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1 |  INTRODUCTION

BRCA is the most common cancer in women. The 2018 
GLOBOCAN report disclosed that approximately 2.1 mil-
lion women worldwide were diagnosed with BRCA in 2018, 
accounting for one-fourth of all cancer cases among women.1 
According to clinicopathological criteria, BRCA is divided 
into four subtypes Luminal A, Luminal B, Erb-B2 overexpres-
sion, and Basal-like, represents a convenient approximation.2 

Ihemelandu study indicated that Luminal A type accounts 
for 50% of BRCA patients, Luminal B, Erb-B2 overexpres-
sion, and Basal-like subtypes accounted for 14.1%, 12.7%, 
and 23.2%, respectively.3 For ER receptor-positive BRCA, 
tamoxifen, and aromatase inhibitors are effective endocrine 
therapies.4 For HER2-positive BRCA, the monoclonal anti-
body trastuzumab and lapatinib have been approved as the 
most specific molecular targeting drugs.5,6 With the develop-
ment of medical technology, the prognosis of BRCA has been 
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Abstract
Breast cancer (BRCA) is the most common cancer among women and is the sec-
ond leading cause of cancer death in women. In this study, we developed a 9-gene 
prognostic signature to predict the prognosis of patients with BRCA. GSE20685, 
GSE42568, GSE20711, and GSE88770 were used as training sets. The Kaplan–Meier 
plot was constructed to assess survival differences and log-rank test was performed 
to evaluate the statistical significance. The overall survival (OS) of patients in the 
low-risk group was significantly higher than that in the high-risk group. ROC analy-
sis indicated that this 9-gene signature shows good diagnostic efficiency both in OS 
and disease-free survival (DFS). The 9-gene signature was further validated through 
GSE16446, GSE7390, and TCGA-BRCA datasets. We also established a nomogram 
that integrates clinicopathological features and 9-gene signature. The analysis of 
the calibration plot showed that the nomogram has good prognostic performance. 
More convincingly, real-time reverse transcription-polymerase chain reaction (RT-
PCR) results indicated that the protective prognostic factors in BRCA patients were 
downregulated, whereas the dangerous prognostic factors were upregulated. The in-
novation of this article is not only constructing a prognostic gene signature, but also 
combining with clinical information to further establish a nomogram to better predict 
the survival probability of patients. It is worth mentioning that this signature also does 
not depend on other clinical factors or variables.
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significantly improved. However, the prognosis of advanced 
BRCA is still not optimistic.7

In recent years, detailed information on prognostic as-
sessment of cancer patients has been available via microarray 
analysis and whole-genome sequencing.8,9 Genomics and mo-
lecular characteristics research have significantly improved the 
biological understanding of BRCA, elucidated the inherent mo-
lecular subtypes and genetic driving mechanisms of BRCA.9,10 
Molecular diagnosis can help to determine whether chemo-
therapy is needed after surgery and predict the corresponding 
risk of distant metastasis.11 Many studies have demonstrated 
the prognostic role of gene expression characteristics based on 
gene expression arrays.12-14 The mainstream commercial pan-
els for BRCA predictive markers mainly include: Oncotype 
DX (21 genes assay), MammaPrint (70 gene assay), Prosigna 
(50 genes assay), Breast cancer index (7 gene assay), and 
EndoPredict (11 gene assay).11,15,16 Molecular diagnosis has 
received increasing attention as a potential non-invasive mon-
itoring option for the risk of recurrence in BRCA patients. In 
this study, we developed a 9-gene prognostic signature, pro-
viding hope for more personalized treatment interventions for 
BRCA patients.

2 |  MATERIALS AND METHODS

2.1 | Data processing

The workflow of data acquisition, pre-processing, gene sig-
nature generation, and verification is represented in Figure 
1. The original gene expression data and clinical informa-
tion were obtained from the GEO and TCGA databases. 
We downloaded the original expression profile and used 
the robust multi-array average algorithm to perform back-
ground correction and quantile normalization. The ComBat 
method was used to remove batch effects. We also down-
loaded the FPKM-standardized RNA-seq data and the clini-
cal information from the BRCA cohort in TCGA database. 
After removing incomplete clinical information and cases 
of normal samples, a total of 622 cases were included in 
training sets (327 cases in GSE20685 cohort, 101 cases in 
GSE42568 cohort, 85 cases in GSE20711 cohort, and 109 
cases in GSE88770 cohort) and 1408 cases were included in 
validation sets (120 cases in GSE16446 cohort, 198 cases in 
GSE7390 cohort, 1090 cases in TCGA-BRCA cohort).

2.2 | Prognostic signature 
construction and validation

A univariate Cox proportional hazard regression model was 
developed to screen genes associated with prognosis in each 
training dataset. In a Cox proportional hazards model, a 

hazard ratio greater than one indicates that the event hazard 
increases, and thus the length of survival decreases. In simple 
terms: HR = 1 - No effect; a HR < 1 - Reduction in the haz-
ard; HR > 1 - Increase in Hazard. In cancer studies, a covari-
ate with HR > 1 is called a dangerous prognostic factor, and a 
covariate with HR < 1 is called a protective prognostic factor. 
Hazard ratios |HR| > 1 and p-value < 0.05 (p-value < 0.05 in 
GSE42568, GSE20711, and GSE88770; p-value  <  0.01 in 
GSE20685) were used to screen candidate genes related to 
OS from each dataset. To improve reliability, only the com-
mon genes in the four datasets were used as prognostic gene 
signature (STXBP3, PKN2, TCAP, STARD3, CDR2L, PNMT, 
GPR4, ANGPT2, and CAPN5). The patients were classified 
as high- or low-risk group according to the optimum cut-off 
risk score. The risk score formula is as follows:

where n represents the number of prognostic genes, expi is 
the expression value of gene i, and βi is the univariate Cox 
regression coefficient of gene i (i = 9). We used GSE20685, 
GSE42568, GSE20711, and GSE88770 as training sets; 
GSE16446, GSE7390, and TCGA-BRCA as external valida-
tion sets to validate the accuracy of the 9-gene prognostic signa-
ture. The cut-off value for distinguishing high-risk and low-risk 
patients in the validation sets were determined by calculating 
the optimal cut-off regarding the 9-gene signature.

2.3 | Construction and verification of the  
nomogram

In this study, an “rms” R package was used to generate the 
nomogram containing clinical information and 9-gene signa-
ture. The C index and calibration plot were used to evaluate 
the accuracy of nomogram. The prediction efficiency of the 
nomogram is shown in the calibration plot, where the 45° 
dotted line indicates the best prediction.

2.4 | Acquisition of human BRCA samples

BRCA and paired adjacent samples were collected from 
patients who underwent breast surgery at Zhongnan 
Hospital of Wuhan University. All samples were obtained 
with informed consent of patients. The tissues were imme-
diately stored in liquid nitrogen for further experiments. 
The Ethics Committee of Zhongnan Hospital of Wuhan 
University approved the use of these samples for total 
RNA isolation and RT-PCR analysis. The inclusion crite-
ria: (a) Patients with BRCA; (b) Patients with clear clini-
cal information (ERα, PR, HER2, Lymph node metastasis, 
Pathological grade). The exclusion criteria: (a) Patients 

Riskscore=
∑n

i=1
exp∗

i
�

i
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without complete clinical information; (b) Patients with-
out endocrine or radiotherapy before surgery; (c) Patients 
without other concomitant diseases. This study included 
40 pairs of samples and the clinical information of the pa-
tients is shown in Table S1.

2.5 | Total RNA extraction and 
QPCR analysis

RNeasy plus mini kits (74134, Qiagen) was used to extract 
total RNA from frozen tissues according to the manufacturer's 

F I G U R E  1  Flow diagram of date preparation, processing, analysis, and validation
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protocol. The concentration of RNA was determined by spectro-
photometry (NanoDrop, Thermo Scientific) and A260/A280 ratio 
was measured to ensure RNA purity. Two μg of total RNA was 
reverse-transcribed to complementary DNA (cDNA) via the 
HiScript II Q RT SuperMix (Vazyme) according to the manu-
facturer. RT-PCR was performed using 10 μl of the 2 × SYBR 
Master Mix (TOYOBO) and 2 μl cDNA (50 ng/μl) with 1 μl each 
of the forward and reverse primers (10 μmol/L), add nuclease-
free water to the final volume of 20 μL. RT-PCR was conducted 
in triplicate. GAPDH was used as internal control, and the 2−ΔΔCt 
values were normalized to its levels. The primer sequences for 
RT-PCR used in this study are shown in Table S2.

2.6 | Gene set enrichment analysis

According to the optimum cut-off risk score, BRCA samples 
were divided into high-risk and low-risk groups. We used 
the GSEA software (GSEA version 4.0.3) to perform a gene 
set enrichment analysis (GSEA) between high- and low- risk 
groups. The c2.cp.kegg.v6.2.symbols.gmt gene set was se-
lected as the reference gene set. The most significant first 5 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways were screened (FDR <25%).

2.7 | Statistical analysis

In this study, we used Cox proportional hazards regression anal-
ysis to construct the prediction model, which is more useful than 
Kaplan–Meier curves and log-rank tests since it works for both 
quantitative predictor variables and for categorical variables, 
and allows to assess simultaneously the effect of several risk 
factors on survival time. The Kaplan–Meier method was used to 
evaluate the differences in OS and DFS in patients with low-risk 
and high-risk group, and log-rank tests were used to evaluate 
the statistical significance of the differences between groups. 
Multivariate Cox regression analysis and stratification analy-
sis were used to assess whether the 9-gene signature was inde-
pendent of other clinical characteristics. The “survivalROC” R 
package was used for time-dependent receiver operating char-
acteristic (ROC) analysis, and the prognostic performance was 
verified by comparing the area under the ROC curve (AUC). 
p < 0.05 was considered statistically significant. All statistical 
tests were performed by R software (version 3.6.1).

3 |  RESULTS

3.1 | Prognostic signature generation

In order to identify candidate prognostic genes that are 
significantly associated with OS, we performed univariate T
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Cox proportional hazard regression analysis on each data. 
Using p < 0.05 and HR < 1 as the cutoff criteria, 1797 
genes in GSE26085, 895 genes in GSE42568, 450 genes 

in GSE20711, and 666 genes in GSE88770 were iden-
tified as candidate protective prognostic factors. Using 
p  <  0.05 and HR  >  1 as the cutoff criteria, there were 

F I G U R E  2  Analysis of risk score for BRCA patients in four datasets. In each graph, from top to bottom were risk score distribution, gene 
expression profile, and patient survival status. The black dashed line represents the median value of the risk score, which was used as a boundary to 
divide patients into high-risk and low-risk groups
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2528 genes in GSE26085, 1771 genes in GSE42568, 766 
genes in GSE20711, and 1292 genes in GSE88770 were 
identified as candidate dangerous prognostic factors. The 
common genes in four datasets were retained as prognos-
tic genes. Two protective prognostic factors (STXBP3, 

PKN2) and seven dangerous prognostic factors (TCAP, 
STARD3, CDR2L, PNMT, GPR4, ANGPT2, and CAPN5) 
were finally obtained. The general information for these 
genes is indicated in Table S3. The prognostic correla-
tions of the 9-genes in each dataset associate with OS are 

F I G U R E  3  Kaplan–Meier plot (A, B) and ROC curves (C) for 9-gene signature in four datasets. The OS of patients in the high-risk group 
was lower than that in the low-risk group. p value < 0.05 (log-rank test) was considered statistically significant
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shown in Table 1 (HR value, 95% confidence interval, p 
value).

3.2 | Analysis of the prognostic signature

In Figure 2, the ranking was based on the risk score values 
of 9-gene signatures from low to high, the risk score distri-
bution, risk gene expression, and patient survival status of 
GSE20685, GSE42568, GSE20711, and GSE88770 datasets 
were shown, respectively. Kaplan–Meier plot indicated that 
the low-risk group patients has a better prognosis (GSE20685: 
HR  =  2.68(1.67-4.29), p value  =  1.99e-05; GSE42568: 
HR  =  9.75(3.42-27.79), p value  =  1.82e-07; GSE20711: 
HR  =  4.38(1.74-11.02), p value  =  6.38e-04; GSE88770: 
HR = 3.26(1.42-7.51), p value = 3.35e-03) (Figure 3A). For 
further verification, we divided patients into three groups: 
high-, medium-, and low-risk based on the value of the risk 
score. The results also proved that the higher the risk score, 
the worse the patient's OS (Figure 3B). The ROC curves based 
on 9-gene signature showed that, as time went on, the AUC 
values of the four datasets have remained at a relatively satis-
factory value, which can effectively predict OS (Figure 3C). 
Figure 4 indicates the expression levels of these 9 prognostic 
genes between the low-risk and high-risk groups. The results 
indicated that high-risk group patients had higher dangerous 
prognostic factor expression, while low-risk group patients 
had lower protective prognostic factor expression.

3.3 | 9-gene prognostic signature is 
independent of other clinicopathological  
factors

Multiple Cox regression analysis was used to assess 
whether the 9-gene signature could be used as an independ-
ent prognostic factor. The results indicated that in four in-
dependent datasets, the 9-gene signature can be used as an 
independent prognostic factor, and its predictive ability is 
independent of other clinicopathological factors (GSE20685: 
HR  =  2.234(1.3668-3.651), p value  =  0.001; GSE42568: 
HR = 8.388(2.908-24.196), p value = 8.33e-05; GSE20711: 
HR  =  3.857(1.522-9.772), p value  =  0.012; GSE88770: 
HR = 2.860(1.239-6.600), p value = 0.014) (Table 2). In ad-
dition, lymph node metastasis status can also be used as an 
independent prognostic factor.

3.4 | Nomogram development and  
validation

Nomogram plot the 9-gene signature and clinicopatho-
logical factors on the same plane, and integrates them via 
proportional line segments to indicate the relationship 
between variables in the prediction model. In four inde-
pendent datasets, we constructed a nomogram to better 
quantitatively predict the three-year and five-year survival 
rate (Figure 5A and Figure S1A-C). The calibration curve 

F I G U R E  4  Box plot visualization of gene expression levels of 9-gene signature in training sets. Patients in the high-risk group had higher 
expression of dangerous prognostic factors, whereas in the low-risk group had lower expression of protective prognostic factors. p value < 0.05 (t 
test) was considered statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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(Figure 5B, C and Figure S1D-G) and C index (GSE20685: 
Concordance=0.735 (se=0.028); GSE42568: Concordanc
e = 0.828(SE = 0.034); GSE20711: Concordance = 0.726(
SE = 0.047); GSE88770: Concordance = 0.76(SE = 0.055)) 
indicated that the prediction results of the nomogram have 
good accuracy.

3.5 | Stratification analysis

In order to determine whether the 9-gene signature can be 
used to predict the OS of patients within the same clini-
cal factor subgroup, we combined the four datasets for 
stratification analysis. We analyzed the patients in the en-
tire cohort according to the lymph node metastasis status 

(nodes), ER status, T_stage, grade (due to the number of 
patients in grade I was too small, only grade II and grade 
III were analyzed), and divided the patients into high-risk 
and low-risk groups. The results of the Kaplan–Meier 
plot demonstrated that in the same clinical subgroup, 
the OS of patients in the low-risk group is higher than 
that in the high-risk group (nodes(-): HR  =  3.72(2.47-
5.60), p value  =  1.93e-11; nodes(+): HR  =  2.09(1.05-
4.13), p value = 3.10e-02; ER(+): HR = 4.80(2.50-9.21), 
p_value  =  2.08e-07; ER(-): HR  =  4.73(1.96-11.44), p 
value  =  1.45e-03; T_stage I: HR  =  2.32(1.21-4.44), p 
value  =  9.22e-03; T_stage II: HR  =  4.82(2.75-8.46), p 
value  =  1.41e-09; Grade II: HR  =  4.52(1.94-10.54), p 
value  =  1.32e-04; Grade III: HR  =  5.75(2.58-12.83), p 
value = 1.39e-06)(Figure 6).

T A B L E  2  Univariate and multivariate Cox regression analyses were performed on the gene signatures and OS of BRCA patients in training 
sets

Variables Patients(N)

Univariate analysis Multivariate analysis

HR(95% CI) p HR(95% CI) p

GSE20685

T_stage I/II 101/188 1.136(0.664-1.944) 0.642 0.732(0.4150-1.292) 0.281

T_stage I/III 101/38 4.663(2.550-8.526) 5.7e−07 1.824(0.889-3.744) 0.101

M_stage M0/M1 319/8 5.204(2.391-11.33) 3.22e−05 1.475(0.6029-3.609) 0.394

Nodes −/+ 137/190 3.785(2.163-6.623) 3.12E−06 3.391(1.869-6.155) 5.91e−05

Risk score Low/High 163/164 2.678(1.672-4.287) 4.11e−05 2.234(1.3668-3.651) 0.001

GSE42568

T_stage I/II 34/67 2.311(1.002-5.332) 0.049 1.438(0.613-3.374) 0.404

Nodes −/+ 44/57 4.556(1.877-11.050) 0.001 3.601(1.460-8.882) 0.005

Grade I/II 10/40 1.857(0.232-14.86) 0.559

Grade I/III 10/51 6.208(0.839-45.96) 0.073

ER −/+ 34/67 0.532(0.2679-0.086) 0.041 0.461(0.230-0.922) 0.028

Risk score Low/High 50/51 9.746(3.418-27.790) 2.06e−05 8.388(2.908-24.196) 8.33e−05

GSE20711

T_stage I/II 46/39 1.833(0.838-4.044) 0.133

Nodes −/+ 29/56 3.115(1.067-9.095) 0.037 2.483(1.082-7.322) 0.046

Grade I/II 13/4 1.277 (0.414-14.300) 0.843

Grade I/III 13/68 2.433(0.571-10.360) 0.229

ER −/+ 43/42 0.557(0.245-1.265) 0.162

HER2 −/+ 61/24 2.533(1.146-5.597) 0.021 1.412(0.606-3.290) 0.424

Risk score Low/High 42/43 4.378(1.739-11.020) 0.001 3.857(1.522-9.772) 0.012

GSE88770

Nodes −/+ 62/47 2.455(1.100-5.476) 0.028 2.338(1.035-5.280) 0.041

Grade I/II 13/90 2.190(0.513-9.338) 0.290

ER −/+ 11/98 0.997(0.338-2.937) 0.996

Ki67(%) ~15/15 ~ 30 71/23 3.565(1.525-8.333) 0.003 3.160(1.344-7.429) 0.008

Ki67(%) ~15/30~ 71/15 1.827(0.642-5.200) 0.259 1.515(0.527-4.358) 0.441

Risk score Low/High 54/55 3.263(1.418-7.509) 0.005 2.860(1.239-6.600) 0.014

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20685
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42568
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20711
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE88770
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20685
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42568
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20711
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE88770
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3.6 | Relationship between the 9-gene 
signature and disease-free survival

We used DFS data in GSE42568, GSE20711, and 
GSE88770 datasets to determine the role of the 9-gene 
prognostic signature in predicting DFS. The results indi-
cated that the DFS of BRCA patients in the high-risk group 

is lower than in the low-risk group (GSE42568: HR = 3.71 
(1.91-7.21), p = 3.28e-05; GSE20711: HR = 1.82 (0.95-
3.51), p  =  6.88e-02; and GSE88770: HR  =  2.59 (1.09-
6.17), p = 2.59e-02) (Figure S2A). The time-varying ROC 
curve also further verified that the 9-gene prognostic sig-
nature exhibited a substantially effective performance in 
predicting DFS (Figure S2B).

F I G U R E  5  Nomogram of the GSE20685 datasets was used to predict the OS of BRCA patients. To use the nomogram, each variable axis 
contains a values that should be matched to the each individual patient with a line upward to determine the number of points received for each 
variable value. The sum of these numbers is located on the total points axis, and a line should be drawn downward to the survival axis to determine 
the probability of OS (A). The 3-year and 5-year OS calibration plot showed that the nomogram has good prediction accuracy (B, C)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42568
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20711
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE88770
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42568
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20711
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE88770
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20685
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3.7 | Validation of 9-gene 
prognostic signature

We used the GSE16446, GSE7930, and TCGA-BRCA 
datasets for external validation. The KM plot showed that 
the 9-gene prognostic signature has good predictive ability, 
and the ROC working curve also indicated that the gene 
signature has good working efficiency (Figure S3). To 
further verify the accuracy of the 9-gene prognostic signa-
ture, we detected the expression levels of STXBP3, PKN2, 
TCAP, STARD3, CDR2L, PNMT, GPR4, ANGPT2, and 
CAPN5 in BRCA and adjacent tissues by RT-PCR. A total 
of 40 pairs of samples were used for analysis. The experi-
mental results revealed that the protective prognostic fac-
tors in BRCA patients were significantly downregulated, 
whereas the dangerous prognostic factors were upregulated 
(Figure 7).

3.8 | Gene set enrichment analysis

Finally, we used GSEA enrichment analysis to better deter-
mine the biological function of the 9-gene prognostic signa-
ture. The top 5 KEGG pathways enriched in high-risk and 
low-risk sample groups were shown according to the FDR 
<25% cut-off criteria: bladder cancer, glycosaminoglycan 
biosynthesis chondroitin sulfate, nicotinate and nicotinamide 

metabolism, steroid biosynthesis, and steroid hormone bio-
synthesis (Figure 8).

4 |  DISCUSSION

BRCA is the cancer with the highest incidence in women 
worldwide.1 The comprehensive treatment strategy for 
BRCA mainly includes surgical resection, chemotherapy, 
radiation therapy, and targeted therapy.17-20 Effective 
screening methods will be helpful in reducing the mor-
tality of BRCA.21,22 However, the benefits and harms of 
BRCA screening have been hotly debated in recent years. 
According to Løberg M's research, the relative number of 
over-diagnosis (including ductal carcinoma in situ and in-
vasiveness carcinoma) was 31%.23,24 At the same time, the 
prognosis of advanced BRCA is not optimistic. Even after 
standardized treatment, many patients eventually develop 
distant metastases and die from this disease.18 New BRCA 
prognostic markers must be developed to provide guidance 
and direction for the risk stratification and individualized 
treatment of BRCA patients.

Syntaxin-binding protein 3 (STXBP3) is involved in fatty 
acid-induced insulin resistance in skeletal muscle cells.25 In 
chronic lymphocytic leukemia, lipoprotein lipase can coop-
erate with STXBP3 to promote chronic lymphocytic leuke-
mia cells apoptosis.26 Protein kinase N2 (PKN2) is a serine 

F I G U R E  6  The Kaplan–Meier survival curve was drawn to predict the OS of patients by stratification analysis about nodes (A), ER status 
(B), T_stage (C), and grade (D). The OS of patients in the low-risk group was better than that in the high-risk group. p value < 0.05 (log-rank test) 
was considered statistically significant

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16446
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7930
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/ threonine protein kinase associated with PKC. It plays an 
important role in transcription activation, cell cycle, cell ad-
hesion, and migration.27,28 Koh H's research indicated that the 
C-terminal region of PKN2 can interact with Akt, inhibit thre-
onine phosphorylation at 308 and 473 site of Akt, and specifi-
cally downregulate the activity of Akt protein kinase, blocking 
the activity of AKT signaling pathway and promoting tumor 
cell apoptosis.29 At the same time, PKN2, as a potential tumor 
suppressor in colon cancer, can inhibit tumor growth by inhib-
iting the polarization of tumor-associated macrophages to M2-
like phenotype.28 The teneurin C-terminal-associated peptides 
(TCAP) is encoded by four terminal exons of Tenurin. TCAP1 
can be independently transcribed into a soluble peptide and 

can be combined with Latrophilin to mediate cell adhesion, 
which is related to neuroendocrine diseases.30,31 STARD3 can 
promote the occurrence and development of gastric cancer via 
activating the PI3 K / AKT signaling pathway.32 Yo antibody 
can bind endogenous CDR2L, and promote the occurrence of 
paraneoplastic cerebellar degeneration.33 Phenylethanolamine 
N-methyltransferase (PNMT) is a rate-limiting enzyme in 
adrenaline synthesis and is specifically expressed in adrener-
gic neurons. PNMT protein at the axon end is reduced in the 
brains of patients with Alzheimer's disease.34 Zhong M's re-
search found that the proton-sensing receptor GPR4 is highly 
expressed in colorectal cancer, and GPR4 can promote the me-
tastasis of colorectal cancer cells by inhibiting LATS activity 

F I G U R E  7  Experimental validation of 9-gene prognostic signature in BRCA and paracancerous tissues by RT-PCR. The result indicated that 
the protective prognostic factors in BRCA patients were significantly downregulated, whereas the dangerous prognostic factors were upregulated. p 
value < 0.05 (t test) was considered statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001；****p < 0.0001.
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and YAP1 nuclear translocation.35 Chen Z's research indicated 
that DARPP-32 can further regulate the angiogenic effect of 
ANGPT2 by inducing STAT3 phosphorylation in gastric tu-
mors.36 CAPN5 activation can promote the proteolysis and 
degradation of a variety of substrates, thereby inducing degen-
eration of the retina and nervous system.37 CAPN5 can also 
regulate retinal pigment epithelial cell proliferation by regulat-
ing SLIT2 cleavage.38

Among the top 5 KEGG pathways enriched by GSEA, the 
pathways associated with tumors are bladder cancer, glycos-
aminoglycan biosynthesis chondroitin sulfate, steroid biosyn-
thesis, and steroid hormone biosynthesis. Chondroitin sulfate 
is attached to the core protein to form the chondroitin sulfate 
proteoglycans.39 Chondroitin sulfate proteoglycans accumu-
lated in the matrix of tumor cells, which plays a vital role in 
promoting the proliferation and invasion of tumor cells by 
driving multiple oncogenic pathways, such as JNK and tyro-
sine kinase signaling pathways.40,41 Chondroitin sulfate pro-
teoglycans can also promote tumorigenesis by promoting key 
interactions in tumor microenvironment.41 Chondroitin sulfate 
proteoglycan is up-regulated in fibrosarcoma, colorectal meta-
static cancer, melanoma, and glioma.40-43 To date, the role of 
chondroitin sulfate proteoglycans in BRCA has not been stud-
ied. However, the above-mentioned mechanisms of chondroitin 
sulfate proteoglycans in other tumors may provide a reference 
direction for our future research on BRCA. Moreover, estro-
gen, as a steroid hormone, plays a vital role in the occurrence 
and development of BRCA by regulating steroid receptor ER. 
In addition, ER could crosstalk with other steroid hormone re-
ceptors, such as Progesterone receptor, Androgen receptor, and 
Glucocorticoid receptor, which further affects the development 
of BRCA.44 These 9 genes in our current prognostic model 
may participate in the occurrence and development of BRCA 
through the above-mentioned mechanisms.

In this study, we constructed and validated a 9-gene prog-
nostic signature (STXBP3, PKN2, TCAP, STARD3, CDR2L, 
PNMT, GPR4, ANGPT2, and CAPN5) to predict the OS of 

BRCA patients. We used GSE20685, GSE42568, GSE20711, 
and GSE88770 datasets for analysis, and finally selected 9 
common genes in these four datasets to build a prognostic 
gene signature. The Kaplan–Meier plot indicated that the OS 
and DFS of patients in the low-risk group were higher than 
those in the high-risk group. Due to the differences in the 
quality of expression profiling arrays and the existence of 
individual differences in patients, the diagnostic efficiency 
in ROC curves and HR values were differences between co-
horts. Nevertheless, in general, the 9-gene signature showed 
good diagnostic efficiency for OS events. The nomogram 
was developed, which combined the 9-gene prognostic signa-
ture and other clinicopathological risk factors, and accurately 
predicted the 3- and 5-year survival probability of BRCA pa-
tients. The calibration plot and C index verification proved 
that the nomogram has good prediction performance. In ad-
dition, the results of multivariate COX regression analysis 
and stratification analysis revealed that the 9-gene prognostic 
signature can exist as an independent risk factor. More con-
vincingly, the RT-PCR results demonstrated that the mRNA 
expression of protective prognostic factors in prognostic sig-
nature was upregulated in adjacent samples, and dangerous 
prognostic factors expression presented the opposite results. 
All of the above results proved that patients can be divided 
into high-risk and low-risk groups successfully through this 
9-gene prognostic signature, which can further be an effec-
tive prognostic indicator for BRCA patients.

Several previous studies have reported prognostic signa-
tures for BRCA.45-52 Compared with these models, our prog-
nostic model in this article has following advantages. First, this 
9-gene signature showed excellent diagnostic efficiency for 
both OS and DFS events. In addition, we evaluated the expres-
sion levels of 9 genes in the prognostic signature through RT-
PCR experiments, which further validates our bioinformatic 
results. Nevertheless, this study also has some limitations. 
Since only external validation sets were used in our analysis, 
future studies should also set internal validation sets.

F I G U R E  8  Gene set enrichment analysis

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20685
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42568
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20711
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE88770
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Additionally, as BRCA may exhibit different pathogenesis 
processes and prognosis in diverse subtypes, it could be more 
accurate and meaningful to develop a prognostic model for dis-
tinct BRCA subtypes. Moreover, this prognostic model needs to 
be verified by further experiments before it is applied to clinic.

5 |  CONCLUSIONS

This study not only constructed a 9-gene prognostic signa-
ture, but also combined with clinical information to further 
establish a nomogram to better predict the survival prob-
ability of patients. In addition, the prediction model does not 
depend on other clinical case factors. The establishment of 
this model may help BRCA patients to formulate more ac-
curate treatment plans and improve the prognosis of BRCA.
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