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Abstract

Kymographs or space-time plots are widely used in cell biology to reduce the dimensions of

a time-series in microscopy for both qualitative and quantitative insight into spatio-temporal

dynamics. While multiple tools for image kymography have been described before, quantifi-

cation remains largely manual. Here, we describe a novel software tool for automated multi-

peak tracking kymography (AMTraK), which uses peak information and distance minimiza-

tion to track and automatically quantify kymographs, integrated in a GUI. The program takes

fluorescence time-series data as an input and tracks contours in the kymographs based on

intensity and gradient peaks. By integrating a branch-point detection method, it can be used

to identify merging and splitting events of tracks, important in separation and coalescence

events. In tests with synthetic images, we demonstrate sub-pixel positional accuracy of the

program. We test the program by quantifying sub-cellular dynamics in rod-shaped bacteria,

microtubule (MT) transport and vesicle dynamics. A time-series of E. coli cell division with

labeled nucleoid DNA is used to identify the time-point and rate at which the nucleoid segre-

gates. The mean velocity of microtubule (MT) gliding motility due to a recombinant kinesin

motor is estimated as 0.5 μm/s, in agreement with published values, and comparable to esti-

mates using software for nanometer precision filament-tracking. We proceed to employ

AMTraK to analyze previously published time-series microscopy data where kymographs

had been manually quantified: clathrin polymerization kinetics during vesicle formation and

anterograde and retrograde transport in axons. AMTraK analysis not only reproduces the

reported parameters, it also provides an objective and automated method for reproducible

analysis of kymographs from in vitro and in vivo fluorescence microscopy time-series of

sub-cellular dynamics.

Introduction

Kymographs, or space-time plots, have been extensively used to analyse sub-cellular micros-

copy time-lapse data with improvements in microscopy. It has been used in the past to

characterize organelle transport, cell division and molecular motor motility as reviewed by

Pereira et al. [1], and the wide-range of applications could be the result of the reduced spatial

PLOS ONE | DOI:10.1371/journal.pone.0167620 December 19, 2016 1 / 22

a11111

OPENACCESS

Citation: Chaphalkar AR, Jain K, Gangan MS,

Athale CA (2016) Automated Multi-Peak Tracking

Kymography (AMTraK): A Tool to Quantify Sub-

Cellular Dynamics with Sub-Pixel Accuracy. PLoS

ONE 11(12): e0167620. doi:10.1371/journal.

pone.0167620

Editor: Jinxing Lin, Beijing Forestry University,

CHINA

Received: July 12, 2016

Accepted: November 17, 2016

Published: December 19, 2016

Copyright: © 2016 Chaphalkar et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data is included in

the paper. Software that forms an important part of

the report has been released as open source and

can be downloaded from the author’s website

(http://www.iiserpune.ac.in/~cathale/

SupplementaryMaterial/Amtrak.html) and from

GitHub at https://github.com/athale/AMTraK.

Funding: This research was supported by The

Department of Biotechnology (DBT), Govt. of India

(BT/PR1595/BRB/10/1043/2012), University

Grants Commission (F.2-14/2011 (SA-1)),

Department of Science and Technology, Ministry of

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0167620&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.iiserpune.ac.in/~cathale/SupplementaryMaterial/Amtrak.html
http://www.iiserpune.ac.in/~cathale/SupplementaryMaterial/Amtrak.html
https://github.com/athale/AMTraK


dimensions of complex microscopy time-series. Most often however, kymography has been

used as a qualitative readout of movement or dynamics. In studies where kymographs have

been quantified, most often this has been manual, as seen in the Multi Kymograph plugin for

ImageJ [2]. Most of the existing tools such as the automated kymography tool [3] and ‘guided’

kymography [1] focus on automating the process of kymograph building. Few methods for the

automated quantification of kymographs exist, such as ‘Kymomaker’ [4] and a curvelets based

tool [5]. Both these tools automate quantification, but cannot deal with merging and spitting

events. Despite the ubiquitous nature of merging and splitting events in typical sub-cellular

processes, none of the existing tools for the automated quantification of kymographs include a

feature to handle budding and coalescence.

Genome segregation is conserved across cellular systems and has been extremely well stud-

ied in the rod-shaped Gram-negative bacterium Escherichia coli [6,7]. However microscopic

analysis of DNA segregation has only recently been made possible with improvements in

microscopy and image-analysis [8–10]. Given the almost 1D geometry of segregation of the

genome along the long axis of the cell, kymography is a convenient way to analyze the process

of nucleoid DNA segregation. Recent studies using explicit 3D over time tracking have found

compaction waves are associated with E. coli genome segregation [11]. Based on a reduction in

dimensions to 1D over time, a quantitative kymograph-based analysis could be used to screen

for changes and defects in segregation, without the need for more complex datasets and their

analysis.

The process of microtubule transport by molecular motors reconstituted in vitro, referred

to as a ‘gliding assay’ has been extensively used to examine the fundamental nature of multi-

molecular transport of actin and microtubule filaments by motors [12–15]. Recent studies

have also used ‘gliding assays’ to address microtubule mechanics based on the bending of fila-

ments while undergoing transport [16]. Kymography of cytoskeletal filaments in vivo has been

used to follow actin contractility and microtubule buckling dynamics [17]. However in most

cases the use of kymography has been limited to visualizing the time-series in a single-image,

as a compact form of data representation. A general tool that could use this information to

objectively extract the measures of motility would hence be of some use to these multiple

applications.

The assembly of proteins by ‘recruitment’ to structures is fundamental in multi-protein

complex formation. The assembly of vesicles by budding off membranes and their fusion is

critical for cellular function. For the assembly of coated pits with clathrin for endocytosis the

site of assembly [18], sequence of binding events [19] and interactions of other proteins [20] is

considered to be critical. Microscopy of in vitro reconstituted membrane bilayers has become

a powerful tool to study the dynamics of protein assembly during vesicle formation [21,22].

Proteins such as epsin, which were reported to accelerate clathrin ‘recruitment’ [23] have been

examined using kymography of the fluorescently labelled clathrin and the effect of mutant

epsins on the process [24]. While such an approach lends itself to high-content screening, the

analysis of the kymograph has been manual. Many other such ‘recruiment’ dynamics studies

could benefit from an automated routine to quantify the kinetics of assembly through intensity

measurements coupled to kymography.

Neuronal vesicles are transported in axons by the action of molecular motors. Microscopy

of in vitro reconstituted [25] and the in vivo transport in cultured cells [26,27] has provided

insights into both the components and forces regulating transport. Recent technical develop-

ments have allowed whole animal in vivomicroscopy of sub-cellular vesicle movements in

neurons [28]. In this and comparable studies, quantitative statistics have been obtained using

manual detection of kymographs. This is possibly due to the complex nature of the time-series

with cross-overs and the crowded in vivo environment. An approach that uses objective
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criteria and automates the process of quantification could provide valuable improvements to

our understanding of fundamental nature of vesicle transport as well as aid in the process of

modeling vesicle transport.

Here, we have developed a novel tool to automatically quantify kymographs from fluores-

cence image time-series. We proceed to demonstrate the utility of the automated multi-peak

tracking kymography (AMTraK) tool by quantifying dynamics from diverse sub-cellular fluo-

rescence microscopy data sets. These include bacterial genome-segregation, microtubule (MT)

motility of 1D filaments and 2D radial asters, membrane protein assembly dynamics and vesi-

cle transport in axons.

Algorithm and workflow

The automated multi-peak tracking kymography (AMTraK) is open source software based on

an algorithm that combines peak detection and distance minimization based linking to quantify

dynamics of fluorescence image time-series. The source code has been released with a GPL

license and can be accessed from: http://www.iiserpune.ac.in/~cathale/SupplementaryMaterial/

Amtrak.html and https://github.com/athale/AMTraK

The program has a GUI front-end and is accompanied by a detailed help file. The algorith-

mic workflow (Fig 1A) is divided broadly into three steps:

1. Making the kymograph

2. Peak detection and tracking

3. Statistics

These steps in the workflow are reflected in the graphical user interface (GUI) layout (Fig

1B). The functioning of each of these steps is briefly described as follows:

(a) Making the kymograph. The user chooses an input image time-series with the “Open

File” button. Image time-series are assumed to be uncompressed, multi-page TIF files (inde-

pendent of bit depth). The user can choose to process either the whole or a subset of frames

using the “Frame nos.” text box. For example entering “2:2:8” will now result in only frames 2,

4, 6 and 8 being processed for further analysis. The text box “Save as sub-folder” takes a num-

ber input (default “1”) indicating where the outputs will be stored (e.g.: “./amtrak-1”). The

drop-down menu “Apply LOI” allows the user to either choose a line of interest (LOI) using

the mouse (“Interactive”) or apply a pre-existing LOI on a different channel (color) of the

image time-series (“From file”). Once an interactively drawn LOI is selected, it is stored in the

output sub-folder as “LOIselection.txt” (S1 Data). This LOI can subsequently be applied, to

another channel or the same region of another dataset (e.g.: microfluidics channels) using the

“From file” mode. For this, the user is required to load a separate TIF time-series using “Open

File” and change the sub-folder number in order to prevent overwriting old data. The “LOI

width (pixels)” allows a user to choose the width of the LOI, to compensate for occasional drift

of the object, in a direction orthogonal to the LOI orientation. The choice widths- 1, 3 and 5

pixels- is centered around the selected LOI pixels, similar to that implemented in the ImageJ

Multi Kymograph plugin [2]. The drop-down menu “Units” allows the user to select distance

and time units, and the text boxes “Scaling factor” and “Time interval” are used to provide

conversion factors per pixel and frame respectively. This results in scaling the pixels and

frame numbers to physical units. The button “Make Kymograph” produces a maximum inten-

sity projection image of the input time-series, if the user had chosen the “Interactive” mode

(default) in the “Apply LOI” menu. The user is required to select the line of interest by drag-
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clicking the mouse. Double-clicking ends the selection, and throws a dialog box, which

prompts the user to choose to either select more LOIs or continue with the processing of the

Fig 1. Algorithm workflow and user-interface. (A) The workflow of the algorithm involves three steps (1) kymograph generation, (2) peak

detection and tracking and (3) quantification and the functions invoked by each part are elaborated. (B) The GUI is organized to reflect this

workflow.

doi:10.1371/journal.pone.0167620.g001
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one already selected. This generates file one or more “LOIselection.txt” files in the sub-folders.

If the “From file” mode was selected, the program allows the user to select a pre-existing “LOI-

selection.txt” from the directory structure. The program then generates kymographs based on

these LOIs and stores the matrices corresponding to the LOIs in sub-folders numbered accord-

ing to the sequence of LOI selection (e.g.: “/amtrak-1/”, “/amtrak-2/” etc.).

(b) Peak detection and tracking. Detecting peaks: The button “Subfolder” allows the user

to choose the kymographs to be processed using “Add”, which adds the subfolders created ear-

lier to the active list. Using this feature, a user can either process a single kymograph at a time,

or process multiple kymographs using the same parameters. The kymograph is segmented

row-wise using Otsu’s method [29] and the resulting binary image is processed for “Peak

detection”. The user can choose between three alternative methods: (i) findpeaks [30] and (ii)

watershed [31] to find central peaks, while (iii) Canny edge detection [32] is useful if the edge

information is the most reliable descriptor of the dynamics. Typically findpeaks and watershed

are ideal for spherical objects.

Linking: The list of peaks P(t) for each time point t is linked resulting in tracks, based on

user input parameters of “Peak search radius” (λ1) and “Min. track length” (λ2). Peaks are

linked if the minimal pair-wise distance dj(t,t+τ) between every jth peak in successive rows (t, t
+τ) satisfies the condition min(dj(t, t+τ))� λ1, iteratively for the jth peak in every subsequent

time step (t+τ). If two or more peaks are equidistant, the peak that makes the largest angle (0

to π) with the existing track is chosen, similar to our previously developed branch detection

method [33]. For the peaks in t = 1, the angle criterion does not hold true and equidistant

peaks are resolved by user-input. Tracks are eliminated from further analysis if their number

of peaks linked len(P)� λ2, to avoid artifacts due to very short tracks.

Remove redundant: If the checkbox “Remove redundant tracks” is selected, each ith track

with ηi coordinates, is tested for intersections using the inbuilt intersect function. If the number

of common coordinates ηc satisfies the condition ηc� ηi/3, it is eliminated as a redundant

track.

Splitting and joining tracks: If the checkbox “Splitting events: Link tracks” is selected, events

where two tracks merge are identified by a two-step process. First, all peaks (I(x,t)) are evalu-

ated for the condition I(x,t) = (dte� ω1) AND (dxe� ω2), where dte is the distance on the

time-axis (t) and dxe is the distance on the spatial (x) axis. Then, a peak with the minimal

(Euclidean) distance is minimized for the distance to the end-point (e) coordinate Jm. The

time and distance thresholds are set by the user in the text box for ω1 (frames) and ω2 (pixels)

respectively.

The button “Detect Peaks” then outputs an image of the kymograph with the peaks overlaid

in color, while invoking the button “Make tracks” links the peaks based on the input parame-

ters. Lastly the button “Quantify” produces a text file corresponding to each track (S2 Data, S3

Data and S4 Data).

(c) Statistics. This section of the code produces both text-file outputs and plots of the

dynamics estimated from the kymograph. The frequency distribution of “Instantaneous Dis-

placement”, “Total Displacement”, “Instantaneous Velocity”, “Speed” and “Tortuosity” (i.e.

directionality) are plotted if the button “Plot” corresponding to these variables is pressed.

Additionally the mean and standard deviation (s.d.) of these variables are also generated in the

text boxes. Pressing the “Track Intensity” button plots the normalized (0–1) grey value inten-

sity of each track as a function of the time. The button “Track orientation” triggers a recoloring

the tracks in the kymograph based on the net direction of movement along the X-axis- blue

(-ve, left), red (+ve, right) and green (stationary, neutral).

The outputs of the analysis are stored in multiple tab-delimited text files: “LOIselection.txt”

with the LOI coordinates (S1 Data), “USER_TrackStats.txt” which reports track-wise mean
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values (S2 Data), “USER_InstStats.txt” which reports the time-dependent statistics (S3 Data),

“Tracklist.txt” which stores the grey-value intensities as a function of track number and time

(S4 Data) and “Branchpoints.txt” which stores the position and time coordinates of detected

branches (S5 Data). The user-inputs to AMTraK in terms of files, directories and parameters

are all stored in “All_Parameters.txt” (S6 Data), to enable reproducible analysis.

Materials and Methods

Simulated test images

Simulated images of static beads were generated by creating 8 bit images with a black back-

ground (intensity: 0) with equally spaced single white pixels (intensity: 255) in MATLAB

(MathWorks Inc., USA). To simulate bead motion, a simple 1D random-walk was imple-

mented where each bead was moved randomly in each frame, with displacement drawn from

a normally distributed random number with mean m = 0 and standard deviation (s). The stan-

dard deviation is a measure of the mean speed of motion. Both the static and mobile bead

image time-series were filtered with a 5x5 disk filter and smoothed using a 3x3 averaging filter.

The resulting convolved circular objects (S1A Fig) have intensity profiles that resemble point

sources of fluorescence signal (S1B Fig). The time-series were saved as a multi-page TIF files.

Noise was added to individual time-series in order to simulate increasing levels of image-noise

using a Gaussian filter with increasing standard deviation (0–100) using ImageJ [34].

Bacterial growth and microscopy

E. coli MG1655 (CGSC, Yale, USA) expressing the pBAD24-hupA-GFP [35] were cultured in

Luria Bertani (LB) medium (HiMedia, Mumbai, India) with 100 μg/ml Ampicillin (Sigma-

Aldrich, Mumbai, India) at 37˚C with shaking at 170 rpm (Forma, ThermoScientific, USA).

Nutrient ‘agar-pads’ with 0.2% arabinose (Sisco Research Labs, Mumbai, India) and 100 μg/ml

ampicillin were imaged on a glass-bottomed Petri dish (Corning, NY, USA) at 37˚C using an

inverted Zeiss LSM780 confocal microscope (Carl Zeiss, Germany) with a Plan Apochromat

63x (N.A. 1.40, oil) lens in DIC and fluorescence (excitation by 405 nm diode laser with a

beam splitter MBS 405 and the emission collected between 487–582 nm) modes. Images were

corrected for drift using the rigid body transformation in the StackReg plugin [36] for ImageJ.

Microtubule gliding assay

A 1:4 ratio of TRITC-labeled bovine and unlabeled porcine tubulin (Cytoskeleton Inc., USA)

at a concentration of 20 μM were used to prepare taxol stabilized MT-filaments in general

tubulin buffer as described by the supplier (Cytoskeleton Inc., USA). Into a double backed

tape chamber, we sequentially flowed in 4.1 μg/μl of a 67 kDa recombinant human kinesin

(Cytoskeleton Inc., USA), blocking buffer (5 mg/ml Casein) and MT filaments. The chamber

was then washed with a casein-containing buffer and the reaction was started with 1 mM ATP

with anti-fade mix (0.05 M glucose, 1% sucrose, 0.5 mg/ml catalase, 0.5 mg/ml glucose oxidase,

0.5% beta-mercaptoethanol (Cytoskeleton Inc., USA)). Time-series images were acquired

every minute for 30 minutes on an upright epifluorescence microscope with a 40x (N.A. 0.75)

EC Plan Neofluar lens mounted on a Zeiss Axio Imager.Z1 (Carl Zeiss, Germany) using filters

for excitation (563 nm) and emission (581 nm) and an MRC camera (Carl Zeiss, Germany).

Image processing

The acquired time-series and movies taken from published data were converted to uncom-

pressed TIF time-series using ImageJ (Schneider et al., 2012) and online converters for MOV
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files. MT-gliding assay images were de-noised using a median filter in ImageJ. For manual

analysis of kymographs of MT-gliding, a program was written in MATLAB (MathWorks Inc.,

USA) to generate a kymograph from the time-series, interactively draw a segmented line along

the edges and extract coordinates to calculate velocities. The automated multi-peak tracking

kymography (AMTraK) code was implemented in MATLAB R2014b (MathWorks Inc., USA)

in combination with the Image Processing (ver. 7.0) and Statistics (ver. 7.3) Toolboxes and

tested on Linux, Mac OSX and Windows7 platforms. Vesicle transport image time-series in C.

elegans from supporting material of published work [28] were calibrated based on the width of

the axon from the same report.

Data analysis

All data analysis and plotting was performed using MATLAB 2014b (MathWorks Inc.,

USA). Fitting of custom functions was performed using either the Levenberg-Marquardt non-

linear least square routine or the Trust-Region method, implemented in the CurveFitting

toolbox (ver. 3.5) of MATLAB.

Results

Accuracy of detection

To test the positional detection accuracy of the algorithm, we have created simulated image

time-series of circular objects that represent typical fluorescence images of circular objects (Fig

2A), comparable to images of sub-cellular structures in pixels (S1A Fig). Since the time-series

consists of the same image, the objects are perfectly static as seen in the resulting kymograph

(Fig 2B) output from running AMTraK on the data. Intensity variations are a result of the

noise from the spatial filter (s.d. 40). The difference between the position of the detected tracks

(xD) and the simulated position (xS) is used as an estimate of the limit of accuracy in position

detection, Δx = |xS-xD|. The normalized frequency distribution of Δx can be fit to an exponen-

tial decay function to obtain a mean accuracy<Δx> = 1/b from the fit, in pixel units (Fig 2C).

For all images with noise of s.d.< 40, the mean error (from fit) in detection hΔxi<1 pixel. For

higher values appears to saturate between 2–3 pixels (Fig 2D). Using the arithmetic mean as an

estimate of the accuracy for a given noise s.d. appears to result in an underestimate that does

not change with increasing noise s.d. (Fig 2D), and hence the mean from the exponential decay

of the frequency of Δx was taken to be more representative of the central tendency. To test if

motility affected the positional accuracy, we also evaluated the positional accuracy of particles

undergoing a random walk (as described in the Materials and Methods section) with a fixed

image noise (noise s.d. 30). By increasing the s.d. of the random walk we estimated the effect of

increasing velocity on Δx (Fig 3A). The accuracy of positional detection using both the arithme-

tic and exponential mean error (<Δx>) as before, is less than 1 pixel for the chosen range of

velocities of the random walk (Fig 3B). At higher velocities, the tracking errors accumulate, sug-

gesting image noise is the major limiting factor for the positional accuracy of detection, inde-

pendent of particle motility. Thus, while AMTraK analysis can result in sub-pixel accuracy of

position detection, it is essential that the input data have low-noise. We proceeded to test our

method on the multiple experimental datasets to examine the utility of this program involving

bacterial DNA segregation, microtubule motility and vesicle assembly and transport dynamics.

Detecting splitting events in bacterial DNA-segregation

A time-series of growing E. coli is acquired in fluorescence (Movie A in S1 Video) and DIC

(Movie B in S1 Video) to follow the nucleoid segregation dynamics of HupA-GFP labeled
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DNA (Fig 4A). Using the maximum intensity projection produced from AMTraK, the LOIs

are chosen (Fig 4B) and used to generate and analyze two kymographs (Fig 4C and 4D). The

segregation of the genome is captured by the branched structures of the tracks marked in

the kymographs. Additionally we can evaluate both the instantaneous velocity for time-

dependence (Fig 4E) and average statistics (Fig 4F). The mean nucleoid transport velocity is

0.103±0.12 μm/min (arithmetic mean ± standard deviation). Based on the form of the fre-

quency distribution of instantaneous velocities, we also fit an exponential decay function to

obtain the exponential mean velocity vex = 0.104 μm/min. These values of nucleoid move-

ment speed from E. coli MG1655 (wild-type) cells are comparable to a previous report in

which nucleoids were tracked in 3D over time [11]. While nucleoids form a diffraction-lim-

ited spot in microscopy images, un-branched cytoskeletal filaments form typical 1D struc-

tures and dynamics of transport on them and of the filaments themselves, are ideally suited

for kymography.

Fig 2. Estimating positional accuracy. (A) A single frame of a 2D image time-series of static spheres (with a peak intensity of 1) with Gaussian noise

(mean = 0, s.d. = 40) is analyzed using AMTraK (B) resulting in a kymograph. (C) The frequency distribution of the error in position detection (Δx) by

AMTraK (bars) is fit by an exponential decay (red). The mean error obtained is 0.75 pixels (goodness of fit R2 = 0.95) for a representative time-series with

noise s.d. = 40. (D) The mean error of detection (y-axis) from the exponential fit <Δx> = 1/b (black) is compared to the arithmetic mean (blue) in pixel units,

plotted as a function of increasing noise s.d. (x-axis). The noise generates random intensities drawn from a Gaussian distribution with mean 0 and the

specified s.d. being added to the image (based on the “Specified Noise” function in ImageJ).

doi:10.1371/journal.pone.0167620.g002
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Microtubule transport: filament edges, centers and time-dependence of

velocity

The transport of microtubule (MT) filaments by surface-immobilized molecular motors in the

presence of ATP and buffers is referred to in the literature as ‘gliding assay’ or ‘collective trans-

port assay’. Here, we analyze the gliding motility of MT on kinesin, as described in the meth-

ods section, using AMTraK. The analysis of a representative kymograph using either peak-

(Fig 5A) or edge-detection (Fig 5B) successful traces the centroids and edges respectively. The

mean velocity estimates for collective motor transport show variations between individual fila-

ments. The centroid and edge velocity estimates of multiple MT filaments (n = 10) are strongly

correlated as evidenced by the straight line fit with slope ~ 1 (Fig 5C and 5D), as expected.

However, the linear correlation of edge-based velocities has a slope of ~0.9 (Fig 5E), suggesting

small deviations from the ideal slope, within the range of the average positional detection error

(Fig 2C). While typical kymograph analysis of cytoskeletal transport averages the edge infor-

mation (movement of the tips over time), correlating edge-velocities could potentially be used

to estimate small alterations in the filament geometry such as bending and length change. The

mean velocity of 0.5 μm/min obtained from our analysis of the assay (Fig 5F) is consistent with

previous reports for the same construct [37,38]. While the transport of effectively 1D MT fila-

ments lends itself to kymography, we proceeded to investigate if 2D radial MT structures or

asters can also be analyzed by kymography.

Fusion of MT asters

In recent experiments by Foster et al. [39] they examined the spontaneous contraction dynam-

ics of radial MT arrays or asters labeled with Alexa647-tagged tubulin, in Xenopus egg extracts.

We have taken a time-series of such asters from published data (kindly shared by the author

Peter J. Foster) and analyzed coalescence events using AMTraK (Fig 6A) The projection of the

time-series for selecting the LOI enables us to reduce the complex movements of such 2D

Fig 3. Positional accuracy of tracking simulated motility. (A) Kymographs of time-series of spheres undergoing a 1D random walk with Gaussian noise

(s.d. = 30) were tracked. The colors indicate the detected tracks. (B) The arithmetic mean (blue) and exponential mean (black) of error in position detection

(Δx) (y-axis) over 3 iterations of the time-series is plotted for increasing velocity of the random-walk (x-axis) as inferred from the standard deviation (s.d.).

doi:10.1371/journal.pone.0167620.g003
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Fig 4. Nucleoid segregation dynamics of E. coli. (A) Image time-series of E. coli MG1655 grown on agar pads and imaged in DIC (left) and

fluorescence based on HupA-GFP (right) are analyzed using AMTraK. (B) AMTraK generates a maximum intensity projection on the basis of which

user-selected lines of interest (red lines) are used by the program to generate kymographs. The kymographs based on (C) LOI 1 (k1) and (D) LOI 2 (k2)

were tracked resulting in branched tracks (colored lines). (E) The instantaneous velocities of nucleoids 1 and 2 (n1, n2) from kymographs 1 (k1) and 2

(k2) are plotted as a function of time (colors indicate nucleoids n1, n2 each from the kymographs k1, k2). (F) Mean velocities are estimated using both

the arithmetic mean (±s.d.) and vex, the mean of the exponential decay (y = e-1/vex) that was fit (red line) to the frequency distribution of instantaneous

velocity (bars). Scale bar 4 μm.

doi:10.1371/journal.pone.0167620.g004
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Fig 5. Microtubule (MT) gliding motility on kinesin motors. MTs gliding on kinesin (images acquired every 1 minute for 30

minutes) were analyzed using AMTraK by either detecting (A) the centerline (red) or (B) the two edges the filament, edge 1 (red)

and 2 (cyan). Color bar: gray scale image intensity normalized by the maximal value for the bit-depth. (C, D) The velocity

estimates from the centroid-based velocity estimates and the two edges and (E) the velocity estimated from each edge are

correlated. (F) The frequency distribution of the instantaneous velocity estimates using the centroid (blue) is compared to edge-

based estimates. r2: goodness of fit, y/x: slope of the linear fit. Number of filaments analyzed, n = 10.

doi:10.1371/journal.pone.0167620.g005
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structures to a 1D over time process. The movement of the smaller aster as it merges with the

larger one is rapid. The fluorescence intensity following the merger fluctuates, but does not

increase, which we interpret to mean tubulin density at the center of the new aster does not

increase (Fig 6B). While the coalescence appears not to result in a compaction of the aster, it

demonstrates the utility of the code for 2D MT array transport. On the other hand, intensity

measurements are expected to change during processes such as molecular ‘recruitment’ of

sub-cellular structures, so we proceed to test the tool on this process, which had previously

been studied using manual kymography.

Kinetics of clathrin assembly during in vitro vesicle formation

We proceed to quantify the assembly kinetics of clathrin on membranes from an in vitro
reconstitution assay of clathrin assembly on vesicle precursors reported previously by Holkar

et al. [24]. This process has been analyzed using kymography due to its effectively 1D spatial

extent and the multiple simultaneous events of assembly. The published time-series of fluores-

cently labeled clathrin assembly kinetics in the presence of wild-type epsin (supplementary

movie 3 in [24]) and L6W mutant epsin (supplementary movie 5 in [24]) in the form of 16 bit

TIF images were provided by the authors (Sachin Holkar, personal communication). AMTraK

was used to analyze this data without any pre-processing, resulting in tracked kymographs of

assembly kinetics with wild-type (Fig 7A) and mutant epsin (Fig 7B). The software outputs a

text-file of grey-value intensities normalized by the bit-depth (maximum normalized, between

0–1) (S4 Data), which when multiplied by the bit-depth of the input images, produced inten-

sity profiles of clathrin assembly in grey-values with time in the presence of wild-type (Fig 7C,

S3A Fig) and mutant epsin (Fig 7D, S3B Fig). These intensity profiles were fit to a single phase

exponential function y = a+(b-a)�(1-e-c�t), where y is the intensity which increases with time t,

and depends on three fit parameters, a, b and c, the same function as used by Holkar et al.

[24]. A large proportion of the assembly events were successfully tracked and most showed

Fig 6. MT aster coalescence. (A) A time-series of MT asters undergoing fusion (time-series taken from previous work by Foster et al. [39])

was analyzed using AMTraK. The grey scale bar indicates normalized fluorescence intensity of Alexa-647 labeled tubulin. (B) The relative

intensity over time of the two coalescing asters is plotted.

doi:10.1371/journal.pone.0167620.g006
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Fig 7. Dynamics of clathrin assembly. (A, B) Microscopy time-series taken from Holkar et al. [24] of fluorescently labeled

clathrin assembly in the presence of (A) wild-type and (B) mutant epsin were analyzed using AMTraK. Colored lines in the

kymographs indicate detected tracks. (C, D) The change in intensity as a function of time based on AMTraK detected tracks from

(C) clathrin + w.t. epsin and (D) compared to clathrin + (L6W) mutant epsin. The intensity kinetics plots are fit to a single-phase

exponential function, y = a+(b-a)*(1-e-c*t) to obtain the time constant of assembly τ = 1/c (red). R2: goodness of fit. (D) The mean

values (error bar represents s.d.) of the time constant of assembly of clathrin (τ) in the presence of wild-type and mutant epsin are

compared.

doi:10.1371/journal.pone.0167620.g007
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saturation kinetics that were fit by curves with R2>0.7 (S3 Fig). While the parameters a and b
are scaling factors, c determines the characteristic clathrin polymerization time, τ = 1/c. In our

analysis the clathrin assembly time in presence of wild-type epsin is<τ> = 71.49±44.09 s

while with mutant epsin <τ> = 70.16±29.89 s. In our estimate of the mutant assembly time is

indistinguishable from wild-type, consistent with the previous report, which used manual

quantification of the kymograph [24]. We proceed to examine if our tool, which appears to

work successfully on in vitro data with low background noise, can also be used for the quantifi-

cation of in vivo dynamics inside the crowded environment of an intact cell.

Axonal vesicle transport: Characterizing directional switching

Synaptic vesicles in Caenorhabditis elegans mechanoreceptor neurons labeled with GFP-Rab3

have been recently studied by Mondal et al. in a whole-animal microfluidics device, providing

retrograde and anterograde vesicle transport statistics [28]. Such in vivo data is complex, in-

volves multiple crossovers and has many objects close to each other. AMTraK based analysis

of the published data could detect up to 17 different tracks (Fig 8A). Vesicles that were not

detected have typically low intensity or were out of focus and were not segmented. The spread

of the distribution of instantaneous velocities (left-ward: negative, anterograde; right-ward:

positive, retrograde, non-motile: paused) shows that the GFP-Rab3 vesicles are equally likely

to be anterograde and retrograde in their transport (Fig 8B). Based on the shape of the fre-

quency distribution of the non-zero velocities in anterograde (Fig 8C) and retrograde (Fig 8D)

directions, an exponential decay fit to the frequency distribution was used to estimate mean

velocities (goodness of fit, R2 = 0.99). To enable comparison with the arithmetic means re-

ported in literature [28], we also estimate the average. The mean velocity from the exponential

fits of anterograde transport is 0.625 μm/s (n = 425, arithmetic mean±s.d.: 0.77±0.53 μm/s)

while the mean retrograde velocity is 0.714 μm/s (n = 540, arithmetic mean±s.d.: 0.854±0.67

μm/s). In this case, both means are comparable since only non-zero values were the analyzed.

Velocities in both directions are of comparable order of magnitude to the published values

obtained by manual detection [28], but 1.5-fold lower, due to a (non-zero) threshold velocity

used by the authors to define pauses (as personally communicated by the author, Sudip Mon-

dal). Thus, AMTraK can be reliably used to quantify transport and assembly dynamics from

both in vitro and in vivo fluorescence microscopy data, as seen from the quantification, which

is consistent with literature.

Discussion

In this report, we have described a novel tool for automatic detection and quantification of

kymographs from fluorescence microscopy time-series. Using simulations we have demon-

strated sub-pixel position detection accuracy of our proposed method, in conditions of low

Gaussian noise. The program quantifies position, motility, and brightness intensity of fluores-

cence signal and fusion/splitting events. The utility of the code is tested on in vitro and in vivo
fluorescence time-series ranging from in vitro assays of MT gliding assays with kinesin, coales-

cence dynamics of MT-asters, clathrin assembly kinetics on lipid tethers to in vivo axonal syn-

aptic vesicle transport. The measures of average transport and kinetics of these diverse data

types are consistent with published data and provides opportunities for improved statistics of

individual events from a dynamic time-series, which were not as easily accessible with current

methods.

Manual quantification of kymographs [2] depends typically on reliable edge detection. As a

result, quantification varies between individuals and requires prior information or experience

[40]. Yet, manual kymography is widely reported in cell-biological literature for the analysis of
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dynamic processes, possibly due to the heterogeneity of the data types and the absence of a sin-

gle standard method or even criterion, which to make the process less interactive. While devel-

oping AMTraK, we tested global (whole-image) methods of edge-segmentation (contour-,

watershed- and gradient-based), but found them to be inadequate for the task. Possible reasons

include the time-dependent brightness and contrast changes of the sample resulting from

either bleaching or intrinsic dynamics. We find that for some applications such as vesicle

transport and protein recruitment, the detecting and tracking peaks is ideal, while for microtu-

bule gliding assays edge detection is better. As a result our code allows the user to choose

Fig 8. Analysis of synaptic vesicle transport. (A) GFP-Rab3 tagged vesicles from posterior touch cell neurons in C. elegans (experimental data from

taken from supporting movie S1 Movie from [28]) were analyzed using AMTraK. Colored lines with index numbers indicate tracks. (B) The frequency

distribution of instantaneous velocities of the vesicles (n = 1592) is plotted using AMTraK (mean: 0.49 μm/s, s.d. 0.88). (C, D) The frequency distribution

of non-zero velocities are fit with an exponential decay function y = A*e-x/m (red line), where A: scaling factor and m: mean. (C) The mean anterograde

velocity from the fit is 0.625 μm/s with arithmetic mean 0.77±0.53 μm/s (n = 425) and (D) the mean retrograde velocity from the fit is 0.714 μm/s with

arithmetic mean 0.854±0.67 μm/s (n = 540). Arithmetic means are reported ± standard deviation (s.d.). R2 indicates the goodness of the fit.

doi:10.1371/journal.pone.0167620.g008
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amongst three different methods of segmentation based on the nature of their data (a) peak

detection by findpeaks and (b) watershed and (c) edge detection using the Canny edge

detector.

Typical problems in peak or edge detection arise when the data has poor signal to noise.

This is also seen in our error analysis with increasing noise amplitude (Fig 2D). One solution

is to background subtract the image, which can be easily done in multiple tools. The occasional

loss of some particles in a time-series such as synaptic vesicles (Fig 8A), despite being visible to

the eye, results from a failure in detection or a ‘pruning’ step used to remove spurious and

redundant tracks. Such pruning however was found to be necessary to ensure robustness of the

code for handling multiple data types and is simple to trouble-shoot due to the limited number

of adjustable parameters. While intensity matching did not improve the percentage vesicles

tracked, in future additional features like those used in pattern-matching for tracking [41] could

be used further improve the detection percentages. Our test with increasing Gaussian random

image noise (Fig 2) also suggests that increases of fluorescently tagged proteins (for instance

due to expression level increases in vivo), could result in reduced spatial contrast. Such data

would then be difficult to automatically quantify using AMTraK. The data would require pre-

processing with something similar to an anisotropic diffusion filter [42] to preserve edge infor-

mation but reduce non-specific signal. In future, multiple data pre-processing routines could be

implemented in a separate module, to add to the functionality of the program.

Our quantification of the frequency distribution of synaptic vesicle transport in anterograde

and retrograde directions (Fig 8C and 8D) suggests the instantaneous velocities are exponen-

tially distributed. While the arithmetic mean suffices for comparison with experimental reports

[28], the quantification of the precise nature of the distribution of velocities could be used as a

test of theoretical models. Such a comparison has been made in previous work on synaptic vesi-

cle precursor trafficking [43]. Such models are relevant for both neurophysiology as well as

understanding of collective effects in molecular-motor driven vesicle transport in vivo [44,45].

The collective motor velocity of human kinesin driven gliding of MTs has been well charac-

terized in previous work [12,46,47]. Many of these studies have shown that the MT length and

kinesin density do not affect the mean speed. However, the time-series of individual filaments

show small time-dependent variations (Fig 4A and 4B), possibly a result of the local inhomo-

geneity of motor distributions. This information could be of some use when mixed-motor

populations are used [48]. Recent studies of filament motility have used a filament-tracking

approach based on a MATLAB program FIESTA [49], with a positional accuracy of 30 nm.

We find the distribution of time-averaged velocity of gliding calculated using AMTraK match

closely the distribution obtained from analysis using FIESTA (S2 Fig). This suggests that while

complex transport dynamics in 2D are indeed better analyzed using tracking tools, for those

data sets that are amenable to kymography analysis, AMTraK results are comparable to those

obtained from tracking tools with sub-pixel accuracy.

While the dynamics of multiple particles can be simultaneously quantified using AMTraK,

the selection of LOIs remains manual. However, once an LOI has been selected, the program

can also be used in the “From file” mode to apply a pre-existing LOI to quantify kymographs

in other channels (e.g.: bright field, fluorescence) and other fields of view with similar sample

geometries. Potentially, LOIs could be generated independent of AMTraK too, provided they

are compatible with the input format. The multiple bright-field and fluorescence correlative

analysis tools for bacterial image analysis [10,33,50,51] are an example in case. More recent

developments in image-analysis software to systematically extract data from microfluidics

experiments automatically output channel information [52], which could also form the basis

for the LOIs for multiple fields of view. These approaches could in future further increase the

throughput our analysis tool.
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Multiple software tools for kymography have been described in the recent past in literature

and their features are summarized in Table 1 for comparison. While most tools including this

one, require user inputs for the process of kymograph generation, only AMTraK and Kymograph

Direct [53] automates the detection and connection. However, certain features of AMTraK make

it unique, being absent in other comparable tools, such as automated branch-point detection, an

integrated quantification module and sub-pixel positional accuracy accessible with an easy to use

GUI front-end. In addition, since the code is open source and written in MATLAB, it is more

likely to be used in an existing microscopy analysis workflow, due to the increasing spread of

MATLAB as a data analysis platform in quantitative cell-biology research [54,55]. Thus, AMTraK

could serve as a tool for the rapid quantification of image time-series of transport and assembly

kinetics from microscopy. This has become particularly relevant in the context of high-content

screening [56], where the spatial interaction patterns are becoming just as important as bulk

kinetics measured in traditional high throughput screens.

We have developed an automated tool for the quantification of kymographs. Our approach

detects peak and edge information and utilizes a distance minimization approach to link them.

We demonstrate the wide utility of our tool by quantifying microtubule transport dynamics,

clathrin polymerization kinetics and vesicle transport. Combined with a user-friendly inter-

face, objective detection criteria and open source code, we believe AMTraK can be used to

extract more and reproducible statistics from microscopy of sub-cellular dynamics.

Supporting Information

S1 Data. The LOI coordinates generated are stored in the file “LOIselection.txt” when the

user chooses the “Interactive” mode of LOI selection at the stage of generating a kymo-

graph. This provides the 2D image coordinates (X and Y) in pixel units, as indicated by the

columns labels.

(TXT)

S2 Data. The average statistics for all trajectories are stored in a file “USER_TrackStats.

txt”. It reports in a column-wise manner the track number, time over which it is tracked (in

Table 1. A comparison of features in kymography tools described in literature and commonly in use for cellular and sub-cellular scale images.

Feature / Tool AMTraK Multi-

kymograph

Makekymograph Icy-

Kymograph

Tracker

Kymomaker Points from

Kymograph

Kymograph

mt2

KymographClear and

KymographDirect

LOI selection Manual Manual Semi-automated Manual Manual No Manual Manual

Multiple LOIs Yes Yes Yes Yes Yes No No No

Automated track

detection

Yes No No Semi-

automated

Yes Semi-

automated

No Yes

Quantification Yes Separate No Separate No XY-

coordinates

No Separate

No. of

adjustable

parameters

8 1 1 7 13 - - -

Split and merge

detection

Automatic No No No No No No Manual

Open source Yes Yes Yes Yes No Yes Yes Yes

Programming

language

MATLAB ImageJ

macro

Java (ImageJ

plugin)

Plugin for Icy - Java (ImageJ

plugin)

Java (ImageJ

plugin)

ImageJ macro and

LabView

Reference This

report

[57] [58] [5] [4] [59] [60] [53]

doi:10.1371/journal.pone.0167620.t001
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user-provided units), speed, net-velocity (displacement/time), tortuosity (displacement/path-

length), average of instantaneous velocity and the standard deviation of the average instanta-

neous velocity. All column headers are labeled for clarity.

(TXT)

S3 Data. The instantaneous (time-dependent) statistics of each track are stored in “USER_-

InstStats.txt” with track number, time interval to the previous frame in units provided by

the user, displacement magnitude, positive/negative displacement (leftwards: negative,

rightwards: positive), instantaneous velocity (displacement/time interval), signed-velocity

(leftwards: negative, rightwards: positive), and cumulative time (adding up time intervals

in units provided by the user). All column headers are labeled for clarity.

(TXT)

S4 Data. The file “Tracklist.txt” stores the time-dependent intensity statistics of each

track. This provides the track number, position in distance from the origin (upper-left corner)

in pixels, time-frame (frame number), normalized grey-value intensity (divided by the bit-

depth of the image) and normalized time-frame (setting the first time-frame to 0). All column

headers are labeled for clarity.

(TXT)

S5 Data. The branch-points detected by the code are stored in a file “Branchpoints.txt”

which is generated when the user chooses to detect “Splitting events” (check-box) with an

appropriate parameter choice. It contains the track-number that splits off from or joins

another track, the 1D distance (from the origin at the left edge) and it’s time point both in

terms of user-provided units. The column headers describe the variables.

(TXT)

S6 Data. User provided values are stored in “All_Parameters.txt”. This includes the name

and path of the input TIF image time-series, scaling factors (distance, time) and parameters

for the detection, tracking and splitting-events.

(TXT)

S1 Fig. The simulated image. (A) The simulated bead image used to estimate the accuracy of

the code. A profile through the image (yellow line) is used to generate (B) an intensity profile

through the three beads.

(PDF)

S2 Fig. Comparing kymography to filament tracking. The frequency distribution of instan-

taneous velocities obtained after analyzing time-series of MTs gliding on kinesin using

AMTraK (red bars) and the high-precision filament-tracking tool, FIESTA (blue bars) are

plotted.

(PDF)

S3 Fig. Kinetics of clathrin endocytosis. The fluorescence intensity in grey values (colored

circles) as a function of time in seconds estimated from multiple detected tracks after AMTraK

analysis (Fig 7A and 7B) of clathrin assembly kinetics in the presence of (A) wild-type and (B)

mutant (L6W) epsin (based on data from Holkar et al. [24]). A single-phase exponential func-

tion (the same as in Fig 7C and 7D) is used to fit the data (black line) and the parameters are

listed for each fit, with τ indicating the time-constant of assembly in seconds.

(PDF)

S1 Video. Time-series of division and genome-segregation in E. coli MG1655 is followed (A)

in fluorescence with nucleoids labeled by HupA-GFP (grey) and (B) DIC is used to follow cell
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morphology. Scale bar: 4 μm. Time indicated in minutes.

(ZIP)
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