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Abstract 

Background:  There have been several destructive pandemic diseases in the human history. Since these pandemic 
diseases spread through human-to-human infection, a number of non-pharmacological policies has been enforced 
until an effective vaccine has been developed. In addition, even though a vaccine has been developed, due to the 
challenges in the production and distribution of the vaccine, the authorities have to optimize the vaccination policies 
based on the priorities. Considering all these facts, a comprehensive but simple parametric model enriched with the 
pharmacological and non-pharmacological policies has been proposed in this study to analyse and predict the future 
pandemic casualties.

Method:  This paper develops a priority and age specific vaccination policy and modifies the non-pharmacological 
policies including the curfews, lockdowns, and restrictions. These policies are incorporated with the susceptible, 
suspicious, infected, hospitalized, intensive care, intubated, recovered, and death sub-models. The resulting model is 
parameterizable by the available data where a recursive least squares algorithm with the inequality constraints opti-
mizes the unknown parameters. The inequality constraints ensure that the structural requirements are satisfied and 
the parameter weights are distributed proportionally.

Results:  The results exhibit a distinctive third peak in the casualties occurring in 40 days and confirm that the inten-
sive care, intubated, and death casualties converge to zero faster than the susceptible, suspicious, and infected casual-
ties with the priority and age specific vaccination policy. The model also estimates that removing the curfews on the 
weekends and holidays cause more casualties than lifting the restrictions on the people with the chronic diseases and 
age over 65.

Conclusion:  Sophisticated parametric models equipped with the pharmacological and non-pharmacological poli-
cies can predict the future pandemic casualties for various cases.
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Background
The human history has witnessed a number of devastat-
ing pandemics such as the smallpox, cholera, plague, den-
gue, influenzas, Ebola, severe acute respiratory syndrome 

(SARS), Middle East respiratory syndrome (MERS), and 
novel coronavirus diseases 2019 (COVID-19) [1]. Since 
the pandemic diseases mostly spread through human-
to-human infection, the non-pharmacological policies 
including the restrictions, closures, and curfews have 
been imposed until an effective vaccine has been devel-
oped [2]. Even though a vaccine has been developed, 
problems in its production and distribution create some 
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constraints on fighting the pandemic diseases. In this 
case, the state authorities seek policies that optimize the 
respective priorities such as reducing the deaths, easing 
the curfews, lifting the restrictions, and opening of the 
schools. This paper proposes a comprehensive paramet-
ric model with the priority and age specific vaccination 
policy which can be used for the prediction and analysis 
of the future casualties under the constructed policy. In 
this paper, the healthcare staff constitutes the highest pri-
ority group, and the elderly people are located into the 
risk groups based on their ages.

Accurate models can be a useful tool to understand the 
dynamics of the pandemic diseases and to identify the 
role of the internal (mutation) and external (pharmaco-
logical and non-pharmacological policies) impacts on 
the pandemic casualties [3]. Modelling of the pandemic 
diseases can be achieved by using the non-parametric 
(statistical and machine learning), and the parametric 
(mathematical) approaches. Statistical approaches usu-
ally reveal a mean and a standard deviation which can 
be used for characterizing the pandemic properties such 
as the incubation period and the infectious rate of the 
pandemic diseases. Overton et al. produced data for the 
incubation period of the COVID-19 by assuming that it 
has the Gama distribution and fitted the data with the 
maximum likelihood estimator [4]. This research stated 
that the majority of the infected people develop symp-
toms in 14 days. Hong and Li estimated a time-depend-
ent reproduction number of disease with the Poisson 
model having a removal rate to account for the random 
uncertainties in the reported casualties [5]. It is con-
cluded that China, Italy, Sweden, and the United States of 
America (USA) have high COVID-19 reproduction num-
bers since they were unable to control the spread of the 
virus. Oehmke et al. determined the speed, acceleration, 
jerk, and 7-day-lag in the COVID-19 transmission for the 
USA and determined the parameters with the Arellano-
Bond statistical estimator [6]. It is expressed that there 
were significant differences in the spread of the virus 
among the states of the USA due to lack of a national 
non-pharmacological policy.

In terms of the machine learning based modelling 
approaches, Pinter et al. proposed an adaptive network-
based fuzzy inference systems (ANFIS) and a multi-
layered perceptron-imperialist competitive algorithm 
(MLP-ICA) to estimate the infected individuals and the 
mortality rate [7]. Tuli et  al. considered the generalized 
Inverse Weibull distribution combined with the cloud 
computing to predict the growth of the epidemic and to 
design control strategies for the COVID-19 spread [8]. 
Aydin and Yurdakul evaluated the policies of the 142 
countries against fighting the COVID-19 by using the 
k-means clustering, decision trees, and random forest 

algorithms [9]. The research revealed that the economic 
welfare, smoking rates, and the diabetes rates are not 
directly related to the effectiveness level of the countries. 
Rustem et al. utilized the linear regression (LR), the least 
absolute shrinkage and selection operator (LASSO), the 
support vector machines (SVM), and the exponential 
smoothing (ES) to estimate the threating factors of the 
COVID-19 [10]. The results confirmed that the ES out-
performs the others while the SVM performs poorly. 
Bird et al. evaluated the country-level pandemic risks and 
classified the preparedness of the countries in terms of 
the transmission, the mortality, and the inability to test 
by applying the stack of gradient boosting, the decision 
trees, the stack of SVM, and the extra trees [11]. It is con-
cluded that the geopolitics and the demographic attrib-
utes shape the risks caused by the COVID-19.

Parametric modelling approaches suit their purpose 
and are also parameterizable by the available data, 
since they have a certain model structure represent-
ing the mathematical relationships as simple as possi-
ble [12]. Goel and Sharma proposed a mobility-based 
susceptible, infected, recovered (SIR) model covering 
the population distribution and the lockdowns [13]. It 
is observed that the infected casualties are delayed and 
decreased in the presence of the lockdowns. Piovella 
provided a simplified analytical solution of the suscep-
tible, exposed, infected, recovered (SEIR) model to pre-
dict the casualty peaks and asymptotic cases without 
iteratively solving the ordinary differential equations 
[14]. Even though the numeric and analytical solutions 
are close, there exist biases around the peak values. 
Piccolomini and Zama proposed a forced susceptible, 
exposed, infected, recovered, dead (fSEIRD) model 
with two different piecewise time-dependent infec-
tion rates [15]. It is stated that the model fits the data 
and makes reliable predictions for Italy. However, even 
though the SIR, SEIR, fSEIRD models are simple and 
require few parameters, they do not consider the phar-
macological and non-pharmacological policies which 
play important roles on the dynamics of the pandemic 
diseases. In addition, they do not include the hospital-
ized, intensive care, and intubated pandemic casualties. 
Lee et al. modelled an optimal age specific vaccination 
policy against the H1N1 pandemic influenza in Mex-
ico [16]. The model suggested that the optimal vac-
cination can be achieved by allocating more vaccines 
for the young adults age between 20 and 39. Recently, 
we developed a suspicious, infected, recovered (SpID) 
model with the second order difference equations 
rather than the first order ordinary differential equa-
tions as in the SIR, the SEIR, and the SEIRD models 
[17]. The results confirmed that the SpID model can 
represent the higher order properties such as the peak 
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in the COVID-19 casualties. In our further research, we 
proposed a SpID-N model with the non-pharmacologi-
cal policies (N) including the curfews, restrictions, and 
lockdowns [2]. The results highlighted the role of each 
non-pharmacological policy on the COVID-19 casu-
alties. In addition, recently we performed a research 
to analyses the linear and non-linear dynamics of the 
COVID-19 by only considering the pharmacological 
policies [18]. This paper developed three model struc-
tures from linear to strongly non-linear and optimized 
their parameters with the mathematical optimization 
and machine learning approaches. As an alternative to 
the model-based control of the pandemic casualties, 
an artificial intelligence approach, which is implicitly a 
model free approach, was constructed to generate the 
multi-dimensional non-pharmacological policies [19]. 
This artificial intelligence algorithm allowed to weight 
each non-pharmacological policy together with each 
pandemic casualty under a certain vaccination policy. 
It firstly aimed to stabilize the pandemic casualties 
and then minimize them in time. Zhao et  al. recently 
built an age-specific transmission model to quantify 
the transmissibility in different age groups [20]. Matrajt 
et al. developed an optimal vaccine allocation algorithm 

aiming at reducing the deaths, infections, and hospital-
izations [21].

This paper proposes a susceptible (Sc), suspicious (Sp), 
infected (In), hospitalized (H), intensive care (It), intu-
bated (Ib), recovered (R), death (D) with the priority and 
age specific vaccination (V) and non-pharmacological 
(N) policies (ScSpInHItIbRD-VN model). The key contri-
butions of the paper can be summarized briefly as

•	 A comprehensive ScSpInHItIbRD-VN model has been 
constructed by referring the known relationships 
among the COVID-19 casualties illustrated in Fig. 1.

•	 Priority and age specific vaccination policy has 
been formulated and incorporated into the 
ScSpInHItIbRD-VN model together with the non-
pharmacological policies.

•	 Constrained recursive least squares (RLS) optimizer 
has been modified to learn the unknown parameters 
of the ScSpInHItIbRD-VN model by satisfying the 
structural and proportional contribution require-
ments of the design.

•	 An extensive analysis has been performed to assess 
the role of the priority and age specific vaccination 
policy and the non-pharmacological policies.

Fig. 1  The proposed ScSpInHItIbRD-VN model architecture
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It is important to note that even though this paper 
mostly refers the COVID-19 pandemic, it can be imple-
mented to all the pandemic diseases having the architec-
ture shown in Fig. 1, which is constructed based on the 
epidemiological facts. In the rest of the paper, the pro-
posed model structures, the proposed ScSpInHItIbRD-VN 
model, the constrained RLS for the multi-dimen-
sional models, and the analysis of the model have been 
provided.

Methods
The proposed model architecture
Individuals in the susceptible 

(

Sck
)

 group are vulnerable to 
the pandemic diseases where the suspicious 

(

S
p
k

)

 ones 
leave the group (Fig. 1, number 1) and the non-infected 
(

Innk
)

 ones re-join the susceptible group (number 5). The 
vaccinated (Vk)(number 2), the recovered (Rk) (number 
22), and the death (Dk)(number 21) become non-suscep-
tible 

(

Snck
)

(number 3) and leave the susceptible 
(

Sck
)

 group 
where the remained ones constitute the current suscepti-
ble 

(

Sck+1

)

(number 4) group. The individuals in the suspi-
cious 

(

S
p
k

)

 group, who are tested and/or quarantined, 
either move to the infected 

(

Ink
)

(number 6) group or the 
non-infected 

(

Innk
)

(number 7) group where some individ-
uals in the infected 

(

Ink
)

 group can return the suspicious 
(

S
p
k

)

 group again. Also, since the infected 
(

Ink
)

 individuals 
spread the virus until they are isolated, they act like as an 
excitation signal 

(

Inak−1

)

 (number 8) on the suspicious cas-
ualties. Individuals in the infected 

(

Ink
)

 group can be in 
the hospitalized (Hk)(number 9) group or in the non-hos-
pitalized 

(

Hn
k

)

(number 10) group where the non-hospi-
talized (Hk) individuals join the recovered (Rk)(number 
15) group after a quarantine period. The individuals in 
the hospitalized (Hk) group can union with the intensive 
care 

(

I tk
)

(number 11), the intubated 
(

Ibk

)

(number 12), the 
death (Dk)(number 13), or the recovered (Rk)(number 14) 
groups. The individuals in the intensive care 

(

I tk
)

 group 
can move to the intubated 

(

Ibk

)

(number 16), the death 
(Dk)(number 17), or the hospitalized (Hk)(number 18) 
groups. Similarly, the individuals in the intubated 

(

Ibk

)

 
group can join either the intensive care 

(

I tk
)

(number 19), 
or the death (Dk)(number 20) groups. The non-pharma-
cological policies (uk)(number 23) and priority and age 
specific vaccination policy 

(

V ∗
k

)

(number 24) act like an 
external inhibitor on all the casualties at varying rates.
The ScSpInHItIbRD‑VN model
This section initially formulates the parametric sub-mod-
els, and then the vaccination and the non-pharmacologi-
cal policies of the ScSpInHItIbRD-VN model.

The ScSpInHItIbRD‑VN sub‑models
This sub-section constructs the parametric models of 
each sub-model illustrated in Fig. 1.

The susceptible Sc
k
 sub‑model

Considering the connections coming in and leaving out 
the susceptible Sck group in Fig. 1, one can formulate the 
Sck sub-model with a difference equation. We can initially 
write the difference equation of the non-susceptible Snck  
group shown in Fig. 2 as

where Snck  represents the non-susceptible individuals who 
have gained immunity and also the individuals who lost 
their lives, Rk represents the recovered individuals, Dk 
represents the dead individuals, Vk represents the vacci-
nated individuals, a14,a15,c1 are the unknown parameters.

The representation of the susceptible Sck+1 group in 
Fig. 2 is

where Sck represents the individuals who may be infected 
and have a lack of immunity, Spk  represents the suspicious 
individuals, Innk  represents the non-infected individuals, 
a11,a12,a13 are the unknown parameters.Substituting Eq. 
(1) in Eq. (2) yields

All the parameters in Eq. (3) are unknown and will be 
learned from the available data with the RLS algorithm 
subject to the inequality constraints in the next section.

The next sub-section provides the modelling steps of 
the suspicious Spk  sub-model.

The suspicious Sp
k

 sub‑model
Some of the susceptible Sck individuals become suspicious 
S
p
k  as they exhibit symptoms or contact an infected indi-

vidual, or return from the regions where the pandemic 
disease is a threat. These individuals are either tested or 
quarantined for a time duration. In this paper, we define 
the suspicious Spk  individuals as the number of the people 
tested daily. Therefore, the model can predict the number 

(1)Snck = a14Rk + a15Dk + c1Vk

(2)Sck+1 = −a11S
c
k − a12S

p
k + a13I

nn
k − Snck

(3)
Sck+1 = −a11S

c
k − a12S

p
k + a13I

nn
k − a14Rk − a15Dk − c1Vk

Fig. 2  The susceptible Sck sub-model
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of the required tests in the future. We can represent the 
S
p
k  sub-model shown in Fig. 3 as

where Inak  represents the individuals who can become 
suspicious again and excitation effect of the infected 
individuals on the suspicious casualties (related to filia-
tion time), uk is the non-pharmacological policy, VSp

k  is 
the vaccination policy, a21 , a22 , a23 , a24 , a25 b2 , c2 are the 
parameters.

The next sub-section presents the modelling steps of 
the infected Ink  sub-model.

The infected In
k

 sub‑model
Some of the suspicious Spk  individuals becomes infected 
Ink  where they either become hospitalized Hk or non-hos-
pitalized Hn

k  , who are quarantined for a period of time, as 
illustrated in Fig. 1. We can formulate its model by con-
sidering the corresponding connections in Fig. 4 as

(4)

S
p
k+1

= −a21S
p
k + a22S

c
k − a23I

n
k − a24I

nn
k + a25I

na
k−1

. . .

. . .− b2uk − c2V
Sp

k

(5)
Ink+1

= −a31I
n
k + a32S

p
k − a33I

na
k−1

− a34Hk

− a35H
n
k − b3uk − c3V

In

k

where V In

k  is the vaccination policy, a31 , a32 , a33 , a34 , a35 
b3 , c3 are the parameters.

The next sub-section introduces the hospitalized Hk 
sub-model.

The hospitalized Hk sub‑model
Some of the infected Ink  individuals requiring standard 
treatments join the hospitalized Hk group. The hospi-
talized Hk individuals can join the intensive care I tk , the 
intubated Ibk  , the recovered Rk , or the death Dk groups 
as shown in Fig.  5. We can formulate the hospitalized 
model as

where VH
k  is the vaccination policy, a41 , a42 , a43 , a44 , a45 , 

a46 , b4 , c4 are the parameters,
The next sub-section presents the formulation of the 

intensive care I tk sub-model.

The intensive care It
k
 sub‑model

Some of the hospitalized Hk individuals move to the 
intensive care I tk group where some of them move back 
to the hospitalized Hk group as shown in Fig. 6. Simi-
larly, some of the intensive care I tk patients become 
intubated Ibk  where some of them re-join the intensive 
care I tk group, and the rest join the death Dk group. We 
can construct the intensive care I tk model as

where V It

k  is the vaccination policy, a51 , a52 , a53 , b5 , c5 are 
the parameters.

The next sub-section provides the intubated Ibk  
sub-model.

(6)

Hk+1 = −a41Hk + a42I
n

k
− a43I

t

k
− a44I

b

k
− a45Rk − a46Dk . . .

. . .− b4uk − c4V
H

k

(7)
I tk+1 = −a51I

t
k + a52Hk − a53I

b
k − a54Dk − b5uk − c5V

It

k

Fig. 3  The suspicious Spk  sub-model

Fig. 4  The infected Ink  sub-model Fig. 5  The hospitalized Hk sub-model
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The intubated Ib
k

 sub‑model
Some of the hospitalized Hk individuals and the intensive 
care I tk patients become intubated Ibk  as shown in Fig. 7. 
A number of the intubated Ibk  patients move back to the 
intensive care I tk unit while the rest join the death Dk 
group. We can construct the intubated model as

where V Ib

k  is the vaccination policy, a61 , a62 , a63 , a64 b6 , c6 
are the parameters.

The next sub-section formulates the recovered Rk 
sub-model.

The recovered Rk sub‑model
A number of the hospitalized Hk and the non-hospi-
talized Hn

k  individuals join the recovered Rk group who 
become non-susceptible Snck  as illustrated in Fig.  8. We 
can formulate the recovered Rk sub-model as

where VR
k  is the vaccination policy, a71 , a72 , a73 , a74 b7 , c7 

are the parameters.

(8)
Ibk+1 = −a61I

b
k + a62Hk + a63I

t
k − a64Dk − b6uk − c6V

Ib

k

(9)
Rk+1 = −a71Rk + a72Hk + a73H

n
k − a74S

nc
k . . .

. . .− b7uk − c7V
R
k

The next sub-section expresses the death sub-model.

The death Dk sub‑model
Some of the hospitalized Hk , the intensive care I tk , and 
the intubated Ibk  individuals join the death Dk group and 
become non-susceptible Snck  as illustrated in Fig.  9. We 
can form the death Dk model as

where VD
k  is the vaccination policy, a81 , a82 , a83 , a84 , a85 

b8 , c8 are the parameters.
The next sub-section formulates the vaccination policy 

V ∗
k  and reviews the non-pharmacological uk policies.

The vaccination V∗
k

 and non‑pharmacological uk policies
This section firstly introduces the priority and age spe-
cific vaccination policy V ∗

k  and reviews the non-pharma-
cological policies uk that we have developed recently for 
the first time in the literature [2].

(10)

Dk+1 = −a81Dk + a82Hk + a83I
t
k + a84I

b
k − a85S

nc
k . . .

. . .− b8uk − c8V
D
k

Fig. 6  The intensive care Itk sub-model

Fig. 7  The intubated Ibk  sub-model

Fig. 8  The recovered Rk sub-model

Fig. 9  The death Dk sub-model
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The priority and age specific vaccination policies V∗
k

The ∗ in the priority and age specific vaccination policy 
V ∗
k  represents the Sc,Sp,In,H ,I t,R , and D in the sub-mod-

els given by Eqs. from (4) to (10). The priority and age 
specific vaccination policy basis Vb

k  is defined in terms of 
the number of the daily vaccinated people in each group 
as

where Hs
k is the healthcare staff, A80+

k  is the people age 
80 and over, A65−79

k  is the people age between 65 and 79, 
A50−64
k  is the people age between 50 and 64, A25−49

k  is the 
people age between 25 and 49, A15−24

k  is the people age 
between 15 and 24.

Since the people age under 15 are not considered for 
the vaccination, they are not included in the basis Vb

k  . 
The corresponding weight parameter vector w∗

k scales 
the contribution of the vaccination policy for each sub-
model. For example, the weight parameter vector for the 
hospitalized wH

k  is

where the parameters of the wH
k  are ws

k is the percent-
age of the hospitalized Hs

k , w80+
k  is the percentage of the 

hospitalized A80+
k  , w65−79

k  is the percentage of the hospi-
talized A65−79

k  ,  w50−64
k  is the percentage of the hospital-

ized A50−64
k  , w25−49

k  is the percentage of the hospitalized 
A25−49
k  , w15−24

k  is the percentage of the hospitalized 
A15−24
k .
Now we can formulate the priority and age specific vac-

cination policy for the hospitalized VH
k  in Eq. (6) as

Similarly, we can construct the priority and age specific 
vaccination policy V ∗

k  for the other sub-models by follow-
ing the same steps introduced in this section. The next 
sub-section provides the revised non-pharmacological 
policies uk.

The non‑pharmacological policies uk
The authorities impose various curfews and restrictions 
to confine the spread of the virus. The most common 
ones are the curfews on the people age over 65, age under 
20, and people with the chronic diseases which have been 
parametrized in [2] (since there is no available data) as

(11)
Vb
k =

[

Hs
k A80+

k A65−79
k A50−64

k A25−49
k A15−24

k

]T

(12)
wH
k =

[

ws
k w80+

k w65−79
k w50−64

k w25−49
k w15−24

k

]T

(13)VH
k = wHT

k V b
k

(14)usk = ns
(

1− αk−ki + σ s
k

)

where usk is the response of the curfew (in closed form 
solution), ns is the number of the people under the curfew, 
k is the number of the days and ki is the start day of the cur-
few, α is the discount factor of the response, where αk ≈ 0 
for α = 0.71 and k = 14 (quarantine duration), σ s

k is the 
random non-parametric uncertainty in the response.

The other common precaution is the curfews on the 
weekends and holidays, which has a transient ascent 
part as

where uwhi,k  is the response of the curfews on the weekends 
and holidays, nwh is the number of the people under the 
curfews on the weekends and holidays, σwh

i,k   is the ran-
dom uncertainty in the response.

Its transient descent part is modelled as

The overall response uwhk  is

In terms of the closure of the schools and universities, 
it is not a curfew as it only hinders mass gatherings of the 
students; hence, they can come together in smaller groups. 
Therefore, the response has a transient ascent part as in 
Eq.  (15) and transient descent part as in Eq.  (16). These 
parts are essentially for removing the negative impacts of 
the schools being open. Then an uncertain saturated part 
usat represents the small gatherings after the closure of the 
schools. After the transient ascent and descent parts, the 
saturated part can be represented as

where nsu is the number of the students,  σ su
k  is the ran-

dom uncertainty in the response, kn = ksui + ksun  where 
ksui  is the start day and ksun  is the duration of the closure.

(15)

uwhi,k = nwh
�

1− αk−i + σwh
i,k

�

δi,k . . .

...for







δi,k = 1

�

Curfew at ith day
i ≤ k ≤ i + 6

δi,k = 0 Otherwise

(16)

uwhi,k = nwh
�

αk−i + σwh
i,k

�

δi,k . . .

. . . for







δi,k = 1

�

Curfew at ith day
i + 7 ≤ k ≤ i + 14

δi,k = 0 Otherwise

(17)uwhk =

k
∑

i=k−14

uwhi,k

(18)usuk = nsu
(

usat + σ su
k

)

for k = ksui , . . . , kn
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Comparison of the prediction models
One can summarize the main advantages of the con-
structed ScSpInHItIbRD-VN model over the well-known 
models such as the SIR, SEIR models in terms of the solu-
tion and analysis as

•	 It has difference equations rather than the differen-
tial equations. Therefore, it can be solved iteratively 
without requiring an ordinary differential equation 
solver.

•	 It has coupled and linear dynamics instead of the 
slightly coupled nonlinear dynamics. Thus, the math-
ematical analysis of the parametric model is straight-
forward.

•	 Its unknown parameters are learned from the 
reported data by using the well-known multi-dimen-
sional optimization approaches rather than the single 
dimensional statistical approaches.

The next section forms the RLS approach with the ine-
quality constraints to learn the unknown parameters of 
the ScSpInHItIbRD-VN model.

The constrained RLS algorithm
In this paper, the constrained optimization is consid-
ered for two reasons: The first one is that the sub-models 
have certain parameter structures together with the cor-
responding parameter signs and the second reason is to 
reflect the contributions of the data having huge mag-
nitude differences (for example, while the susceptible Sck 
group covers millions of the individuals, the hospitalized 
Hk group covers only thousands of them). In this sec-
tion, initially we will divide the optimization problem in 
terms of the estimated sub-model casualties (outputs) 
and the real casualties. Then, the RLS algorithm with the 
inequality constraints are modified to learn the unknown 
parameters.

The estimated sub‑models
We can represent the estimated sub-models ŷ∗k in terms 
of the known basis vector b∗k and the unknown parameter 
vector w∗

k , where the  ∗ is denoted for the Sc,Sp,In,H ,I t,R , 
and D in the sub-models given by Eqs. from (3) to (10) as

For example, the basis bS
c

k  of the estimated susceptible 
ŷS

c

k  sub-model is formed with respect to the left hand side 
of Eq. (3) as

(19)ŷ∗k = w∗T

k b∗k

(20)bS
c

k =
[

−Sck −S
p
k Innk −Rk −Dk −Vk

]T

And the corresponding unknown parameter vector wSc

k  
of the estimated susceptible ŷS

c

k  sub-model with respect 
to the right hand side of Eq. (3) is

The other estimated sub-models, their bases and 
parameter vectors are formed by following the same pro-
cedures as in Eqs.  (19), (20), and (21), respectively. The 
next sub-section introduces the modified RLS algorithm 
with the inequality constraints to learn the unknown 
parameter vectors w∗

k.

Learning the Unknown Parameters with the Constrained 
RLS
The reported casualties are the outputs of the 
ScSpInHItIbRD-VN sub-models and we call them as the 
real outputs y∗k . For example, the real output of the sus-
ceptible sub-model is the left hand side of Eq. (3), which 
is Sck+1 . The objective function is constructed with the 
2-norm of the instant estimation error defined as

where α is the inequality constraints which are the lower 
bound of the parameters. We can construct the Lagrange 
multipliers used for solving the optimization problems as

Getting partial derivative of L
(

w∗
k , �

)

 with respect to 
the w∗

k yields

Getting partial derivative of L
(

w∗
k , �

)

 with respect to 
the � gives

Re-organizing Eq. (24) as w∗
k is on the left and the rest 

are on the right, and then substituting it in Eq. (25) yields

The Lagrange multiplier � from Eq. (26) is obtained as

(21)wSp

k =
[

a11 a12 a13 a14 a15 c1
]

(22)
min
w∗
k

1
2

∥

∥y∗k − ŷ∗k

∥

∥

2

subject to
∥

∥w∗
k

∥

∥

2
≤ α

(23)
L
(

w∗
k , �

)

=
1

2

∥

∥

∥
y∗k − w∗T

k b∗k

∥

∥

∥

2

2
+

�

2

(

∥

∥w∗
k

∥

∥

2

2
− α2

2

)

(24)
(

b∗
T

k b∗k + �

)

w∗
k = b∗

T

k y∗k

(25)
∥

∥w∗
k

∥

∥

2

2
− α2 = 0

(26)

(

b∗ky
∗
k

b∗
T

k b∗k + �

)2

− α2 = 0

(27)� =

(

b∗
T

k y∗k − αb∗
T

k b∗k

)

/α
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Then by reinserting Eq. (27) into Eq. (24), the unknown 
parameter vector w∗

k can be attained. The next section 
extensively analyses the ScSpInHItIbRD-VN model.

Results
This section initially presents the parameters of the pro-
posed ScSpInHItIbRD-VN model and then analyses the 
training and prediction results.

Parameters of the model
Table 1 provides the parameters of the model.

The next sub-section compares the real and esti-
mated COVID-19 casualties with the constrained RLS 
algorithm.

Real and estimated casualties
Figure 10 shows the real (reported) and estimated casual-
ties for Turkey.

As can be seen from Fig.  10, the estimated casualties 
with the ScSpInHItIbRD-VN model closely follow the real 
casualties. The model can track the steep peaks and also 
the daily variations in the casualties even though the con-
structed parameter spaces are limited (in machine learn-
ing approaches, we randomly manipulate the parameter 
spaces until we have close estimations). The casualties in 
Fig.  10 have two distinctive peaks and estimated future 
casualties in Fig.  13 shows the third peak, which will 
occur in 40 days. It is clear that the susceptible Sck casual-
ties have noticeable reduction with the initiation of the 
vaccination process. It seems that this vaccination pro-
cess has affected the other casualties since they sharply 
decrease as well. The decrease in the casualties has also 
been supported with the non-pharmacological policies 
uk . Figure 11 shows the mean errors and the correspond-
ing standard deviations in the estimates.

As illustrated by Fig.  11, even though all the mean 
errors are small, the standard deviations are quite large. 
This is due to existence of the steep peaks shown in 
Fig. 10. These peaks occurred in December when there 

were not any active pharmacological and non-phar-
macological policies. This implies that the character of 
the casualties is largely shaped based on the external 
impacts such as the pharmacological and non-phar-
macological policies. Our recent work highlighted that 
the pharmacological and non-pharmacological policies 
have damping impact on the casualties whereas they 
also have natural frequency determined by the internal 
and coupling dynamics. The next sub-section presents 
the priority and age specific vaccination policy results.

Priority and age specific vaccination policy
Figure 12 shows the priority and age specification vac-
cination policy for the hospitalized VH

k = wHT

k V b
k  and 

death VD
k = wDT

k V b
k  sub-models.

Table 1  Parameters of the models

A
80+ 1.527.789 Age 80 and over

A
65−79 6.425.766 Age between 65 and 79

A
50−64 12.273.613 Age between 50 and 64

A
25−49 30.962.207 Age between 25 and 49

A
15−24 12.893.753 Age between 15 and 24

H 1.061.635 Healthcare staff

n
su 26.048.00 Student numbers

n
wh 82.154.00 People under curfew 

on the weekends

k k k k

k k k k

c
kS

p
kS

n
kI kH

t
kI

b
kI kR kD

Fig. 10  The real (blue) and estimated (red) COVID-19 casualties for 
Turkey

71

12    3e+
104 19

6 1 6 0.3

Fig. 11  Mean errors (blue bars) and standard deviations (vertical 
lines). The numbers 1 to 8 represent corresponding estimates with 
the Sc , Sp , In , H , It , R , and D sub-models, respectively
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Table  2 provides the background parameters in 
Fig. 12.

Since there is no reported data for the healthcare staff 
Hs(‘Staff ’ in Table 1), the largest values are assigned for 
them as they are in the highest risk group. Therefore, 
the vaccination of the healthcare staff has the largest 
hospitalized wH

k  and death wD
k  policy values (Table  2, 

number 1). People age 80 and over 
(

A80+
)

 has 28% 
death percentage and 2.4% hospitalization percentage. 
Henceforth, the corresponding VD

k  is larger than the 
VH
k (number 2). Same comments are valid for the peo-

ple age between 65 and 79 
(

A65−79
)

  (number 3) as they 
share the similar percentages. However, with respect 
to the people having age 50 and 64, they have close wH

k  
and wB

k  parameters; hence, the VH
k  and VD

k  policy values 
are close to each other (number 4). For the people age 
between 25 and 49 

(

A25−49
)

 , wH
k  is 51.7 and wD

k  is 5.5; 
thus, the corresponding VH

k  is larger than the VD
k (num-

ber 5). Similar comments can be made for the people 
age between 15 and 24 (number 6). Lastly, since the 
healthcare staff Hs and people age 80 and over 

(

A80+
)

 
have the smallest population among the all age groups, 
they have the smallest regions on the horizontal axis 
representing the number of days k.

The estimated future casualties
Figure  13 shows the future casualties estimated by the 
ScSpInHItIbD-VN model.

The future estimates are obtained under the assump-
tion that 100.000 peoople are vaccinated daily. It is clear 
that the number of the susceptible Sck individuals reduces 
almost linearly since the vaccinated Vk individuals leave 
the group. Since the susceptible Sck and the suspicious Spk  
groups are strongly coupled, reduction in the suscepti-
ble Sck group is reflected onto the suspicious Spk  group as 
well. Figure  13 also clearly shows the third peak in the 
COVID-19 casualties. In addition, it is noticaeble that 
even though the suspicious Spk  , the infected Ink  , and the 
hospitalized Hk converge to zero in 500 days, the inten-
sive care I tk , the intubated Ibk  , and the death Dk converge 

k

H
kV
D
kV

1

2

3

4 5 6

Fig. 12  Priority and age specific vaccination policy for the 
hospitalized VH

k  and death VD
k  sub-models

Table 2  Priority and age specific vaccination parameters

1 2 3 4 5 6

w
H

k
51 2.4 9.1 20.2 51.7 16.7

w
D

k
45 28 45 21.6 5.5 3.3

V
b

k
1.2 1.8 7.8 14 37 15

k k k k

k k k k

c
kS

p
kS

n
kI kH

t
kI

b
kI kR kD

200 600
0

20

Fig. 13  Future COVID-19 estimates with the ScSpInHItIbD-VN model

c
kS

p
kS

n
kI kH

t
kI

b
kI kR kD

Fig. 14  Daily vaccinations and the corresponding casualties. The 
bottom (blue), the middle (orange), the top (yellow) represent 
200.000, 100.000, and 50.000 daily vaccinations, respectively
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to zero around 120 days. This fast convergence is due to 
priority and age specific vaccination policy which focus 
on vaccination of the people in the high risk groups.

Analysis of the vaccination policy
Figure 14 shows the number of the daily vaccinations and 
the corresponding average future casualties.

As can be clearly seen from Fig. 14, all the COVID-19 
casualties reduce depending on the number of the daily 
vaccinations. The largest reductions occur in the number 
of the intensive care I tk , the intubated Ibk  , and the death Dk 
when the number of the vaccination rises from 50.000 to 
100.000. The further noticeable reduction occurs in the 
number of the suspicious Spk  and the infected Ink  when the 
daily vaccination number rises from 100.000 to 200.000.

Analysis of the non‑pharmacological policies
Figure 15 shows the role of the non-pharmacological pol-
icies on the casualties.

As can be seen from Fig. 15 when all the non-pharma-
cological policies are in place, all the casualties are small 
and they increase when the curfews are lifted (blue bar). 
Removing the restrictions on the people age over 65 
and people with the chronic diseases has limited effects 
as they are in the priority group and most of them have 
been already vaccinated (orange bar). With respect to 
the partial opening of the schools, since the majority of 
the students are not attending the schools, their impact 
is bounded as well (yellow bar). However, curfews on the 
weekends, holidays, and nights cover the whole popula-
tion; henceforth, their roles on the casualties are distinc-
tive (purple bar).

Conclusions
This paper developed a comprehensive parametric 
SpScInHItIbRD-VN model to analyse and estimate the role 
of the priority and age specific vaccination policy and the 
non-pharmacological policies. The model has a structure 
constructed by using the key insights about the pandemic 
diseases. To satisfy the model structural requirements 
and avoid dominant effects of the large susceptible and 
suspicious data, a constrained RLS algorithm has been 
formed. The results clearly show the importance of the 
priority and age specific vaccination policy on all the 
casualties. The future hospitalized, intensive care, intu-
bated, and death casualties converge to zero before the 
other casualties since they have larger importance. How-
ever, the future susceptible, suspicious, infected, and 
recovered casualties are large due to the people in the 
lower risk groups are not vaccinated yet. The paper also 
addresses the relationships among the various daily vac-
cinations, non-pharmacological polices, and the corre-
sponding COVID-19 casualties. The results confirm that 
the curfews on the weekends and holidays has an over-
whelming role on reducing the casualties.

Limitations of the work
Effects of the non-pharmacological policies on each age 
and chronic diseases group are not weighted. Moreover, 
vaccine effectiveness for each age group has not been 
added the model. Besides, climate and environmental 
effects are not considered.

4.2 Future works
The non-pharmacological policies of the 
ScSpInHItIbRD-VN model should be also modified to con-
sider the priority and age specific impacts on each casu-
alty. In addition, effectiveness of the different brand of 
vaccines on each age group should be considered in the 
model. Moreover, the model can be expanded by con-
sidering the unknown uncertainties. Finally, a toolbox 
should be constructed and provided for free to help the 
researchers when applying the proposed model.
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