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Abstract

The level of the vitamin D in the bloodstream is regulated by cytochrome P450 enzyme 24-

hydroxylase A1 (CYP24A1). Over expression of CYP24A1 enzyme is correlated with vita-

min D deficiency and resistance to vitamin D therapy. Chronic kidney disease (CKD)

patients are commonly reported with the above said expression variations. This deregula-

tion could be solved by ligands that act as a vitamin D receptor (VDR) agonists and

CYP24A1 antagonists. Posner et al., (2010) first time reported two new vitamin D analogues

namely CTA-091 and CTA-018 to inhibit CYP24A1. The CTA-018 inhibited CYP24A1 with

an IC50 27 ± 6 nM (10 times more potent than the ketoconazole (253 ± 20 nM)). CTA-018

induced VDR expression (15-fold lower than 1α,25(OH)2D3) and is under phase II clinical

trial, whereas CTA-091 was not able to efficiently induce the VDR expression (>2000 nM).

To explore the molecular mechanism, binding specificity of these two vitamin D analogues

along with native ligand was extensively studied through in silico approaches. Through

molecular dynamics simulations studies, we shown that the sulfonic group (O = S = O) in the

side chain of CTA-018 plays an important role in the regulation of VDR agonistic activity.

The electron lone pairs of the sulfonic group that interacted with His393 lead to be a factor

for agonistic mechanism of VDR activity. Compared to azol-based compounds, CTA-018

binds the different sites in the CYP24A1 binding cavity and thus it could be a potent antago-

nistic for CYP24A1enzyme.

Introduction

Worldwide, Chronic kidney disease (CKD) is a major public health problem; it is one of the

high-risk factors for hypertension and diabetes [1] patients. Progressive reduction of circulat-

ing 1α,25-dihydroxy vitamin D3 (1α, 25(OH)2D3) and 25-hydroxyvitamin D3 (25(OH)2D3)

are common expression variation observed in CKD patients [2]. Several vitamin D analogues

like 1α,25(OH)2D3 (i.e., calcitriol) and 25(OH)2D3 (i.e., cholecalciferol) were used for the treat-

ment of secondary hyperparathyroidism (sHPT) among CKD patients but their efficacy is
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often limited since it triggers hypercalcemia [3] and also the efficacy of these drugs is largely

determined by efficient binding with VDR.

The VDR transcriptional activity has been regulated by numerous factors such as ligand

binding affinity, ligand-dependent recruitment of co-activators or dissociation of repressors,

efficiency of the ligand uptake into the target cell, tissue specificity and different metabolism of

ligands [4]. The efficacy of VDR therapies is also regulated by the intracellular factors like

Extra-renal 1α-hydroxylase (CYP27B1) it permits localized synthesis of additional 1α,25

(OH)2D3; Cytochrome P450 enzyme 24-hydroxylase (CYP24A1) metabolizes 1α,25(OH)2D3,

25(OH)D3 and administers analogues by hydroxylation reaction [5].

The CKD pathogenesis has influenced by the genes FGF23, CYP24A1 and VDR [2,6].

FGF23 is the recently reported regulator of phosphate and mineral metabolism; it mainly

regulates the renal phosphate excretion. FGF23 levels are increased among CKD patients

and many cross sectional studies demonstrated that an inverse relationship have observed in

glomerular filtration rate (GFR) with an inverse kidney function [7,8]. The increased level of

FGF23 leads to the over expression of CYP24A1 mRNA in the kidney [9,10]. The of 25

hydroxyvitamin D3 (25–OHD3) and its hormonal form, 1, 25- di hydroxyvitamin D3 (1,25-

(OH)2D3) was catabolished into 24-hydroxylated products for excretion by the enzyme

CYP24A1[2]. Further, the active form of the VDR mediates a wide variety of biological

actions such as cell proliferation and differentiation, calcium homeostasis, immune modula-

tion, neurological functions and bone mineralization [11]. The over-expression of the

CYP24A1 leads to dysfunction of the VDR as it over metabolized the 25OHD3 and 1,25

(OH)2D3. Thus, CKD patients ought to experience vitamin D deficiency and subsequent

osteoporosis [12].

A 25-methyl ether version of the natural hormone 1α,25(OH)2D3 was first reported by the

DeLuca group in 1987 which retained most of the pro-differentiation activities of 1α,25

(OH)2D3 [13]. Till date, numerous vitamin D analogues are reported to show agonistic activity

against the VDR. The common structure of Vitamin D analogues comprises four major clas-

ses: The A ring analogues [14], the seco B ring analogues [15], the C/D ring analogues [16],

and the side chain analogues [17]. Most of the analogues have been modified around the side

chain, since it determines the agonistic and antagonistic nature of the compounds. The basic

architecture of vitamin D analogues is shown in Fig 1.

The three-dimensional structure of the VDR was modeled by Yamamoto, et al. [18] and the

importance of His397 interaction in the agonistic mechanism was identified by site directed

mutagenesis. Darimont, et al. (1998) [19] reported that helix 12 (Leu325 –Ser401) folding

plays a crucial role and ligand modulated interface for interaction with the co-activator pro-

teins. Some other computational studies also had shown the good VDR agonistic activity of

vitamin D analogues [20]. Cumulatively all these studies indicate that side chain modification

might have vital role in VDR activity.

Posner, et al. [21] had designed two promising vitamin D analogues: The sulfoximine MK-

24(S)-S(O)(NH)-Ph-1 (CTA091—potent, selective and non-calcemic inhibitor) and the sul-

fone GHP-GH-16,23-diene-25S02-1 (CTA018/MT2832—potent activator of VDR-mediated

transcription and low calcemic inhibitor of CYP24A1) CTA-018, which has a high affinity

with VDR (15-fold lower than 1α25(OH)2D3) as well as CYP24A1 (IC50 27 ± 6 nM, about 10

times more potent than the non-selective CYP24A1 inhibitor ketoconazole (253 ± 20 nM).

The CTA-091 did not show any measurable affinity for the VDR whereas CTA-018 bound to

the VDR with 15-fold lower affinity than 1α,25(OH)2D3. The in vitro and in vivo studies clearly

explained that both the vitamin D analogues are readily bound to the substrate binding pocket

of CYP24A1 and target the HEM group at the catalytic core of the enzyme. However, CTA-

018 induced VDR-mediated gene expression rather than CTA-091, as it is unable to induce
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the VDR expression. Consistent with these findings, CTA-018 is a selective drug candidate to

treat CKD and sHPT among people who regularly undergo hemodialysis.

The ligand binding sites (His305 (His301 in rat) and His397 (His393 in rat)) of the VDR

was identified by Kakuda, et al. [22] using X-ray crystallographic studies. VDR activity is

mainly governed by these two amino acids. The biological and biochemical properties of

CTA-018 was studied in detail but dynamic behavior in the active site of VDR and CYP24A1

remains unexplored.

In this work, specific role of the CTA-091 and CTA-018 compounds with the VDR and

CYP24A1 proteins were studied using molecular docking, molecular dynamics simulations,

binding free energy calculations, and density functional theory (DFT) calculations. These two

vitamin D analogues along with the reference ligands (we consider 1α25(OH)2D3 as a refer-

ence ligand for VDR and ketoconazole as a reference ligand for CYP24A1) were docked in the

active site of VDR and CYP24A1. Further, 200 ns MD simulations were carried out on eight

different models (VDR/Apo form, VDR/1α25(OH)2D3, VDR/CTA-091, VDR/CTA-018,

CYP24A1/Apo form, CYP24A1/Ketoconazole, CYP24A1/CTA-091, and CYP24A1/CTA-018)

in order to assess the structural and dynamical changes in the active sites of both the protein

complexes. A total of 100 different molecular trajectories were collected from the molecular

dynamics study. A molecular mechanics-generalized born/surface area (MM-GBSA) analysis

was carried out on the basis of the collected MD trajectories for six different models. Finally,

DFT calculations were carried out to analyze the activity of the molecules. The outcome of this

paper will pave the way to understand the behavior of newly identified compounds (CTA-091

& CTA-018) at the atomic level.

Fig 1. The basic skeleton of vitamin D analogues.

https://doi.org/10.1371/journal.pone.0203194.g001
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Materials and methods

All computational analyses were carried out on the red hat 5.1 Linux platform.

Preparation of protein structure

The rat CYP24A1 was selected for study because human CYP24A1 protein structure is not

available and the newly identified vitamin D analogues have tested against rat animal model.

The crystal coordinates of rat VDR in complex with partial agonist 26-adamantyl-23-yne-

19-norvitamin D were downloaded from the Protein Data Bank. The sequence identity of

human and rat VDR show 94% similarity in its sequence and the active site region is similar to

both the species. For easy reference, we selected both the proteins from rat species. Thus, we

performed our in silico analysis on rat crystal structures. The 3D structures of the vitamin D

receptor (PDB id –3A2H) [22] and CYP24A1 (PDB id– 3K9V) [23] were retrieved from the

Protein Data Bank and further prepared by protein preparation wizard using OPLS_2005

force field [24]. The VDR crystal structure contains numerous missing residues. Thus, while

preparing, the missing residues were modeled using PRIME module of Schrodinger [25]. In

CYP24A1 protein, the localized charge on the Iron was chosen as Fe2+. Initially, chemical

accuracy was ensured for the structure. Further, hydrogen atoms were added and unwanted

water molecules beyond 5Å were removed from the protein structure. Further, side chains that

are neither close to the binding cavity nor involved in the formation of salt bridges were neu-

tralized in order to reduce the CPU time. The energy was minimized until the average root

mean square deviation (RMSD) of the non-hydrogen atoms reached 0.3 Å. The minimized

structure should not deviate more from the original crystal structure. Thus, we kept 0.3 Å as

the cut-off value for the energy minimization.

Ligand structure prediction

Active vitamin D (CID—5280453) CTA-091, CTA-018 (CID 10672195), ketoconazole (CID–

456201) compounds were prepared using Ligprep 2.8 [26] module in Schrodinger maestro.

Hydrogen atoms were added to the ligand molecules and the bond order of these ligands was

fixed by LigPrep module. Epik was used to ionize the ligands with the pH range of 5.0–9.0.

The individual stereotypes of each ligand were extensively analyzed by generating the most

probable tautomers and possible stereo isomers [26, 27]. The 2D diagrams of the four com-

pounds are shown in Fig 2.

Molecular docking simulations

Two different sets of docking studies were performed, In the first set, 1α25 (OH)2 D3 (refer-

ence ligand), CTA-091, and CTA-018 were docked in the VDR active site. In the second set,

ketoconozole (reference ligand), CTA-091, and CTA-018 were docked in the CYP24A1 active

site. The van der Waals radii of receptor atoms were scaled by 1.00 Å with a partial atomic

charge of 0.25 Å. Grid boxes were generated at the centroid of ligand present in VDR and

CYP24A1 active sites. All the docking protocols were carried out with the extra precision (XP)

mode of Glide docking which docked ligand flexibly. We scaled van der Waal radii of receptor

atoms by 1.00 Å with a partial atomic charge of 0.25 Å. A grid box with coordinates X = 11.44

Å, Y = 10.95 Å, Z = 7.42 Å (box range 28.30 Å) was generated at the centroid of the active site

in case of VDR and X = 12.52 Å, Y = 11.26 Å, Z = 9.87 Å (box range 30.25 Å) in case of

CYP24A1 models. Extra precision (XP) mode of the flexible docking was used for all docking

protocol. The Glide XP docking methodology was adopted as like explained in Singh and

Muthusamy [28]. The docked complex with lowest energy was selected for further studies.
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Molecular dynamics simulations

Eight models (VDRapo, VDR1α,25(OH)2D3, VDRCTA-091, VDRCTA-018, CYP24A1apo,

CYP24A1ketoconozole, CYP24A1CTA-091 and CYP24A1CTA-018) were given as input structure

for molecular dynamics (MD) simulation studies. All MD simulations were carried out in

GROMACS 4.6.3 [29] with the united atom Gromos9643a1 force field in NVT and NPT

environment under the periodic boundary conditions. The ligand coordinates file and

ligand topology file were generated externally in the PRODRG server and then it was

included with the GROMACS topology file. Each of the eight models was placed in a cubic

box containing pre-equilibrated water molecules described by the simple point charge water

model. The cubic box dimension is 10.60 × 11.21 × 10.51 (all in Å) in the case of VDR mod-

els and 11.24 × 12.54 × 10.58 (all in Å) in the case of CYP24A1 models. In the VDR, three

Na+ ions were replaced with water molecules, whereas in the CYP24A1 enzyme five Cl- ions

were replaced with water molecules at random positions in order to make the model system

neutral. The leap-frog integrator was used for MD simulation step. The whole system was

minimized on the basis of the steepest descent method with 50,000 minimization steps and

a tolerance of 1000 kJ mol-1 nm-1. Particle mesh Ewald (PME) method was applied for the

electrostatic and van der Waals (vdW) interactions with a cutoff distance of 1.0 nm for

short-range neighbor list (rlsit) and 1.0 nm for coulomb cutoff (rcoulomb) and 1.0 nm for

Fig 2. The 2D diagram of the drug molecules (A) 1α25(OH)2D3,(B) ketoconazole,(C) CTA-091 and (D) CTA-018 used in this study and

their corresponding EC50 against VDR and IC50 against CYP24A1.

https://doi.org/10.1371/journal.pone.0203194.g002
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the vdW interactions. The Nose-Hoover heat bath with a tau value of 0.5 ps and Parrinello-

Rahman barostat with a tau value of 1.0 ps were used for the temperature and pressure cou-

pling respectively. In the CYP24A1 enzyme, HEM group was parameterized with the default

parameters available in Gromos9643a1 force field.

A total of 200 ns simulations were carried out in the MD production step. Constant pres-

sure and temperature (298K) was maintained for all MD simulations. The 200 ns MD simula-

tion trajectories were saved at 2 fs time interval throughout the whole simulation period and it

was analyzed for further calculations. Secondary structure was analyzed using DSSP [30]. Fig-

ures of the molecular structures were generated with Pymol [31] and Schrodinger Maestro

[32].

Essential dynamics

The dominant motion of a protein over the GROMACS simulation was determined using the

essential dynamics technique based on the statistical principal component analysis (PCA) [33].

A covariance matrix was constructed from the atomic fluctuations in a trajectory, which

yielded a set of eigenvectors and eigenvalues. The translational and rotational motions of the

trajectory were removed before proceeding with this step. The eigenvectors indicate the direc-

tions of motions and the eigenvalues indicate the amount of motion along with the eigenvec-

tors. Most of the variance in the first and second principal components is typically explained

by PCA analysis. The time dependence of protein motion along with eigenvectors was

explained by projections of the trajectories and individual eigenvectors [34].

Free energy calculations

100 different conformers were generated for each model from MD trajectories and binding

free energy was calculated for each conformer. Prime MM/GBSA method was used to calculate

the binding free energy for a set of ligands to receptor. The energy was minimized by using the

local optimization feature in Prime, and the energies of the complex were calculated using the

OPLS_2005 force field and the GB/SA continuum solvent model. The binding free energy is

calculated as follows [35,36],

DGbind ¼ DE þ DGsolv þ DGSA ð1Þ

DE ¼ Ecomplex � Eprotein � Eligand ð2Þ

where Ecomplex, Eprotein and Eligand are the minimized energies of the protein-ligand complex,

protein and ligand respectively. The methodologies were adopted as explained in the publica-

tions [28,37]. The average mean binding free energy was considered for each complex.

Density Functional Theory calculations

The four compounds were subjected to the Density Functional Theory (DFT) calculations.

DFT calculations can be used to calculate the electronic molecular features such as molecular

electrostatic map, electron density, and frontier molecular orbital density fields (i.e., HOMO,

LUMO), which can explain the molecular properties and biological activity. The DFT calcula-

tions were performed with Jaguar [38] on the basis of solvation state. The DFT was analyzed

through Becke’s three-parameter exchange potential and the Lee-Yang-Parr correlation func-

tional (B3LYP) using basic set of 6-31G��++ level (Jaguar) in PBF solvation. In the present

work, 3D-molecular electrostatic potentials (MESP) V(r) at a point r because of a molecular

system with nuclear charges {ZA} located at {RA} and the electron density ρ (r) were derived
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using the following equation.

VðrÞ ¼
XN

A¼1

ZA

jr � RAj
�

ð
rðr0Þd3r0

jr � r0j
ð3Þ

In this equation, N represents the total number of nuclei in the molecule and the two terms

refer to the bare nuclear potential and the electronic contributions, respectively. We computed

the Jaguar dipole moment, Molecular electrostatic properties, lowest unoccupied molecular

orbital (LUMO), including MESP and the highest occupied molecular orbital (HOMO)

energy. The electrostatic potentials were calculated by van der Waals contact surface area of

the molecule. The overall molecular size and the positive electrostatic potentials are indicated

by color coded surface values. The most negative electrostatic potential is colored deep red and

the most positive electrostatic potential is colored deep blue. The intermediate yellow, orange,

green shades indicate the intermediate ranges of reactivity [38].

Results and discussion

Molecular docking and molecular dynamics—Phase I

In the Phase-I, we displayed and discussed the VDR models results.

Molecular docking and binding mode analysis of VDR. The grid was generated for

VDR (PDB id– 3A2H) around the co-crystallized ligand (TEI-9647). The 1α, 25 (OH)2D3,

CTA-091, and CTA-018 were docked in the VDR active site. In the VDR active site, the ligands

were in good agreement with the available crystal structures. In the VDR1α25(OH)2D3 complex,

a hydroxyl group of (-OH) polar/uncharged Ser233 interacted with the ligand molecule (0.18

nm, HO. . .HO). In addition, nitrogen atom from the cyano group (-CN) of charged His301

interacted with the hydrogen atom of the side chain hydroxyl group (-OH) in the ligand mole-

cule (0.19 Å, CN. . .HO). Another hydrogen atom from the amino group (-NH) of charged

His393 interacted with the side chain oxygen atom in the hydroxyl group (-OH) of the ligand

molecule (0.19 Å, CN. . .OH) (Fig 3a). In the case of VDRCTA-091, we could find a major inter-

action with His301. The nitrogen atom from the cyano group (-CN) interacted with the hydro-

gen atom in the hydroxyl group of ligand molecule side chain (0.19 Å, CN. . .HO). The

hydrogen atom from the hydroxyl group (-OH) of Tyr143 interacted with the oxygen atom of

the ligand molecule (0.22 nm, OH. . .OH). One more additional interaction was observed

between the oxygen atom from the hydroxyl group of Ser274 and the hydrogen atom of the

ligand molecule (0.21 nm, HO. . .HO) (Fig 3b). In VDRCTA-018, the oxygen atom from the

hydroxyl group (-OH) of uncharged Ser274 was interacted with the hydrogen atom in the

hydroxyl group (-OH) of the ligand molecule (0.19 nm, HO. . .HO). Notably, the hydrogen

atom from the amino group (-NH) of charged His393 interacted with an oxygen atom of the

sulfonyl group (O = S = O) in the ligand molecule (0.20 nm, NH. . . O = S = O) (Fig 3c). The

docking results are shown in Table 1.

The experiential results shown that, His393 and His301 are the important amino acids that

control the VDR agonistic and antagonistic activities [22]. The folding of helix 12 is facilitated

by the H-bond interaction with His393 and it was considered as a key interaction required for

folding. This corrected folding is responsible for the VDR agonistic activity. In addition,

through mutational analyses, it was found that His301 interaction was essential for the VDR

antagonistic activity. Interestingly, this molecular docking result is very well correlated with

the results of crystallographic study. In VDR1α25 (OH)2D3, we could find both interactions

with His301 and His393, thus, it may act as agonist. However, in VDRCTA-091, the major inter-

action was only with His301 which made it as a full antagonist. InVDRCTA-018, we found the
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interaction was only with His393 because of the two oxygen atoms. Thus, the compound

CTA-018 is a more potent VDR agonist than 1α25(OH)2D3 and CTA-091.The interaction dia-

gram of the drug molecules in the active site of VDR is shown in Fig 3. Further, molecular

dynamics simulation studies were performed to study the importance of all the particular

ligands.

Moreover, the co-crystallized compound (TEI-9647) in the VDR active site is structurally

similar with the newly identified compounds (CTA-091 & CTA-018). In order to elucidate the

binding site orientation of these compounds in the VDR active site, it was displayed the super-

position of the co-crystallized compound with the three different compounds (1α25(OH)2D3,

CTA-091, CTA-018). The binding site orientation is shown in the S1 Fig.

Blind docking analysis. Before MD simulations, binding pocket of the VDR model was

analyzed as it contains two different binding sites for two specific functions. In the primary

site, calcitriol binds and functions as a ligand-regulated transcription factor to stimulate intes-

tinal calcium absorption, bone calcium resorption, etc. In the secondary site, the bile acids

Fig 3. The 2D representation of the compounds (A) 1α25(OH)2D3, (B) CTA-091 and (C) CTA-018 in the active

site of VDR.

https://doi.org/10.1371/journal.pone.0203194.g003
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(lithocholic acid (LCA) and 3-keto-LCA) bind and protect from their harmful effects in the

intestine [39]. In order to elucidate the binding specificity of our studied molecule, we per-

formed blind docking without importing active site information. Induced fit docking (IFD)

protocol was used, all the three vitamin D analogues (1α25(OH)2D3, CTA-091, and CTA-018)

were bound in the primary site which is essential for the VDR agonistic activity. It confirms

that, the compounds CTA-091 and CTA-018 were binding at the primary binding site. The

binding mode of the three different compounds in the active site of VDR is depicted in the S2

Fig.

Structural flexibility in VDR. The degree of conformational drift in the protein was

assessed by the backbone atoms with respect to the initial structure as a function of time. The

backbone RMSD plots of the four VDR models (VDRapo (cyan), (VDR1α,25(OH)2D3 (black),

VDRCTA-091 (red), and VDRCTA-018 (blue)) are shown in Fig 4a. Initially, in the first 5000ps,

the RMSD was raised due to “relaxation” of the models in water environment, which is com-

monly observed in all MD simulation types. The RMSD did not fluctuate convincingly, illus-

trating an average RMSD of less than 0.5 nm for the overall simulation period.

The largest fluctuation was observed in VDR1α,25(OH)2D3 (black). When the RMSD of

VDR1α,25(OH)2D3 (black) was gradually increased from 40 ns it fluctuated drastically between

80 ns and 120 ns. In contrast, the RMSD of the VDRCTA-091 (red) and VDRCTA-018 (blue) pro-

duced reasonably stable conformation in the overall simulation period. Initially, RMSD oscil-

lated between 0 and 40 ns and showed stable conformer after 40 ns. Although the RMSD of

VDRCTA-018(blue) fluctuated drastically at 25 ns, after that it maintained stable conformer

between 0.20 nm and 0.30 nm. After 40 ns both the newly identified compounds (CTA-

091and CTA-018) produced stable conformations as VDRapo (cyan).

Conformational changes of ligands in VDR active site. To assess the conformational

changes of the ligand molecule in the VDR active site, the RMSD of ligand molecules was cal-

culated with respect to the starting structure as a function of time. The RMSD plots of the

three VDR ligand models (1α,25(OH)2D3(black), CTA-091 (red), CTA-018 (blue)) are shown

in Fig 4b. As mentioned above, His393 and His301 are important amino acids that control the

agonistic and antagonistic activity of the VDR action [22]. Using this rationale, we explain the

behavior of the three different VDR ligand models. Although all the structures fluctuated in an

inappropriate way to each other, they all showed an average RMSD of less than 0.40 nm for the

entire simulation period.

Table 1. Glide XP docking results with interacting amino acids in the active site of VDR and CYP24A1.

Models Glide XP docking score Glide XP energy (kcal/mol) Glide XP Emodel (kcal/mol) Interacting amino acids

D-H. . .A

VDR

1α,25(OH)2D3

-15.45 -59.62 -85.36 (His393) NH. . .OH

OH. . . CN (His301)

OH . . .OH (Ser233)

VDR

CTA-091

-15.44 -59.51 -77.69 NH. . .CN (His301)

(Tyr143) OH. . .OH

OH. . .HO (Ser274)

VDR

CTA-018

-13.47 -48.48 -80.54 OH. . .HO (Ser274)

(His393) OH. . .O = S = O

CYP24A1

ketoconazole

-5.55 -49.21 -78.66 NH. . .O = C (Glu329)

π–π (Arg 128)

CYP24A1

CTA-091

-5.82 -40.48 -53.30 OH. . .O = C (Met246)

OH. . .O = C (Glu329)

CYP24A1

CTA-018

-5.47 -37.64 -47.45 OH. . .O = C (Met246)

https://doi.org/10.1371/journal.pone.0203194.t001
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The largest fluctuation was observed in VDRCTA-018 (blue), which indicates greater flexibil-

ity of this compound. The CTA-018 molecule has O = S = O unit which can act as a hydrogen

bond acceptor. In due course, the two oxygen atoms of O = S = O were involved in an interac-

tion with hydrogen atoms of His393 and functioned as an agonist for VDR action (Fig 4b).

However, not entirely, but alternative formation of hydrogen bonds between the His393 and

the two hydrogen bond acceptors (O = S = O) led to more fluctuation in the overall simulation

time (0.15 nm to 0.30 nm). In VDRCTA-091(red), the RMSD did not fluctuate significantly and

it maintained a proper simulation structure (< 0.30 nm) after some initial fluctuations. The

presence of two hydrogen bond acceptors (O = S = O) and one hydrogen bond donor (-NH)

of VDR CTA-091 (red) formed this stable conformation (Fig 4b). The hydrogen atom from

the amino group (-NH) interacted well with the nitrogen atom of His 301, which induced

antagonistic activity. The thiol group (O = S = O) did not form any hydrogen bond with the

VDR CTA-091 (red). Based on this theoretical finding, we reasoned that VDR CTA-091 (red)

could not induce VDR-mediated gene expression as reported by Posner, et al. [21]. In the

VDR1α,25(OH)2D3 complex, two hydrogen bonds were observed. However, the structure has a

hydrogen bond donor and a hydrogen bond acceptor in the same functional group (-OH). The

hydrogen atom from the—OH group interacted with the nitrogen atom of His301 and the oxy-

gen atom from the same group interacted with the nitrogen atom of His393. These interactions

made VDR1α,25(OH)2D3 (black) as partial agonist and partial antagonist. Due to the presence of

Fig 4. Time evolution of backbone RMSD (A) and ligand RMSD (B) of VDR models. VDRapo (cyan), VDR1α25(OH)2D3 (black),

VDRCTA-091 (red), VDRCTA-018(blue). Eigenvector index versus Eigenvalue index for the first ten eigenvectors of the VDR model

(C) and Projection of the motion of VDR models (D). VDRapo (green), VDR1α25(OH)2D3 (black), VDRCTA-091 (red), VDRCTA-018

(blue).

https://doi.org/10.1371/journal.pone.0203194.g004
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His301 and His393 interactions VDR1α,25(OH)2D3(black) is more fluctuating than VDR CTA-091.

Explicit analyses of ligand RMSD in the active site of VDR are shown in Table 2 and in S3 Fig.

Principal component analysis (PCA). Followed by molecular dynamics simulations, the

dimensionality of the coordinate data was reduced to identify the configurational space, which

contains only a few degrees of freedom where anharmonic motion occurs. The PCA method

takes the trajectory of a molecular dynamics simulation and extracts the dominant modes in

the motion of the molecule. These pronounced motions correspond to correlate vibrational

modes or collective motions of groups of atoms in normal mode analysis. The overall transla-

tional and rotational motions in the MD trajectory are eliminated by a translation to the aver-

age geometrical center of the molecule and by least squares fit superimposition “onto” a

reference structure. The most important motions of the protein are extracted from the trajec-

tory through PCA of the Cartesian coordinate covariance matrix, yielding eigenvectors and

corresponding eigenvalues [34, 40].

The global motions of the three different VDR protein-ligand complexes were compared by

the PCA. The results are shown in Fig 4c and 4d respectively. The results exhibit that, the first

two eigenvectors (color coding) displayed more than 90% of the collective motions of the back-

bone protein atoms (Fig 4c). Projections of the MD trajectories obtained at 298K onto the

principal components PC1 and PC2 map the motions of our VDR models in phase space:

VDRapo(black) VDR1α,25(OH)2D3 (red), VDRCTA-091(blue) and VDRCTA-018 (green). A compari-

son of the data in Fig 4d (~5–6 units), based on the width of the point clusters, shows that (a)

VDRCTA-091 (blue) and VDRCTA-018 (green) exhibit the same type of phase space coverage

compared to VDR1α,25(OH)2D3 (red). (b) The VDRCTA-091 (blue) and VDRCTA-018 (green) com-

plexes form similar phase space coverage as VDRapo (black) form. Moreover, CTA-018 (green)

displays a smaller region, particularly along the PC1 plane than the remaining compounds.

These results demonstrate that VDRCTA-018 (green) illustrates a lower degree of flexibility than

the remaining models as a consequence of the most stable hydrogen bond interaction.

Root mean square fluctuation (RMSF). In the RMSF plot we focused the positions

His301 and His393. In the VDR complex, vigorous fluctuation is observed at the 210–225th

positions. Further, the complex RMSF fluctuates (Fig 5b, 5c and 5d) more than the apo form

(except 325–375 regions) (Fig 5a). At the His301 and His393 positions, the ligand bound form

fluctuated more than the apo form. The hydrogen bond interaction between—OH group and

His301, His393 leads to greater fluctuation. However, in Ser233, the bound form was less flexi-

ble than the apo form of the protein. A strong hydrogen bond interaction with either His301

or His393 led to this change. Especially in the region His301, the CTA-091 bound form pro-

duced stable fluctuation (0.15 nm) as in apo form (0.10nm). In the His393 position, we could

not find significant changes in both the structures (0.13 nm and 0.13 nm). In the Ser233 posi-

tion, the VDRCTA-091complex fluctuated more (0.16 nm) than the apo form (0.08 nm). In the

VDRCTA-018 complex, we focused mainly on the His393 region. The CTA-018 bound complex

(0.10 nm) produced less fluctuation than the apo form (0.13 nm). Overall, the results indicated

that the newly identified compounds were less flexible than the VDR-1α,25(OH)2D3 complex

form. The RMSF of all the VDR models is shown in Fig 5.

Ligand binding site. The expression of VDR mutation (His301Phe, His393Phe) clearly

exhibits the role of these amino acids in agonistic and antagonistic activity. The dynamic

behavior of the His301and His393 in VDR was analyzed by calculating the distance between

the compounds and N, O and H atoms of the key residues at the binding site for all the 200 ns

simulations.

The distances between the relevant heteroatoms of His301 and His393 in VDR were ana-

lyzed for molecular docking. The final MD structures involved in binding of the compounds

are collectively shown in Table 3. A significant contraction and expansion were observed in
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MD simulation studies. These data indicate the importance of the His301 and His393 amino

acids for VDR activity. The temporal changes between the selected interatomic distances were

calculated. The obtained results are shown graphically in Fig 6.

Significant changes were observed in both (His301 and His393) the amino acids. His393

interaction was observed in VDR1α25(OH)2D3 (blue) and VDRCTA-091 (wine) (Fig 6a). In the

case of His301, we found a common interaction with VDR1α25(OH)2D3 (blue) and VDRCTA-018

(gray) (Fig 6b). The distance between the H atom and N atoms of His301 and the distance

between the O and H atoms of His393 are relatively different for the three different structures

over the simulation period.

Vigorous fluctuation was observed in the 1α25(OH)2D3:(H). . .N:His301 (blue colored plot

in Fig 6a) coordination. The RMSD fluctuated between 0.3 nm and 0.5 nm for the entire

Table 2. Explicit analyses of ligand RMSD in 200 ns MD simulation (All units are in nm).

Complex Mean Standard error Median Standard deviation Minimum Maximum Confidence level (95.0%)

VDR

1α,25(OH)2D3

0.24 0.0001 0.24 0.03 0.000006 0.43 0.24

VDR

CTA-091

0.24 0.0001 0.24 0.02 0.0004 0.29 0.24

VDR

CTA-018

0.20 0.0004 0.20 0.05 0.0004 0.35 0.20

CYP24A1

ketoconazole

0.19 0.0001 0.19 0.03 0.0004 0.27 0.33

CYP24A1

CTA-091

0.18 0.0001 0.19 0.03 0.0004 0.27 0.34

CYP24A1

CTA-018

0.31 0.00008 0.31 0.02 0.0004 0.38 0.32

https://doi.org/10.1371/journal.pone.0203194.t002

Fig 5. The root mean square fluctuation of VDR models VDRapo (black), VDR1α25(OH)2D3 (red), VDRCTA-091 (blue),

VDRCTA-018(pink).

https://doi.org/10.1371/journal.pone.0203194.g005
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simulation period. Meanwhile, the RMSD fluctuated at 0.6 nm for the entire simulation period

in the context of VDR1α25(OH)2D3:(H). . .O:His393 (blue colored plot in Fig 6b). This change is

mainly due to the presence of hydrogen bond acceptor and hydrogen bond donor at the same

functional group (-OH). In the compound CTA-091, we could find a potential effect on

Table 3. Molecular docking and molecular dynamics (MD) interatomic distances (nm) at the binding site of VDR.

VDR

Atom pairs 1,α25(OH)2D3 CTA-091 CTA-018

Docking (nm) MD�

(nm)

Docking

(nm)

MD�

(nm)

Docking

(nm)

MD�

(nm)

His301 0.194 0.42 0.53 0.17 - -

His393 0.194 0.63 - - 0.21 0.52

CYP24A1

Ketaconazole CTA-091 CTA-018

Docking

(nm)

MD�

(nm)

Docking

(nm)

MD�

(nm)

Docking

(nm)

MD�

(nm)

Met246 0.22 0.16 0.19 0.15

Glu329 0.15 0.11 0.20 0.23

Arg128 0.49 0.46

Hem500 0.42 1.26 0.73 0.79 0.58 1.02

�Molecular Dynamics simulations

https://doi.org/10.1371/journal.pone.0203194.t003

Fig 6. Trajectory plot of the distance between (A) 1α25(OH)2D3:(H). . .N:His301 of VDR1α25(OH)2D3 (blue) and VDRCTA-091:

(H). . .N:His301 (wine) (B) VDR1α25(OH)2D3:(H). . .O:His393 (blue) and VDRCTA-018:(O). . .H:His393 (gray); (C) The total number of

hydrogen bonds in VDR binding site VDR1α25(OH)2D3 (black), VDRCTA-091 (red), VDRCTA-018(blue). (D) Calculated hydrogen

bond Interaction energies for VDR models.

https://doi.org/10.1371/journal.pone.0203194.g006
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VDRCTA-091:(H). . .N:His301 (wine color in Fig 6a). The RMSD was stabilized around 0.2 nm

for the entire simulation period. Therefore, CTA-091 may act as antagonist with the constant

support of His301 interaction. The presence of the hydrogen bond donor in the side chain

(-NH) gives constant support for the formation of hydrogen bond interaction with His301. In

the case of CTA-018, initially, the RMSD fluctuated up to 1.2 nm (gray color in Fig 6b), but

after a small interval it maintained stable distance. The average settling was at ~0.30nm. Thus,

the CTA-018 compound exhibits better agonistic activity in relation to 1α25(OH)2D3 and

CTA-091.

Hydrogen bonding at the catalytic site. The 200 ns MD simulation trajectories were ana-

lyzed to gain information about the nature of the potential H-bonding interactions at the

ligand binding site. The total number of hydrogen bonds was calculated for all the VDR and

CYP24A1 complexes with default cutoff of 3.5 Å. An average of 4 H-bonds (maximum 8

and minimum 1) was found in three different VDR models. Of these, VDR1α25(OH)2D3 and

VDRCTA-091 formed the maximum number of H-bonds over VDRCTA-018. As 1α25(OH)2D3

and CTA-091 possess one hydrogen bond acceptor and one hydrogen bond donor, while the

CTA-018 compound possesses two hydrogen bond acceptors, the compounds 1α25(OH)2D3

and CTA-091 produced the maximum hydrogen bonds over CTA-018. The presence of one

hydrogen bond acceptor and one hydrogen bond donor formed stable conformation with

His301 and His393. But, in the case of CTA-018, two oxygen atoms from the O = S = O

group alternatively formed hydrogen bond interaction only with His301 and not with His393

(Fig 6c).

Interaction energies. Hydrogen bond interactions play a major role in different chemical

and biological processes, especially in ligand binding and enzyme catalysis. These interactions

also influence the binding specificity, ADME properties of small molecules. Hydrogen bond

interactions are the most stable in biological macromolecules because of their flexible and

ubiquitous nature. Glide incorporates the contribution of Coulomb and vdW interaction ener-

gies between receptor and ligand. The binding affinity may also depend on the type and quality

of the hydrogen bond formed and net electrostatic interaction energies (Even though these are

considered as small and typically are neglected in scoring functions, possibly include long

range effects). In this study, the hydrogen bond interaction energies were calculated in the

appropriate binding pocket of protein-ligand complexes. The hydrogen bond interaction ener-

gies are shown in Table 4 and Fig 6d. In the VDR models, the contribution of His393 and

His301 were focused; like His301with CTA-091 yielded more energy than 1α25 (OH)2D3

(blue) and CTA-018; further, His393 1α25(OH)2D3 and CTA-018 compounds yielded more

energy than CTA-091.

Secondary structure analysis. The temporal change in the secondary structure elements

(α-helix and β-sheets) of the VDR model was analyzed with GROMACS. The results are

shown graphically in Fig 7. The α-helical (blue) conformation is conserved throughout the

simulation period. All the ligand bound models possessed bend to β-sheet change in between

160–240. All the ligand bound models possessed similar type of secondary structure prediction

(7b—1α25(OH)2D3; 7c –CTA-091; 7d –CTA-018) in comparison with apo form (Fig 7a).

Binding free energy analysis. The MM-GBSA was calculated from the results of energetic

analyses of 100 equal frames from the trajectory taken from each of the three MD simulations.

The results of the MM-GBSA are shown in Table 5. The calculated free energies (ΔGbind) of

the VDR/1α25(OH)2D3, VDR/CTA-091, and VDR/CTA-018 are -63.24, -98.21, and -99.12

kcal/mol respectively. According to the energy components of the binding free energies, van

der Waals are the major favorable contributors to ligand binding and nonpolar solvation

terms (ΔGsolvSA), whereas polar solvation (ΔGsolvGB) opposes binding. In all the complexes,

the average ΔGsolvSA was very strong with the value of> 50kcal/mol, which clearly shows that
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ΔGsolvSA is the driving force for ligand binding. As described previously, the presence of the

sulfate group (O = S = O) plays an important role in the activity of the CTA-018.

Molecular docking and molecular dynamics-Phase II

In the Phase-II, we displayed and discussed the results for the CYP24A1 models.

Molecular docking and binding mode analysis of the CYP24A1 active site. In the sec-

ond set, ketoconazole, CTA-091, and CTA-018 were docked in the active site of the CYP24A1

(PDB id– 3K9V) [23] protein. In the case of CYP24A1, the binding mode of the newly identi-

fied vitamin D analogues was entirely different from the native compound (ketoconazole). In

CYP24A1ketoconozole (Fig 8a), negatively charged Glu329 (0.16 nm, C = O. . .NH) has a hydro-

gen bond interaction with ketoconazole. Another π-π stack pairing was observed between

Table 4. Interaction energies between functionally important residues and the drug molecules in VDR active site.

VDR

Interactions 1α25(OH)2D3 CTA-091 CTA-018

Tyr143� -41.40 -30.90 -41.40

Ser274� -24.85 -19.13 -24.85

His301� -0.93 -23.91 -0.93

His393� -13.35 5.44 -13.35

CYP24A1

Interactions Ketaconazole CTA-091 CTA-018

Met246�� -26.22 -1.32 -22.17

Glu329�� 8.45 -544.67 -52.93

Arg128† 23.84 375.244 -64.10

Hem500† -46.52 -668.79 -5.47

(Based on the bond energy, the formed hydrogen bonds are classified into �Strong interactions (4–15 Kcal/mol); ��Very strong interactions (15–40 Kcal/mol); †Weak

interactions (<4 Kcal/mol). Source: [43]).

https://doi.org/10.1371/journal.pone.0203194.t004

Fig 7. Time evolution of secondary structure analysis of (A) VDRapo (B) VDR1α25(OH)2D3(C) VDRCTA-091 and (D) VDRCTA-018.

https://doi.org/10.1371/journal.pone.0203194.g007
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ligand and positively charged with Arg128. A salt bridge was also observed between HEM500

with the ketoconazole. In CYP24A1CTA-091 (Fig 8b), two different interactions were found.

The carboxy group of charged sulfur containing Met246 interacted with a hydroxyl group

(-OH) in the ligand molecule (0.22 nm, C = O. . . HO). Another interaction was observed

between negatively charged Glu329 with the CTA091 (0.21 nm, C = O. . .HO). Finally, in

CYP24A1CTA018 (Fig 8c), the charged Met246 was interacted with CTA-018 (0.20 nm,

C = O. . .HO). The interaction diagram of all the drug molecules in the active site of CYP24A1

is shown in Fig 8. The docking results are shown in Table 1.

In the context of CYP24A1, the identified molecules (CTA-091 and CTA-018) shared dif-

ferent binding patterns compared to ketoconazole. Further, molecular dynamics simulation

studies were performed to study the importance of the three different ligands in the active site

of CYP24A1.

Blind docking analysis. In case of CYP24A1, also we performed blind docking without

importing active site information. We used induced fit docking protocol to dock all three mol-

ecules viz., ketaconazole, CTA-091 and CTA-018 in CYP24A1 protein and it binds the active

site of the protein and confirms CYP24A1 antagonistic activity. The binding mode of the three

different compounds in the active site of CYP24A1 is depicted in the S4 Fig.

Structural flexibility in CYP24A1 protein. In Fig 9a, the backbone RMSD plots of the

three CYP24A1 models CYP24A1apo(blue), CYP24A1ketoconazole(green), CYP24A1CTA-091(black),

and CYP24A1CTA-018(pink) were analyzed. The CYP24A1 CTA-018(pink) is relatively stable than

the other two complexes (CYP24A1 1α,25(OH)2D3 (green), CYP24A1 CTA-091(black)). As described

earlier, initially, in the first 5000 ps the RMSD increased up to 0.2 nm in all the three complex

structures. In the CYP24A1ketoconazole (green) and CYP24A1CTA-091 (black) complexes, the

RMSD gradually increased after 5000 ps up to 0.35 nm. But in CYP24A1CTA-018(pink), the

RMSD was relatively constant for the entire simulation time. Thus, the CTA-018 molecule pro-

duced relatively stable conformation.

Conformational changes of ligands in CYP24A1 active site. The dynamic behavior of

the three ligand molecules (Ketoconazole (green), CTA-091 (black) and CTA-018 (pink)) was

analyzed in the active site of the CYP24A1 (Fig 9b).

Table 5. The MM-GBSA binding free energies (kcal/mol) of three different VDR and CYP24A1 models.

Contribution VDR1α25(OH)2D3 VDRCTA-091 VDRCTA-018 CYP24A1

ketoconazle

CYP24A1 CTA-091 CYP24A1 CTA-018

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

ΔGbind
a -63.24 3.45 -98.21 3.28 -99.12 4.21 -95.65 5.22 -90.45 5.52 -92.69 6.15

ΔGvdW
b -21.42 5.11 -52.74 48.32 -21.98 8.72 -48.98 5.01 -60.89 5.11 -52.61 3.86

ΔGsolvGB
c 10.98 2.98 12.11 4.65 21.30 4.16 38.52 5.62 12.18 4.68 21.54 5.89

ΔGCoulomb
d -8.75 5.11 26.85 6.61 -4.85 5.85 -6.25 4.55 -6.44 5.96 1.08 6.45

ΔGCovalent
e 4.11 4.32 20.88 4.38 2.16 2.86 28.63 42.93 26.85 19.26 16.80 48.77

ΔGsolLipo(SA)
f -59.21 8.32 -105.1 6.33 8.21 8.88 -102.65 8.86 -82.65 5.65 -85.86 6.21

aFree energy of binding.
bFree energy of binding from the van der waals energy.
cContribution to the free energy of binding from the generalized born electrostatic solvation energy.
dContribution to the free energy of binding from the Coulomb energy.
eContribution to the free energy of binding from the covalent energy (internal energy).
fContribution to the free energy of binding from the surface area due to lipophilic energy (nonpolar contribution estimated by solvent accessible surface area).

The average ΔGsolvSA was very strong with the value of > 50kcal/mol, which clearly shows that ΔGsolvSA is the driving force for ligand binding.

https://doi.org/10.1371/journal.pone.0203194.t005
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Based on the statistical data, a significant change was found in the CTA-018 molecule (0.30

nm) compared to ketoconazole (0.19 nm) and CTA-091 (0.18 nm). All the ligands had vigor-

ously fluctuated up to 80 ns and after that the compounds reasonably maintained stable con-

formers. While, the ketoconazole compound interacted well with the HEM prosthetic group,

the newly identified compounds did not. This result is strongly supported by the Posner exper-

imental data of Posner, et al. [21]. The distance between the HEM group and the ligand is dis-

cussed later. The RMSD results of the three drug molecules in the active site of CYP24A1

protein are shown in Fig 9b. Moreover, the explicit analyses of RMSD of the ligand in 10 ns

MD simulation from the initial structures are reported in Table 2 and S5 Fig.

Fig 8. The 2D representation of the compounds (A) Ketaconazole, (B) CTA-091 and (C) CTA-018 in the active site of

CYP24A1.

https://doi.org/10.1371/journal.pone.0203194.g008
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PCA. In the context of PCA, in the CYP24A1 models, a similar type of eigenvector index as

the VDR models was observed. The first two eigenvectors produced more than 90% of the collec-

tive motions of the backbone protein atoms (Fig 9c). Projections of the MD trajectories were

obtained at 298K onto the principal components PC1 and PC2 of our CYP24A1 models in phase

space: Fig 9d shows CYP24A1apo (purple) CYP24A1ketoconazole (wine), CYP24A1CTA-091 (dark

cyan) and CYP24A1CTA-018(gray). A comparison of the data based on the width of the point clus-

ters shows that (a) the ligand bound form (CYP24A1ketoconazole (wine), CYP24A1CTA-091(dark

cyan), and CYP24A1CTA-018(gray)) produced opposite conformational space during the simula-

tion when compared to apo from CYP24A1apo (purple). This result indicates that the addition of

the drug molecules stabilize the CYP24A1 protein.

RMSF. The flexibility of each residue was compared by root mean square fluctuation

(RMSF). The overall CYP24A1 structure contains 52% of the helical region and 9% of the beta

sheet regions. A total of 24 helices and 12 strands are available in the CYP24A1 protein struc-

ture. We focused mainly on the catalytic residue changes in the protein active site. Nine

regions of the CYP24A1 fold involve in the formation of the active site cavity. 13 residues in

the binding cavity Ile131, Trp134, Met148, Met245, Met246, Phe249, Ala326, Glu329, Thr330,

Val391, Thr394, Gly499, and Ile500 [41, 42] were identified as functionally important residues

by mutational analysis. Interestingly, in this analysis, it was found that Arg128, Met246 and

Fig 9. Time evolution of backbone RMSD (A) and ligand RMSD (B) of CYP24A1 models. CYP24A1apo (blue), CYP24A1ketaconozole

(green), CYP24A1CTA-091 (black), CYP24A1CTA-018(pink). Eigenvector index versus Eigenvalue index for the first ten eigenvectors of

the VDR model (C) and Projection of the motion of CYP24A1 models (D). CYP24A1apo (purple), CYP24A1ketaconozole (wine),

CYP24A1CTA-091 (dark cyan), CYP24A1CTA-018(gray).

https://doi.org/10.1371/journal.pone.0203194.g009
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Glu329 interacted mainly with the compounds. In the CYP24A1ketoconazole complex (red), the

RMSF fluctuated more vigorously than the remaining two compounds (CTA-091 (blue) and

CTA-018 (green) (Fig 10)). Vigorous fluctuation was observed between the residues 175–200

(0.45 nm) and 225–250 (0.25 nm). At the region of Met246, the CYP24A1ketoconazole complex

(red) (0.25 nm) was more flexible than the apo form (gray) (0.20 nm). In the CYP24A1CTA-091

complex, overall the CTA-091 bound complex fluctuated more compared to the apo form,

especially in the region around Gly110-His140 and Gly250-Asp300. In Met246 and Glu329,

the CTA-091 bound form (blue) showed relatively stable fluctuation similar to the apo form.

In the CYP24A1CTA-018 complex (green), the RMSF was relatively stable than a few residues

(Ile200-Ile500). Vigorous fluctuation was observed at the region between amino acids 225–

300. Fig 10 displays the RMSF of the four different CYP24A1 models ((A) CYP24A1apo (gray),

(B) CYP24A1ketoconazole (red), (C) CYP24A1CTA-091(blue), (D) CYP24A1CTA-018(green).

Ligand binding site. In the case of the CYP24A1 protein, Glu329 and Met246 amino acids

were placed in the catalytic domain of the CYP24A1 site. After a rapid increase from an input

distance of ~0.21 nm within the first 10ns, close CYP24A1CTA-091:(H). . .(O):Met246 (black)

organization was sustained at an average distance of ~0.16 nm. Similar sustainable interaction

was observed in CYP24A1CTA-018:(H). . .(O):Met246 coordination (~0.15 nm) (red). However,

after 50000ps, both the distances became reasonably constant at an average of 0.16 nm and 0.15

nm respectively (Fig 11a). In the case of Glu329, CYP24A1ketoconazole maintained an average

distance of 0.10 nm after initial fluctuation (CYP24A1ketoconazole:(H). . .(O):Glu329) (Blue).

However, in CYP24A1CTA-091 the same interaction distance fluctuated vigorously over the

20000ps simulation period (CYP24A1CTA-091:(O). . .(H):Glu329 (Black) (Fig 11b).

However, the compounds CTA-091 and CTA-018 efficiently inhibit the CYP24A1 enzyme.

In order to explain this mechanism, the distance between the HEM prosthetic group and the

ligand molecule (Fig 11c) were shown. The distance between heme group in HEM prosthetic

group and hydrogen atom of amino group in the imidazole group CYP24A1ketoconazole (blue)

is ~1.2 nm–1.4nm. The CYP24A1CTA-091 (black) and CYP24A1CTA-018(red) structures main-

tained a distance of 0.8nm and 1.0nm and after 40000 ps it remained reasonably constant with

averages of 0.9nm and 1.0 nm respectively.

This analysis clearly exhibits that the binding pattern of the vitamin D analogues CTA-091

and CTA-018 were relatively different from ketoconazole. The difference in binding pattern

gives a reasonable elucidation for Posner, et al. [21] findings. CTA-091 and CTA-018 specifi-

cally target the unique substrate binding pocket of CYP24A1, unlike azole-based compounds

(e.g., ketoconazole) which target the heme group at the catalytic core of the enzyme. The dis-

tances between the relevant heteroatoms of Met246, Glu329 and HEM500 in CYP24A1 were

analyzed for molecular docking and the final MD structures involved in binding of the com-

pounds are collectively reported in Table 3.

Hydrogen bonding at the catalytic site. The number of hydrogen bonds was analyzed

between the three drug molecules with the CYP24A1 protein. The newly identified com-

pounds produced more hydrogen bonds than ketoconazole. The ketoconazole compound

(black) produced 1–3 hydrogen bonds, while CTA-091 (red) (minimum 1 and maximum 5)

and CTA-018 (blue) (minimum 1 and maximum 6) produced more hydrogen bonds for the

entire simulation period (Fig 11d).

Interaction energies. In CYP24A1 models, the newly identified compounds (CTA-091

and CTA-018) efficiently suppress the CYP24A1 enzyme. Glu329 and Met246 amino acids

play a vital role in the active site of CYP24A1 enzyme. Calculation of the interaction energies

between these amino acids and CYP24A1 enzyme show that in Met246, ketoconazole and

CTA-018 yielded the best interaction energies. In Glu329 and Arg128, CTA-091 and CTA-018

(Gray) produced more energy. Moreover, the interaction between the HEM group and ligand
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molecule was high in ketaconazole when compared to CTA-091 and CTA-018. As mentioned

in Fig 11c, the distance is quite low in ketaconazole in comparision with CTA-091 and

CTA-018. This may be the reason that the ketaconazole interaction energies are high with

CYP24A1. The interaction energies of CYP24A1 models are shown in Table 4 and Fig 11e.

Secondary structure analysis. The secondary structures of the four CYP24A1 models

were analyzed. The region in between the residues 150 and 400 has been fully occupied by

the alpha–helix. The formation of 5-helix was observed between 160 ns and 200 ns in the

CYP24A1CTA-018 model (Fig 12d). The residues 150–400 were stabilized after inhibitor binding

attributed by the compact distribution of alpha-helix Thus, inhibitor binding accounts for low

fluctuations and affecting the overall secondary structure elements. Fig 12a, 12b, 12c and 12d

shows the temporal changes in the CYP24A1 models CYP24A1apo, CYP24A1ketoconazole,

CYP24A1CTA-091 and CYP24A1CTA-018 respectively.

Binding free energy analysis. The binding free energy calculations for the three CYP24A1

complexes (CYP24Aketoconazole, CYP24ACTA-091 and CYP24ACTA-018) are shown in Table 5.

The binding free energies for the different complexes are -95.65 kcal/mol, -90.45 kcal/mol, and

-92.69 kcal/mol respectively. The CTA-018 molecule (-92.69 kcal/mol) produced good binding

energy as in the native compound ketoconazole (-95.65 kcal/mol). The average ΔGsolvSA was

very strong and had a good value of> 50 kcal/mol. The newly identified compounds produced

reasonably stable conformers and good binding affinity against the CYP24A1 protein.

DFT calculations. The DFT was applied to investigate the relationship between the effect

of electrostatic features and the reactivity of the molecule. All the four compounds (1α25

(OH)2D3, CTA-091, CTA-018, ketoconazole) were optimized at the B3LYP/6-31G��++level.

Various statistical factors such as HOMO, LUMO, and MESP were calculated for all the com-

pounds. The frontier orbitals HOMO and LUMO of chemical structures are important deter-

minants of the compounds’ reactivity for various biological reactions.

Initially, Fukui recognized the importance of frontier orbitals as principal factors that gov-

ern the ease of chemical reactions and the stereo-chemical path, while Parr and Yang showed

that most frontier theories can be rationalized from DFT.

For all the compounds, HOMO energy ranges between -0.26 eV and -0.19 eV. The high

value of e-HOMO indicates the tendency of the molecule to donate the electrons in an appro-

priate acceptor molecule of low empty molecular orbital energy.

Fig 10. The root mean square fluctuation of CYP24A1 models CYP24A1apo (gray), CYP24A1ketoconazole (red),

CYP24A1CTA-091 (blue), CYP24A1CTA-018(green).

https://doi.org/10.1371/journal.pone.0203194.g010
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Fig 11. Trajectory plot of the distance between (A) CYP24A1CTA-091:(H). . .(O):Met246 (black) and CYP24A1CTA-

018:(H). . .(O):Met246 (red) and (B) CYP24A1ketoconazole:(H). . .(O):Glu329 (blue)(CYP24A1CTA-091:(O). . .(H):Glu329

(black);(C) HEM group and ketoconazole (blue), CTA-091 (black) and CTA-018 (red). (D) The total number of

hydrogen bonds in CYP24A1 binding site with ketaconazole (black), CTA-091 (red) and CTA-018 (blue). (E)

Calculated hydrogen bond Interaction energies for CYP24A1 models.

https://doi.org/10.1371/journal.pone.0203194.g011

Fig 12. Time evolution of secondary structure analysis of (A) CYP24A1apo (B) CYP24A1ketoconazole(C)

CYP24A1CTA-091(D) CYP24A1CTA-018.

https://doi.org/10.1371/journal.pone.0203194.g012
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The HOMO-LUMO plays an important role in stabilizing the interaction between drug

and receptor protein. The small HOMO LUMO gap signifies the stability of the compounds

since the reactivity is high. HOMO-LUMO plots were generated to analyze the atomic contri-

bution for these orbitals. The plots of HOMO and LUMO show the positive electron density

in red color and negative electron density in blue. The entropy was relatively more in CTA-

018 which showed the random rotation of this molecule and thereby the activity of the CTA-

018 was significantly higher compared to the remaining compounds. The dipole moment was

reasonably high in CTA-018, thus the dual compound was more reactive than the other three

compounds. The HOMO values of all the compounds were more or less similar which indi-

cated the rapid transfer of electrons. Moreover, the HOMO energy is higher when compared

to the LUMO energy indicating an ability to donate the electrons rather than accept electrons

with their partner receptor-binding region. Based on these results, the activity of the molecule

mainly affected the thermodynamic properties such as total energy, entropy, polarity (dipole

moment), and reactivity of molecules (electro negativity and LUMO energy). The DFT results

are displayed in Fig 13 (Fig 13a—1,25(OH)2D3; Fig 13b—Ketoconazole; Fig 13c—CTA-091

and Fig 13d—CTA-018) and Table 6.

Fig 13. Molecular electrostatic potential superimposed onto a surface of constant electron density (0.01 e/au3):

(A) 1,25(OH)2D3 (B) Ketoconazole (C) CTA-091 (D) CTA-018.

https://doi.org/10.1371/journal.pone.0203194.g013

Table 6. Density Functional Theory calculations for all the druggable molecules.

Properties Native Ketoconazole CTA-091 CTA-018

QM Basis 6-31G��++ 6-31G��++ 6-31G��++ 6-31G��++

Solvation energy

(kcal/mol)

-58.51 -62.31 -48.88 -60.81

HOMO (eV) -0.20 -0.26 -0.20 -0.19

LUMO (eV) -0.04 -0.19 -0.04 -0.03

HLG� (eV) -0.16 -0.07 -0.16 -0.16

Zero point energy 436.32 351.21 420.32 420.31

QM dipole 2.1175 24.2078 4.3613 6.2477

Entropy (298 K) 170.22 78.58 186.21 220.11

Enthalpy (298 K) 17.24 16.85 19.65 25.21

Free energy (298 K) -38.56 -37.85 -37.21 -46.21

� HOMO-LUMO gap

https://doi.org/10.1371/journal.pone.0203194.t006
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Dual properties of CTA-018. The folding helix 12 in the VDR has an important mecha-

nism for the VDR agonistic activity. In order to prove this mechanism, we retrieved MD simu-

lated pdb structures from VDR models in different time intervals (40ns (red), 80ns (green),

120ns (blue), 160ns (magenda), and 200ns (yellow) respectively). In Fig 14, the VDR model

structures were super positioned VDR1α25 (OH)2D3 (Fig 14a), VDRCTA-091 (Fig 14b), VDRCTA-018

(Fig 14c) and highlighted the importance of helix 12. As explained in Fig 14, in VDR1α25 (OH) 2D3

and VDRCTA-018, the helix 12 moved close to the drug molecules that might turn into “closed”

conformers. This particular change is very important for the VDR agonistic activity. However,

the opposite effect was found in VDRCTA-091. Here, the helix 12 moved away from the active site

and thereby turned into “opened” conformer. Thus, the compound CTA-091 was not able to

induce the expression of VDR.

Further, in the active site of CYP24A1, the distance between the HEM group and the ligand

molecule were calculated. The plot clearly explained that CTA-091 and CTA-018 had different

binding pattern. This mechanism had been already explained in the previous section. The

overall molecular dynamics results have given an acceptable explanation for the better activity

of CTA-018.

Conclusion

The molecular mechanism of the compound CTA-018 binding with the VDR and CYP24A1

was computationally shown and it is very well correlated with experimental studies. The con-

formational properties of the VDR and CYP24A1 models by performing the molecular

dynamics method, principal component analysis and secondary structure analysis using Gro-

mos9643a1 force field were observed. The results help us to understand the role of ligand

groups in agonistic (VDR) and antagonistic (CYP24A1) activity.

VDR activity has been explained from the MD simulation data, which shows the binding

mode of vitamin D analogues by “open” and “closed” conformations. We identified that, amino

acids His301 and His393 are anxious in the agonistic and antagonistic mechanism of VDR and

it is correlated with the Kakuda, et al. [22] experimental observations. Whereas CYP24A1 inter-

action sites of the CTA-018 molecule was differ from the previously reported drug Ketocona-

zole. The Compound CTA-018 shows promising dual target effect (both agonist and antagonist)

mechanism compared to other compounds. The results from this study pave the way to improve

our knowledge and to understand the mechanism of VDR and CYP24A1 activity at the molecu-

lar level toward decoding drugs to treat osteoporotic conditions among CKD patients.

Supporting information

S1 Fig. The binding site orientation of the 1α25(OH)2D3, CTA-091 and CTA-018 com-

pounds along with the co-crystallized ligand TEI-9647 in the active site of VDR. (TEI-9647

Fig 14. Superimposition of molecular simulated pdb structures at 40ns (red), 80ns (green), 120ns (blue), 160ns

(pink), 200ns (yellow) of (A) VDR1α25(OH)2D3(B) VDRCTA-091(C) VDRCTA-018 respectively.

https://doi.org/10.1371/journal.pone.0203194.g014
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–blue; 1α25(OH)2D3 –Orange; CTA-091 –red; CTA-018 –Purple).

(TIF)

S2 Fig. Alignment of the three VDR analogues (1α25(OH)2D3, CTA-091 and CTA-018) in

the active site of VDR protein. The best conformer from each complex was retrieved from

the Induced Fit Docking. (Pink: 1α25(OH)2D3; Cyan: CTA-091; Orange: CTA-018).

(TIF)

S3 Fig. Alignment of the four CYP24A1 inhibitors (co-crystallized ligand, ketoconazole,

CTA-091 and CTA-018) in the active site of CYP24A1 protein with HEM prosthetic

group. The best conformer from each complex was retrieved from the Induced Fit Docking.

(Yellow: co-crystallized ligand; Green: Native; Cyan: CTA-091; Pink: CTA-018).

(TIF)

S4 Fig. The average mean RMSD using bars and the corresponding standard deviations are

shown using error bars for VDR models.

(TIF)

S5 Fig. The average mean RMSD using bars and the corresponding standard deviations are

shown using error bars for CYP24A1 models.

(TIF)
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