple pulp can significantly
increase the proliferation and neurogenesis of neural precur-
sor cells [144]. Curcumin and its analogs was found to
reduce oxidative damage of senescent PC12 cells. Curcumin
upregulates the level of Nrf2, inhibits ROS production,
restores mitochondrial membrane potential, and reduces cell
apoptosis [145]. In addition, curcumin increases the level of
HO-1 and decreases the expression of Keap1 [146]. In addi-
tion to the effects of curcumin in cell models, the antioxidant
and antisenescence effects of curcumin have also been veri-
fied in animal models such as nematodes and mice [147,
148]. Curcumin not only eliminates ROS and regulates the
expression of SOD, catalase, and other related antioxidant
enzymes [ [149]] , but it also acts as a calorie restriction
mimetic to delay senescence [150]. Although a large number
of experiments have shown that curcumin has antisenes-
cence effects, the data on the long-term response to curcu-
min is still very limited, and clinical verification is still
lacking. In addition, curcumin has low bioavailability, and
an effective concentration is difficult to achieve, which is also
an urgent problem to be solved. We previously reviewed the
antisenescence effects of various plant-derived antioxidants
on neurons and summarized the mechanism of the
effects [151].

5. Conclusion and Perspectives

Cellular senescence plays an important role in a variety of
pathological processes, including tumorigenesis, atheroscle-
rosis, fibrosis, and the normal aging process. In response to
telomere shortening, DNA damage, and external stimuli,
senescent cells halt proliferation through various signaling

pathways and secrete several factors to attract immune cells
for scavenging and tissue regeneration.

Cellular senescence and biological aging are related but
are distinct concepts. The study of cellular senescence is
moving into a new area to determine the mechanisms of bio-
logical (organismal) senescence. Gene cloning technologies
and other methods could be employed for the in-depth
examination of cellular senescence–related genes to provide
a more reliable base for the mechanisms of senescence and
senescence-related diseases. Building animal models that
mimic human aging diseases also helps further the under-
standing of the effects of senescent cells on diseases caused
by senescence. Various models to explore senescence are
currently used in research, including D-galactose induction,
thymus removal, and isotope irradiation, which determine
the pathological processes of senescence from different per-
spectives, such as energy metabolism disorders, immune dis-
orders, and DNA damage. The thymus, spleen, serum index,
and other indicators are not enough to explain the antisenes-
cence mechanism. The mechanism of cellular senescence is
determined by multiple factors, which contribute to the
complexity of the modulation of cellular senescence.

Starting from the proven pathways of cellular senes-
cence, cellular senescence modulators that are extracted
from natural substances and show clinical relevance to delay
cell senescence are being researched. Our group found a
polypeptide from rice bran, and its antioxidant and antiag-
ing effects have been proven in cells, nematodes, and mouse
models [124]. Future studies should explore the antiaging
effect of this peptide on the human body.

Despite the research in drugs targeting senescence, there
are still limitations in their application. The first is the low
bioavailability of natural compounds. More in-depth phar-
macological and pharmacokinetic studies are required to
improve the safety, purity, and bioavailability of antiaging
drugs and to formulate relevant standards and specifications
to ensure the applicability of antiaging drug research [180].
The second limit is that their long-term effects on human
health cannot be verified in animal models; the existing ani-
mal models and technology cannot evaluate the long-term
negative effects caused by clearing or regulating senescent
cells. Third, the current research on the mechanism of new
antiaging drugs is based on known pathways, and at present,
all the mechanisms with antiaging effects remain unknown.
Finally, during the research process, it was discovered that
certain antiaging effects of certain drugs have sex and age
restrictions or are only effective for certain types of
cells [181].

Nevertheless, based on the results of current research,
antiaging drug research can help identify new antiaging tar-
gets or find more effective compounds through modifica-
tion. Researchers have discovered some senolytic and
senomorphic pharmaceutical compounds. Senolytics are
mainly effective by eliminating senescent cells, while the
function of senomorphics (also called senostatics) is to regu-
late the characteristics of senescent cells rather than elimi-
nating the cells [5]. The natural interventions mentioned in
this article, which have the effect of delaying cell senescence,
are expected to become senomorphics through in-depth
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research. From a long-term perspective, it is feasible to use
intervention measures that affect the aging process, such as
reducing the load of senescent cells, to delay the onset of
age-related onset or decrease the incidence. Therefore, we
need to improve the existing models to summarize the vari-
ous pathological signals of senescence more prominently, to
understand the cellular mechanism of senescence, and iden-
tify novel interventions that have antisenescence activity
from nutrition. In-depth examination of the underlying
antisenescence mechanism should help develop new antise-
nescence interventions such as senolytics and senomorphics
for aging and age-related comorbidities.
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