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Abstract: The synthesis and structural characterization of a series of supramolecular complexes of
bicyclic cationic pyridine-fused 1,2,4-selenodiazoles with various anions is reported. The binding of
trifluoroacetate, tetrachloroaurate, tetraphenylborate, perrhenate, and pertechnetate anions in the
solid state is regarded. All the anions interact with selenodiazolium cations exclusively via a pair of
“chelating” Se· · ·O and H· · ·O non-covalent interactions, which make them an attractive, novel, non-
classical supramolecular recognition unit or a synthon. Trifluoroacetate salts were conveniently gener-
ated via novel oxidation reaction of 2,2′-dipyridyl diselenide with bis(trifluoroacetoxy)iodo)benzene
in the presence of corresponding nitriles. Isolation and structural characterization of transient
2-pyridylselenyl trifluoroacetate was achieved. X-ray analysis has demonstrated that the latter
forms dimers in the solid state featuring very short and strong Se· · ·O and Se· · ·N ChB con-
tacts. 1,2,4-Selenodiazolium trifluoroacetates or halides show good solubility in water. In contrast,
(AuCl4)−, (ReO4)−, or (TcO4)− derivatives immediately precipitate from aqueous solutions. Struc-
tural features of these supramolecular complexes in the solid state are discussed. The nature and
energies of the non-covalent interactions in novel assembles were studied by the theoretical methods.
To the best of our knowledge, this is the first study that regards perrhenate and pertechnetate as
acceptors in ChB interactions. The results presented here will be useful for further developments in
anion recognition and precipitation involving cationic 1,2,4-selenodiazoles.

Keywords: selenodiazoles; non-covalent interactions; chalcogen bonding; anion recognition;
rhenium; technetium

1. Introduction

The search for new anion receptors and exploration of novel modes of anion binding
is a topic of considerable interest in supramolecular chemistry. Design and synthesis
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of receptors capable of selective and strong anion recognition has recently emerged as
a major challenge [1,2]. Although the area is rapidly developing, an efficacy of natural
anion-binding proteins is not yet achieved for artificial systems [3]. This stimulates a
significant effort from the synthetic chemistry community in creating novel anion receptors,
which can revolutionize several areas, including catalysis, sensing, extraction, and anion
transport [4–6]. Hydrogen bonding (HB) is usually considered a key interaction, which is
employed for anion recognition [7,8]. However, non-classical non-covalent interactions
have gained an increase in interest in recent years [9–14]. Halogen bonding (XB) has
emerged as a powerful alternative to HB, since both interactions have a comparable strength,
but XB exhibits a remarkable directionality. In 2014, Beer reported a receptor for anion
binding in water, which employed XB and demonstrated a superiority of XB over HB
for anion binding in water [1]. Chalcogen bonding (ChB), which also shows a good
directionality and tunable strength, is even less explored.

Recently, we discovered a remarkably efficient cyclization reaction between
2-pyridylselenyl halides and nitriles, which allows the synthesis bicyclic cationic pyridine-
fused 1,2,4-selenodiazoles [15,16]. Novel heterocycles feature electron-deficient selenium
centers, which provide two σ-holes along the extension of the covalent bond axis. Moreover,
1,2,4-selenodiazolium cations bind halide anions via a combination of ChB and HB. The
latter supramolecular structural motif was observed for all structurally characterized selen-
odiazolium halides derived from 2-pyridylselenyl halides and nitriles [15–18]. However,
currently, there is no data about binding modes and energies of 1,2,4-selenodiazoliums
with other anions.

The solubility of novel selenium compounds in aqueous media makes them attractive
for potential applications, including anion recognition and precipitation, which can be
employed in radioactive waste management. For instance, Technetium (99Tc) is a by-
product of the nuclear fuel cycle with a long half-life (2.1× 105 years), which is among most
problematic elements of utilized nuclear fuel [19]. To date, for the processing of irradiated
nuclear fuel, the PUREX method is used, which most often involves the dissolution of fuel
in concentrated nitric acid and subsequent sorption of the U and Pu from a solution [20,21].
The long half-life of 99Tc and its ability to form anionic particles pose a serious problem
for the long-term disposal of radioactive waste. Current methods for removing fission
products in reprocessing plants involve cationic species. Thus, there is a strong incentive
for a separation of the technetium (usually in the form of the pertechnetate).

Here, we report the synthesis and structural characterization of the 1,2,4-selenodiazolium
salts with various anions, exhibiting directional chalcogen bonding interactions that dictate
the position of the counterion even in the presence of strong, but non-directional, electro-
static ion-pair interaction. The contributions of chalcogen bonding and hydrogen bonding
interactions to the formation of the assemblies in the solid state have been evaluated using
the quantum theory of atoms-in-molecules and the electron density parameters.

2. Results and Discussion

Earlier, we showed that 2-pyridylselenyl halides (Cl (2), Br (3)) readily react with
nitriles forming cyclic adducts [15,16]. Selenodiazoles, synthesized via a highly efficient
newly discovered cyclization reaction, represent novel donors of ChB. The fact that these
adducts are soluble in aqueous media makes them attractive objects for the investigation of
their anion recognition properties. In our previous works, we described selenodiazolium
salts, which carried only chloride or bromide as counterions.

Electrophilic reagents 2 and 3 could be easily generated via oxidation of diselenide 1
by Br2 or SO2Cl2 (Scheme 1). Within this work, we show that the treatment of 1 with
bis(trifluoroacetoxy)iodo)benzene (PIFA) in Et2O results in the Se–Se bond cleavage and
formation of 2-pyridylselenyl trifluoroacetate 4 (Scheme 1). When the reaction was per-
formed in acetonitrile, trichloroacetonitrile, or hexanenitrile, the corresponding adduct 5–7
gradually precipitated from the reaction mixtures (Scheme 1), which suggested that in
situ generated 4 rapidly reacts with nitriles and its isolation is not necessary. This sim-
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ple methodology allowed the preparation of selenodiazolium salts 4–7, which contained
trifluoroacetate anion.
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Figure 1. Ball-and-stick representations of the crystal structures of 4–7 demonstrating
supramolecular dimerization via Se· · ·N ChB. Grey and light-grey spheres represent carbon and
hydrogen, respectively.

2-Pyridylselenyl trifluoroacetate 4 forms supramolecular dimers in the solid state via
a pair of equivalent Se· · ·N ChB interactions (Figure 1). The Se centers adopt T-shaped
geometry (∠N· · · Se· · ·O 170.55◦). Overall, the bonding situation in 4 is similar to what
we observed earlier for PySeCl 2. In both compounds, the anion occupies a trans position
against the N atom of the pyridyl in the solid state. A remarkable distinctive feature of 4
is short Se· · ·O and Se· · ·N distances (2.11 and 2.10 Å), which indicates the significant
covalent character of these bonds. To shed light onto this matter, the QTAIM analysis of
the dimer has been performed and the degree of covalency has been evaluated by the
analysis of the total energy densities and Laplacian of the electron density. That is, in
typical closed shell noncovalent interaction, the Laplacian (∇2ρ) of the electron density at
the bond critical point (CP) that characterizes the contact is positive, whilst it is negative
in covalent bonds (∇2ρ < 0) [22]. In bonds with partial covalent character (for instance
coordination bonds between ligands and metal centers), the Laplacian is positive (∇2ρ > 0)
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and the total energy density (Hr) at the bond CP is negative (|Vr| > Gr), whilst in most
weaker noncovalent contacts, such as hydrogen bonds, halogen bonds, chalcogen bonds,
etc., both the ∇2ρ and Hr values are positive. Therefore, the QTAIM parameters are very
useful to differentiate covalent, noncovalent, and “partial” covalent bonds. Furthermore,
the strength of chalcogen and hydrogen bonds can be derived from the potential energy
density (Vr) using the equations proposed in the literature [23,24] (E ≈ 0.5 × Vr for HBs
and E ≈ 0.37 × Vr − 0.9 for ChBs, Vr in kcal/mol).

The QTAIM analysis of the dimer of compound 4 is shown in Figure 2, where the
strength of each ChB is indicated in red next to the bond CPs (represented as red spheres)
and the Hr values are indicated in blue. In all cases studied herein, the Laplacian values
are positive, indicative of closed shell interactions. The ChBs in 4 are characterized by the
corresponding bond CPs and bond paths (represented as orange lines) connecting the Se
atom to both the O and N atoms of trifluoroacetate and pyridine, respectively. Both ChB
contacts are very strong, the latter being slightly stronger than the former. The Hr values
are in both cases negative, disclosing a partial covalent character, in line with the short
distances and strong interaction energies.
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The C=N bond lengths (1.27–1.30 Å for 5–7) are typical for C=N double
bonds [10,11,13,14,25–34]. Other covalent bonds in 5–7 are unremarkable. The adducts 5–7
form supramolecular dimers in the solid state via a pair of equivalent Se···N chalcogen bonds
(Figure 1). The formation of similar 2Se–2N squares was observed earlier for the adducts
of PySeCl 2 with acetonitrile and trichloroacetonitrile. In contrast, the adduct of 2 with
hexanenitrile formed supramolecular polymers via Se· · ·Cl and H· · ·Cl interactions [18].
Thus, the replacement of chloride by TFA in pentyl-substituted 1,2,4-selenodiazolium salt
had a dramatic impact on the self-organization of the compound in the solid state.

Importantly, the TFA anion in 5–7 is involved in bifurcated non-covalent interactions
(viz. Se· · ·O and H· · ·O, Figure 1), which form a robust chalcogen-bonded supramolecular
synthon. So far, we have not observed the anion occupying any other position; it was
always found to be involved in “chelating” Se· · ·A and H· · ·A interactions.

It should be noted that the Se· · ·O ChB interactions found for 5–7 (2.68, 2.56, and
2.68 Å) are unusually short and among the shortest Se· · ·O non-covalent interactions
involving organoselenium species [35], which is likely due to the cation···anion nature of
the interaction. Figure 3 shows the QTAIM analyses of 5 and 6 as representative complexes.
In both compounds, the TFA is connected to the 1,2,4-selenodiazolium via two bond
CPs and bond paths that characterize the chalcogen and hydrogen bonds. The ChBs are
significantly stronger than the HBs (around 2 kcal/mol). Moreover, the strength of the ChB
is higher in 6 (−6.48 kcal/mol) than in compound 5 (−4.89 kcal/mol), likely due to the
presence of the electron withdrawing the CCl3 group in compound 6 instead of the electron
donating methyl group in 5. The dimerization energies are also indicated in Figure 3, which
are very large (−92.0 and −98.7 kcal/mol for 5 and 6, respectively) due to the ion-pair
nature and dominance of the Coulombic attraction between counterions.
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Further, we were interested how other anions would bind 1,2,4-selenodiazolium
cations. For this purpose, 1,2,4-selenodiazolium chloride 6′, derived from the coupling
between trichloroacetonitrile and 2-pyridylselenyl chloride, was chosen for further anion
variations. In addition, compound 6′ is very soluble in water, which makes it attractive
for anion precipitation purposes. The addition of NaNO3 or HBF4 to 6′ in water does
not result in any precipitation. However, the addition of aqueous NaAuCl4, perrhenic, or
pertechnetic acids to the aqueous solution of 6′ resulted in the immediate formation of
the corresponding salts 8–10. Interestingly, while compounds 8–10 are insoluble in water,
the TFA salt 6 or analogous chloride 6′ are highly soluble. These facts make our novel
1,2,4-selenodiazolium salts promising for selective anion precipitation purposes.

Compounds 8–10 were recrystallized from MeOH, and their structures were confirmed
by the X-ray structural analysis (Figure 4).
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The salts 8–10 formed exclusively 2Se–2N squares in the solid state (Figure 4). Switch-
ing from the chloride to AuCl4−, ReO4

−, or TcO4
− did not result in the rupture of

supramolecular dimers with two antiparallel Se· · ·N ChB interactions. Moreover,
1,2,4-selenodiazolium cations in the dimers of 9 and 10 were interconnected by the XB
between the XB donating chlorine atom of the heterocycle and AuCl4−, ReO4

−, or TcO4
−

anion (Figure 4).
For compound 8, we have analyzed the possible co-existence of Cl···Cl and Cl···Au

contacts in addition to the ChB and HBs. The QTAIM analysis of the tetrameric assembly
is represented in Figure 5. It demonstrates the presence of an intricate combination of
interactions, including two symmetrically equivalent Se···N ChBs that are the strongest
ones, connecting the five membered rings. The analysis also discloses three Se···Cl con-
tacts, two involving the tetrachloroaurate anion and one the trichloromethyl group. The
energies of these ChBs are similar, ranging from −1.25 to −1.44 kcal/mol. Two additional
C–H···Cl contacts connect the AuCl4− anion to the cation. It is interesting to highlight the
presence of three bond CPs and bond paths connecting one Cl atom of the trichloromethyl
group to the AuCl4−, confirming the existence of Cl···Cl and Cl···Au contacts. To further
analyze these contacts, we have computed the molecular electrostatic potential (MEP)
surface of compound 8, which is represented in Figure 5b. It reveals the typical σ-holes
at the Se-atoms with MEP values of +68 and +51 kcal/mol. Moreover, a σ-hole is also
present at the extension of the C–Cl bonds of the trichloromethyl group (+29 kcal/mol).
The MEP minimum value is located at the AuCl4– (chlorine belt), thus explaining the
formation of the Cl···Cl contacts between the counterions. Moreover, the MEP value is
also negative at the Au-atoms, thus revealing that the Cl···Au contact observed in 8 is also
electrostatically favored.
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Moreover, for compounds 9 and 10, we have compared the strength of the Se···O
contacts. It can be observed (Figure 6) that they are weaker (−4.47 and −4.74 kcal/mol for
9 and 10, respectively) than those of compounds 5 and 6, due to the lower nucleophilicity
of ReO4

− or TcO4
− anions compared to TFA. The energetic results gathered in Figure 6

show that the metal (Re or Tc) has little influence on the ChB and HB energies. The ion-pair
interactions are large and negative (−82.3 and −83.4 kcal/mol for 9 and 10, respectively)
and smaller than those observed for 5 and 6, in line with the ChB and HB energies.

Further, we were interested in how the cation of 6′ would bind tetraphenylborate.
The addition of the saturated MeOH solution of NaBPh4 to 6′ in MeOH resulted in the
precipitation of the yellow crystals of 11 (Figure 7).
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Interestingly, introduction of BPh4
– anion resulted in the rupture of 2Se–2N squares.

The two σ-holes of selenodiazolium cation were involved in ChB–π interactions with the
phenyls of BPh4

− anion. It should be noted that chalcogen–π interactions are a bond-
ing motif found in biological systems, such as proteins [36]. Both ChB–π interactions
highlighted in Figure 7 were analyzed theoretically. The QTAIM results (see Figure 8)
corroborate the presence of the ChB–π interactions that are characterized by bond CPs and
bond paths connecting the Se-atoms to C-atoms of the six membered rings. The formation
of such assemblies was further assisted by π–π and C–H···Cl interactions, as revealed by the
QTAIM analysis. The dimerization energies are−78.8 and−78.3 kcal/mol for both binding
modes, which are similar to the ion-pair energies obtained for compounds 9 and 10, thus
suggesting that the ChB–π and π–π combined are almost equivalent to the ChB and HBs
formed by the tetrahedral ReO4

− and TcO4
− anions.

Further, we were interested in how the substituent by the selenodiazolium core (which
derives from a nitrile) would affect the self-assembly of salts, which contain ReO4

− or
TcO4

− anions. The compounds 12 and 13, which were derived from chloroacetonitrile,
were simply prepared in the same way as 9 and 10. Surprisingly, switching from the CCl3
to CH2Cl group had a noticeable impact on the self-assembly of the compound in the solid
state (Figure 9).
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supramolecular dimerization via ChB interactions.

Compound 12 formed Se2N2 squares in the solid state in the same fashion as 9 and 10.
However, it had several distinctive features. The ReO4

− anion was involved in a bifurcated
ChB interaction with the Se center via two O atoms (Figure 9). In contrast, structurally
similar compounds 9 and 10 featured a terminal coordination of the ReO4

− and TcO4
−

anions (Figure 4). Another interesting structural peculiarity of 12 was the presence of
H···O HB interactions between the ReO4

− anion and α-H atom of the substituent by the
selenodiazolium core (Figure 9) in the solid state. H···O HB was preferential here over
a potential Cl···O XB interaction. It should be noted that selenodiazolium salts, which
contained the same cation but the Cl or Br anions, formed similar dimers, which exhibited
(N.B.) Cl···Cl or Cl···Br XB interactions [16], but not H···Cl or H···Br HB.

Compound 13 exhibited even a more distinctive pattern in the crystal (Figure 9). In
contrast to 9, 10, or 12, it did not exhibit Se2N2 squares but formed dimers via four Se···O
ChB interactions with two bridging TcO4

− anions (Figure 9).
Cation-anion interactions in 12 and 13 were further studied theoretically. Figure 10

shows the QTAIM analyses of the ion-pair interactions of compounds 12 and 13, evidencing
the bifurcated nature of the ChB in 12, which is stronger (−4.47 kcal/mol, sum of both
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CPs) than the Se···O ChB in 13. This is mostly compensated by the HB that is stronger in
compound 12. The ChBs in 12 and 13 are weaker than those of compounds 9 and 10, due to
the stronger electron withdrawing effect of the CCl3 group. Regarding the ion-pair dimer-
ization energies, it is larger in compound 13 (−79.7 kcal/mol) than 12 (−76.1 kcal/mol),
and both are similar to the ChB–π dimers represented in Figure 8.
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Finally, we compared the impact of switching from the Cl to the F in haloacetonitrile on the
self-assembly of corresponding selenodiazolium salts. For this reason, 2-pyridylselenylchloride
was coupled with fluoroacetonitrile to give novel adduct 14 (Figure 11). X-ray analysis
showed that 14 also formed Se2N2 dimers in the solid state in a similar fashion to what we
observed for several other selenodiazolium salts [15,16].
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Figure 11. Ball-and-stick representation of crystal structures 14–16 demonstrating supramolecular
dimerization via various ChB interactions.

The F-decorated selenodiazolium cation also formed water-insoluble salts 15 and 16
with perrhenate or pertechnetate, correspondingly. Both 15 and 16 formed dimers via four
Se···O ChB interactions with two bridging ReO4

− or TcO4
− anions (Figure 11).

The QTAIM analyses of the ion-pair dimers of compounds 14–16 are represented in
Figure 12. For compounds 15 and 16, where the anion is bridging the five membered
selenodiazolium rings (Figure 11), we have analyzed both types of Se···O ChBs, where the
O-atom is located opposite the Se–N or Se–C bond.
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The energies of the ChBs opposite the Se–N bond are stronger than those opposite
the C, in line with the MEP analysis of Figure 5b, which evidences a more intense σ-hole
opposite the Se–N bond. The HBs energies are quite similar in the three complexes. The
ion-pair energies of complexes 15 and 16 show that the dimers, where the anion is opposite
the C–N bond, are significantly more favored than those where it is opposite the Se–C bond.
Finally, in compound 14, the ion-pair energy is significantly larger (−107.9 kcal/mol) due
to the higher nucleophilicity of the Cl-atom (in the other anions, the negative charge is
shared by all the O-atoms).

3. Materials and Methods

General remarks. All manipulations were carried out in air. All the reagents used in
this study were obtained from the commercial sources (Aldrich, TCI-Europe, Strem, ABCR).
Commercially available solvents were purified by conventional methods and distilled
immediately prior to use. NMR spectra were recorded on a Bruker Avance Neo (1H:
700 MHz); chemical shifts (δ) were given in ppm, coupling constants (J) in Hz. C, H, and
N elemental analyses were carried out on a Euro EA 3028HT CHNS/O analyzer. Mass-
spectra were obtained on a Bruker micrOTOF spectrometer equipped with an electrospray
ionization (ESI) source; a MeOH, CH2Cl2, or MeOH/CH2Cl2 mixture was used as a solvent.
2-Pyridylselenylbromide and di(2-pyridyl)diselenide were prepared as reported earlier [37].
2-Pyridylselenylchloride was obtained by the method reported earlier [38].

X-ray crystal structure determination. The single-crystal X-ray diffraction data for
6, 8, 11, and 14 were collected on the ‘RSA’ beamline of the National Research Center
‘Kurchatov Institute’ (Moscow, Russian Federation) using a Rayonix SX165 CCD detector.
A total of 720 images for two different orientations in the case of each crystal were collected
using an oscillation range of 1.0◦ and ϕ scan mode. The data were indexed and integrated
using the utility iMOSFLM in the CCP4 program [39] and then scaled and corrected
for absorption using the Scala program [40]. The single-crystal X-ray diffraction data
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for 7, 8, 9, 10, 12, and 14 were collected on a three-circle Bruker D8 Venture (Kurnakov
Institute of General and Inorganic Chemistry, Russian Academy of Sciences) or Bruker D8
QUEST PHOTON-III CCD (Zelinsky Institute of Organic Chemistry, Russian Academy of
Sciences) diffractometers using ϕ and ω scan mode. The crystal structures of 10, 13, and 16
were determined by X-ray structural analysis using an automatic four-circle area-detector
diffractometer Bruker KAPPA APEX II with MoKα radiation (Frumkin Institute of Physical
Chemistry and Electrochemistry, Russian Academy of Sciences). The data were indexed and
integrated using the SAINT program [41] and then scaled and corrected for absorption
using the SADABS program [42]. Structures 10, 13, and 16 were solved by using the
SHELXT-2018/2 program [43]. All other structures were determined by direct methods
and refined by the full-matrix least squares technique on F2 with anisotropic displacement
parameters for non-hydrogen atoms. The hydrogen atom of the OH-group in 11 was
localized in the difference-Fourier map and refined isotropically with fixed displacement
parameters (Uiso(H) = 1.5Ueq(O)). The other hydrogen atoms in all compounds were placed
in calculated positions and refined within a riding model with fixed isotropic displacement
parameters (Uiso(H) = 1.5Ueq(C) for the CH3-groups and 1.2Ueq(C) for the other groups).
All calculations were carried out using the SHELXTL program [44]. Crystallographic data
for all investigated compounds were deposited with the Cambridge Crystallographic Data
Center, CCDC 2174270–2174282. Copies of this information may be obtained free of charge
from the Director, CCDC, 12 Union Road, Cambridge CHB2 1EZ, UK (Fax: +44-1223-336033;
e-mail: deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk).

Computational details. DFT calculations were carried out on the X-ray coordinates (SI)
at theωB97X-D3/def2-TZVPP level of theory using ORCA 4.2.1 [45,46]. MultiWFN 3.8 [47]
was used to perform the QTAIM analyses to obtain critical points of electron density,
corresponding bond paths, and characteristics and to plot reduced density gradient plots.
Natural bond orbital theory (NBO) calculations were made by means of NBO 5.9 suite [48].
Molecular electrostatic potential maps were visualized using VMD 1.9.3 [49].

Synthesis of compounds 4−16.
Synthesis of 4. Bis(trifluoroacetoxy)iodo)benzene (PIFA) (30.0 mg, 0.07 mmol) in Et2O

(1 mL) was added to 2,2′-dipyridyldiselenide (21.9 mg, 0.07 mmol) in Et2O (1 mL), and
the reaction mixture was left without stirring for 3 h. After that, a solution was decanted
from colorless crystalline precipitate, which was washed with Et2O (3 × 1 mL) and dried
under vacuum. Yield: 16.2 mg (42%). Elem. anal. calcd for C7H4F3NO2Se: C, 31.13; H,
1.49; N, 5.19. Found: C 31.28; H 1.53; N 4.95. 1H NMR (700 MHz, CD3OD) δ 8.71 (1H, d,
J = 4.7 Hz, H6), 8.13 (1H, td, J = 7.7, 1.7 Hz, H4), 8.08 (1H, d, J = 7.8 Hz, H5), 7.63 (1H, ddd,
J = 7.4, 4.7, 1.1 Hz, H3), 13C{1H} NMR (176 MHz, CD3OD) δ 166.9 (Py-C2), 151.6 (Py-C6),
139.7 (Py-C4), 128.4 (Py-C5), 122.2 (Py-C3), CF3C(O)O signals were not observed. 19F NMR
(659 MHz, CD3OD) δ –76.94.

Synthesis of 5. The solution of PIFA (29.3 mg, 0.07 mmol) and acetonitrile (100 µL) in
Et2O (0.5 mL) was added to 2,2′-dipyridyldiselenide (20.8 mg, 0.07 mmol) in Et2O (0.5 mL),
and the reaction mixture was left without stirring for 3 h. After that, a solution was decanted
from colorless crystalline precipitate, which was washed with Et2O (3 × 1 mL) and dried
under vacuum. Yield: 24 mg (56%). 1H NMR (700 MHz, D2O) δ 9.34 (d, J = 6.8 Hz, 1H),
8.80 (d, J = 8.7 Hz, 1H), 8.41 (t, J = 8.4 Hz, 1H), 8.04 (t, J = 7.0 Hz, 1H), 3.01 (s, 3H). 13C{1H}
NMR (176 MHz, D2O) δ 167.5, 162.9 (q, J = 35.4 Hz), 156.2, 139.3, 136.2, 125.6, 122.9, 116.3
(q, J = 291.6 Hz), 17.2 (CH3). 19F NMR (659 MHz, D2O) δ −75.60.

Synthesis of 6. The solution of PIFA (30.0 mg, 0.07 mmol) and trichloroacetonitrile
(100 µL) in Et2O (0.5 mL) was added to 2,2′-dipyridyldiselenide (21.8 mg, 0.07 mmol) in
Et2O (0.5 mL), and the reaction mixture was left without stirring for 12 h. After that, a
solution was decanted from colorless crystalline precipitate, which was washed with Et2O
(3 × 1 mL) and dried under vacuum. Yield: 37 mg (64%). 1H NMR (700 MHz, D2O) δ 9.95
(d, J = 7.0 Hz, 1H), 8.95 (d, J = 8.7 Hz, 1H), 8.51 (t, J = 8.0 Hz, 1H), 8.13 (t, J = 7.1 Hz, 1H).
13C{1H} NMR (176 MHz, D2O) δ 171.6, 162.3 (q, J = 35.4 Hz), 148.1, 140.1, 138.3, 126.4, 123.2,
116.3 (q, J = 291.8 Hz), 87.5. 19F NMR (659 MHz, D2O) δ −75.58.
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Synthesis of 7. The solution of PIFA (45.0 mg, 0.1 mmol) and hexanenitrile (29.2 mg,
0.34 mmol) in Et2O (1.0 mL) was added to 2,2′-dipyridyldiselenide (32.9 mg, 0.1 mmol)
in Et2O (1.0 mL), and the reaction mixture was left without stirring for 3 h. After that,
a solution was decanted from colorless crystalline precipitate, which was washed with
Et2O (3 × 1 mL) and dried under vacuum. Yield: 28 mg (74%). 1H NMR (700 MHz, D2O) δ
9.37 (d, J = 6.8 Hz, 1H), 8.80 (d, J = 8.6 Hz, 1H), 8.40 (t, J = 7.9 Hz, 1H), 8.02 (t, J = 7.0 Hz,
1H), 3.34 (t, J = 7.5 Hz, 2H), 2.00 (p, J = 7.5 Hz, 2H), 1.49 (p, J = 7.8, 7.4 Hz, 2H), 1.40 (h,
J = 7.3 Hz, 2H), 0.91 (t, J = 7.3 Hz, 3H). 13C NMR (176 MHz, D2O) δ 167.7, 159.2, 139.3, 135.9,
125.8, 122.8, 116.3 (q, J = 291.9 Hz), 30.7, 30.3, 24.2, 21.6, 13.1. CF3C(O)O signal was not
observed. 19F NMR (659 MHz, D2O) δ −75.61.

Synthesis of 8. 2-Pyridylselenyl chloride (89 µmol, 15.1 mg) was suspended in Et2O
(4 mL), then trichloroacetonitrile (1 mL) was added, and the mixture was stirred at room
temperature for 12 h. Colorless precipitate formed was filtered, dried under vacuum, and
redissolved in MeOH (3 mL). Addition of the MeOH solution (100 µL) of NaAuCl4 (50 mg)
resulted in the formation of yellow microcrystalline precipitate. Yield: 27 mg (54%). Elem.
anal. calcd for C7H4AuCl7N2Se: C, 13.13; H, 0.63; N, 4.38. Found: C 13.36; H 1.11; N 4.32.
1H NMR (700 MHz, CD3OD) δ 9.98 (dt, J = 7.0 Hz, 1H, H5), 9.06 (dt, J = 8.7 Hz, 1H, H8),
8.55 (ddd, J = 8.6 Hz, 1H, H7), 8.17 (td, J = 7.0 Hz, 1H, H6). 13C{1H} NMR δ 174.3 (C3), 149.3
(C9), 141.0 (C5), 139.7 (C8), 128.3 (C7), 124.4 (C6), 89.6 (CCl3). MS (ESI+), found: 300.8592
[M–AuCl4]+; calcd for C7H4Cl3N2Se: 300.8600.

Synthesis of 9. 2-Pyridylselenyl chloride (260 µmol, 20 mg) and trichloroacetonitrile
(1.30 mmol, 130 µL) were stirred in Et2O (4 mL) at room temperature for 12 h. After
that, solvent was evaporated, the residue was redissolved in MeOH (3 mL), and 40 µL of
perrhenic acid (70 wt%) was added. Colorless precipitate, which gradually formed, was
filtered, washed with Et2O (3 × 3 mL), and dried under vacuum. Yield: 44 mg (76%). Elem.
anal. calcd for C7H4Cl3N2O4ReSe: C, 15.24; H, 0.73; N, 5.08. Found: C 15.52; H 0.95; N 5.06.
1H NMR (700 MHz, D2O) δ 9.95 (1H, dd, J = 6.8, 1.2 Hz, H5), 8.95 (1H, dd, J = 8.6, 1.4 Hz,
H8), 8.50 (1H, ddd, J = 8.5, 7.2, 1.1 Hz, H7), 8.13 (1H, td, J = 7.1, 1.4 Hz, H6). 13C{1H} NMR
δ 171.7 (C3), 148.1 (C9), 140.1 (C5), 138.3 (C8), 129.1 (CCl3), 126.4 (C7), 123.1 (C6).

Synthesis of 10. 2-Pyridylselenyl chloride (93 µmol, 25 mg) and trichloroacetonitrile
(50 µL) were stirred in Et2O (4 mL) at room temperature for 12 h. After that, solvent
was evaporated, the residue was redissolved in MeOH (3 mL), 10 µL of pertechnetic acid
(5 M) was added, and the mixture was left for 3 h until colorless crystals formed. Yield:
44 mg (73%).

Synthesis of 11. 2-Pyridylselenyl chloride (89 µmol, 14.5 mg) was suspended in Et2O
(5 mL), then trichloroacetonitrile (1 mL) was added, and the mixture was stirred at room
temperature for 12 h. Colorless precipitate formed was filtered, dried under vacuum, and
redissolved in MeOH (3 mL). Addition of the saturated MeOH solution of NaBPh4 (100 µL)
resulted in the formation of microcrystalline precipitate. Yield: 19.2 mg (72%). Elem. anal.
calcd for C31H24BCl3N2Se: C, 59.99; H, 3.90; N, 4.51. Found: C 60.31; H 3.79; N 4.48. 1H
NMR (700 MHz, D2O) δ 9.76 (dd, J = 6.9 Hz, 1H, H5), 9.13 (dt, J = 8.7 Hz, 1H, H8), 8.46
(ddd, J = 8.5 Hz, 1H, H7), 8.10 (td, J = 7.0 Hz, 1H, H6). 13C{1H} NMR δ 173.1 (C3), 163.4 (dd,
J = 98.6, 49.3 Hz, ipso-C from Ph’s), 146.7 (C9), 139.5 (C5), 137.9 (C8), 135.6 (o-C from Ph’s),
127.5 (C7), 125.3 (m-C from Ph’s), 123.2 (C6), 121.5 (p-C from Ph’s), 88.3 (CCl3).

Synthesis of 12. 2-Pyridylselenyl chloride (104 µmol, 20 mg) and chloroacetonitrile
(312 µmol, 31 µL) were stirred in Et2O (4 mL) at room temperature for 12 h. After that,
solvent was evaporated, the residue was redissolved in MeOH (3 mL), and 40 µL of
perrhenic acid (70 wt%) was added. Colorless precipitate, which gradually formed, was
filtered, washed with Et2O (3 × 3 mL), and dried under vacuum. Yield: 37 mg (74%). Elem.
anal. calcd for C7H6ClN2O4ReSe: C, 17.42; H, 1.25; N, 5.80. Found: C 17.45; H 1.21; N 5.83.
1H NMR (600 MHz, D2O) δ 9.51 (1H, d, J = 6.8 Hz, H5), 8.86 (1H, d, J = 8.7 Hz, H8), 8.46
(1H, t, J = 8.0 Hz, H7), 8.09 (1H, t, J = 7.0 Hz, H6), 5.35 (2H, s, CH2). 13C{1H} NMR δ 168.7
(C3), 152.9 (C9), 139.8 (C5), 136.4 (C8), 126.1 (C7), 123.3 (C6), 37.7 (CH2).
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Synthesis of 13. 2-Pyridylselenyl chloride (93 µmol, 25 mg) and chloroacetonitrile
(312 µmol, 31 µL) were stirred in Et2O (4 mL) at room temperature for 12 h. After that,
solvent was evaporated, the residue was redissolved in MeOH (3 mL), 10 µL of pertechnetic
acid (5 M) was added, and the mixture was left for 3 h until colorless crystals formed. Yield:
36 mg (70%).

Synthesis of 14. 2-Pyridylselenyl chloride (500 µmol, 100 mg) and fluoroacetonitrile
(10 µmol, 60 mg) were stirred in Et2O (4 mL) at room temperature for 12 h. Colorless
precipitate, which gradually formed, was filtered, washed with Et2O (3 × 3 mL), and dried
under vacuum. Yield: 110 mg (78%). Elem. anal. calcd for C7H6ClFN2Se: C, 33.42; H, 2.40;
N, 11.14. Found: C 33.48; H 2.41; N 11.18. 1H NMR (700 MHz, D2O) δ 9.38 (d, J = 6.8 Hz,
1H), 8.79 (d, J = 8.7 Hz, 1H), 8.37 (t, J = 8.0 Hz, 1H), 7.99 (t, J = 7.0 Hz, 1H), 5.99 (d, J = 45.9 Hz,
2H). 13C{1H} NMR (176 MHz, D2O) δ 168.6, 152.3 (d, J = 19.8 Hz), 140.0, 136.3, 126.1, 123.4,
78.0 (d, J = 172.4 Hz). 19F NMR (659 MHz, D2O) δ 212.70 (t, J = 45.9 Hz).

Synthesis of 15. 2-Pyridylselenyl chloride (520 µmol, 100 mg) and fluoroacetonitrile
(10 µmol, 60 mg) were stirred in Et2O (4 mL) at room temperature for 12 h at room
temperature. After that, solvent was evaporated, the residue was redissolved in MeOH
(3 mL), and 100 µL of perrhenic acid (70 wt %) was added. Colorless precipitate, which
gradually formed, was filtered, washed with Et2O (3 × 3 mL), and dried under vacuum.
Yield: 213 mg (81%). 1H NMR (700 MHz, D2O) δ 9.38 (d, J = 6.8 Hz, 1H), 8.77 (d, J = 8.7 Hz,
1H), 8.37 (t, J = 8.0 Hz, 1H), 7.99 (t, J = 7.0 Hz, 1H), 5.99 (d, J = 45.9 Hz, 2H). 13C NMR
(176 MHz, D2O) δ 168.5, 152.4, 140.0, 136.2, 126.0, 123.4, 78.0 (d, J = 172.1 Hz).

Synthesis of 16. 2-Pyridylselenyl chloride (93 µmol, 25 mg) and fluoroacetonitrile
(50 µL) were stirred in Et2O (4 mL) at room temperature for 12 h. After that, solvent
was evaporated, the residue was redissolved in MeOH (3 mL), 10 µL of pertechnetic acid
(5 M) was added, and the mixture was left for 3 h until colorless crystals formed. Yield:
37 mg (73%).

4. Conclusions

In conclusion, we prepared and structurally characterized a series of 1,2,4-selenodiazolium
salts with various anions. Trifluoroacetate derivatives were obtained via novel Se–Se bond
scission reaction of 2,2′-dipyridyl diselenide with bis(trifluoroacetoxy)iodo)benzene in the
presence of corresponding nitriles. The reactive 2-pyridylselenyl trifluoroacetate was also
isolated and structurally characterized with the help of the X-ray single crystal analysis,
which revealed that 4 forms supramolecular dimers in the solid state via a pair of equivalent
Se· · ·N ChB interactions. The dimers of 4 featured short and strong ChB contacts Se· · ·O
(21.5 kcal/mol) and Se· · ·N (24.9 kcal/mol) and terminal binding with trifluoroacetate
anion. In contrast, selenodiazolium cations bind trifluoroacetate via a pair of “chelating”
Se· · ·O and H· · ·O non-covalent interactions, which is geometrically allowed.

1,2,4-Selenodiazolium trifluoroacetates or halides show good solubility in water. In con-
trast, (AuCl4)−, (ReO4)−, or (TcO4)− derivatives immediately precipitate from aqueous solu-
tions. This fact makes selenodiazolium cations attractive for anion precipitation purposes.

The binding of AuCl4−, ReO4
−, and TcO4

−with model pyridine-fused 1,2,4-selenodiazolium
cations, carrying halogen substituents in the core, was further regarded. To the best of
our knowledge, this is the first study to regard perrhenate and pertechnetate as acceptors
in ChB interactions. In these supramolecular complexes, selenodiazolium cations act as
polyfunctional ChB, HB, and XB donors, as well as ChB acceptors. Regardless of the
nature of the anion, the combination of directional Se· · ·O ChB and H· · ·O HB dictates the
position of the anion in the supramolecular complex. In 8, featuring the AuCl4− anion, the
presence of intricate combination of Cl···Cl, H···Cl, Se···Cl, and Cl···Au interactions was
observed, involving the tetrachloroaurate anion and the trichloromethyl group. A more
detailed and systematic study of selenodiazolium complexes with AuCl4− is required and
will be published soon by our group.

In 8, selenodiazolium cations form supramolecular dimers via two antiparallel Se···N
interactions. Switching from AuCl4− to ReO4

− and TcO4
− did not result in dimers rupture.
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The ReO4
− or TcO4

− anion again formed a bifurcated Se· · ·O and H· · ·O position. How-
ever, switching to BPh4

− did result in the dimer rupture due to the formation of stronger
Se· · ·π interactions. Small structural variations (switching from CCl3 to CH2Cl or CH2F) in
the aliphatic substituent of the cation did not have any dramatic influence on the overall
situation. However, for 13, 15, and 16, we observed 2Se–2N rupture and supramolecular
dimerization via two bridging ReO4

− or TcO4
− anions.

The structural and computational results presented here will be useful for further
developments in anion recognition, and precipitation involving more elaborated water-
soluble cationic 1,2,4-selenodiazoles, designed for specific anions, is currently underway in
our laboratory and will be reported in a due course.
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