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Biomembranes play a central role in various
phenomena like locomotion of cells, cell-cell
interactions, packaging and transport of nutrients,
transmission of nerve impulses, and in maintaining
organelle morphology and functionality. During these
processes, the membranes undergo significant
morphological changes through deformation,
scission, and fusion. Modelling the underlying
mechanics of such morphological changes has
traditionally relied on reduced order axisymmetric
representations of membrane geometry and
deformation. Axisymmetric representations, while
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robust and extensively deployed, suffer from their inability to model-symmetry breaking
deformations and structural bifurcations. To address this limitation, a three-dimensional
computational mechanics framework for high fidelity modelling of biomembrane deformation
is presented. The proposed framework brings together Kirchhoff–Love thin-shell kinematics,
Helfrich-energy-based mechanics, and state-of-the-art numerical techniques for modelling
deformation of surface geometries. Lipid bilayers are represented as spline-based surface
discretizations immersed in a three-dimensional space; this enables modelling of a wide
spectrum of membrane geometries, boundary conditions, and deformations that are physically
admissible in a three-dimensional space. The mathematical basis of the framework and its
numerical machinery are presented, and their utility is demonstrated by modelling three
classical, yet non-trivial, membrane deformation problems: formation of tubular shapes and
their lateral constriction, Piezo1-induced membrane footprint generation and gating response,
and the budding of membranes by protein coats during endocytosis. For each problem,
the full three-dimensional membrane deformation is captured, potential symmetry-breaking
deformation paths identified, and various case studies of boundary and load conditions are
presented. Using the endocytic vesicle budding as a case study, we also present a ‘phase
diagram’ for its symmetric and broken-symmetry states.

1. Introduction
Membrane curvature is ubiquitous in biology [1]. Indeed, the bending of cell membranes is
a central aspect of function for cells and organelles in many cellular processes such as cell
migration [2], cell membrane repair [3], membrane trafficking [4] and cytokinesis [5], as well as
the maintenance of distinctive membrane shapes within internal organelles like the endoplasmic
reticulum [6,7] and the Golgi complex [8]. Some important curved structures include tubules,
sheets, vesicles and cisternae [9]. A number of mechanisms have been identified to influence
membrane bending, including geometric confinement by protein or lipid components of the
membrane (intrinsic factors) [10,11] and peripheral proteins and the cytoskeleton (extrinsic
factors) [12,13]. These mechanisms are often coupled and are spatio-temporally regulated by
biochemical signalling cascades, leading to the mechanochemical coupling of signalling and
membrane deformations. Lipid bilayer models that assume an in-plane fluid-like behaviour and
an out-of-plane solid-like behaviour have provided notable insight to investigations of such
curvature generation mechanisms. Particularly, the Helfrich–Canham model [14] has furnished
mechanistic insight to shape formation of liquid shells during vesiculation [15,16], tubulation [17],
viral budding [18], clathrin-mediated endocytosis [19], and membrane neck formation [20,21].
These modelling efforts have been complementary to advances in imaging techniques [22–24],
enabling a deeper appreciation of the complexity of membrane deformation.

Despite the wealth of information provided by theoretical membrane mechanics models, an
important restriction in several of these studies is the assumption of various degrees of symmetry
for the membrane geometry and its deformation. Indeed, the computation of membrane bending
phenomena is significantly simplified with the axisymmetric assumption, but as we have shown
recently [21], this may come at the cost of generality and precision in identifying the underlying
physics, as lower-energy, low-symmetry kinematic modes and even entire mechanisms may be
overlooked. With growing interest in curvature-mediated biophysical phenomena and in three-
dimensional imaging and reconstruction methods [25,26], there is a need for general purpose
computational tools to enable fully three dimensional numerical simulations.

The continuum mechanical treatment of solids considers deformation as a mapping
of the geometry (three-dimensional volume, two-dimensional surface or one-dimensional
curve) from its reference, undeformed configuration to a deformed current configuration
under the influence of internal or external loads, of which the latter also may appear
as boundary conditions. In limited cases, the geometry, loads and boundary conditions
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result in a mathematical problem of deformation of a k-manifold immersed in an
n-dimensional space (Rn). A 3-manifold is a volume, 2-manifold is a surface and
1-manifold is a curve. For k = n, modeling solid deformation is relatively straightforward and
can be accomplished in the framework of Euclidean geometry using a rectilinear coordinate
basis.

However, deformation of shell-like surface geometries, as is the case with biological
membranes, involves tracking the underlying kinematics and evolution of geometric
configurations of a 2-manifold embedded in a three-dimensional space [27]. Such a geometric
embedding demands a non-Euclidean framework with a curvilinear coordinate basis. While the
mathematical treatment of such a framework is well-developed (beginning with the celebrated
work on differential geometry by Riemann in the nineteenth century [28]), its application to three-
dimensional modelling of biomembranes, which entails solving nonlinear partial differential
equations in a curvilinear coordinate basis, is relatively recent. Beginning with finite element
models of Mindlin–Reissner plates [29–32] and Kirchhoff–Love shells [29,33–35], initial efforts
focused on developing numerical models in a rectilinear coordinate basis with approximated
geometries and kinematics. However, the advent of spline-based geometric representations of
surfaces and the more recent development of Isogeometric Analysis (IGA) techniques [36] allow
for an exact representation of surface geometries and the use of a curvilinear coordinate basis.
Such treatments are now gaining traction in modelling structural applications [37–40] and also
in the context of biological materials [41–44]. We build upon these developments, especially
from Sauer et al. [42], by adopting spline-based representations of surface geometries, treatments
of membrane kinematics using a curvilinear basis, and the framework of IGA to develop
a comprehensive computational modelling framework for studying complex deformations in
biological membranes.

In this work, we present a three-dimensional, Helfrich-energy-based, Kirchhoff–Love thin-
shell computational framework for modelling the deformation of biological membranes in the
regime of fully nonlinear kinematics and precise geometric representations. With this treatment,
we are able to model membrane deformations, resolve geometric bifurcations, and explore post-
bifurcation responses. The main ingredients of this framework are the governing equations
of Helfrich-energy-based membrane mechanics [27,42,44,45] and the numerical framework of
IGA for solving the underlying partial differential equations. IGA methods form a numerical
framework for finding approximate solutions to general partial differential equations [36], are
a generalization of the classical finite-element method [46–48], and possess good numerical
approximation and stability properties [49]. Crucially for accurate modelling of membrane
biophysics, since IGA uses spline basis functions to represent the geometry and its deformation, it
admits the continuity of slopes that is a characteristic of membranes in all states except for those
of actual scission. As a result, we can now investigate simulations of membrane deformation
under conditions that are notably more general (having fewer restrictive kinematic assumptions)
than those considered previously in the literature [20,50–54]. The computational framework is
implemented as an open-source software library and provided as a resource to the biophysics
community [55].

To demonstrate the scope of the computational framework, we simulate three classical and
non-trivial membrane deformation phenomena (figure 1): (a) formation of tubular shapes and
their lateral constriction, (b) Piezo1-induced membrane footprint generation and gating response
and (c) the budding of membranes due to the spontaneous curvature of the protein coats during
endocytosis. For each case, three-dimensional membrane deformation is tracked, symmetry-
breaking deformation pathways identified, and a few case studies of boundary conditions
and loading are presented to exhibit the fidelity and modelling potential of the proposed
methodology. We also present a phase diagram of symmetric and broken-symmetry states of
membrane budding during endocytosis.

In the following sections, we present an outline of the mathematical framework and the model
development, followed by a presentation of the three boundary value problems considered, their
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(a)  filopodial protrusion

(c)  budding during endocytosis

(b)  Piezo1-induced membrane footprint generation

nucleus

vacuole

endoplasmic
reticulum

Golgi

Figure 1. Schematic of the variousmembranebiophysical phenomenamodelled in thiswork todemonstrate the computational
framework: (a) membrane tube pulling during filopodial protrusion, (b) dome formation and membrane footprint generation
due to Piezo1 interaction, and (c) spontaneous curvature-driven bud formation during endocytosis. Shown in insets are the
schematic of the membrane deformation induced by the underlying protein complexes and its line diagram representation.
(Online version in colour.)

modelling results and biophysical implications. Finally, a discussion of the framework, its utility
and planned future developments is presented.

2. Methods
The mathematical framework consists of surface geometry parametrization, Kirchhoff–Love
membrane kinematics, Helfrich-energy-based mechanics of lipid bilayers and surface partial
differential equations governing mechanical deformation. Key ingredients of this framework are
described below, while the more detailed mathematical derivations are provided in the electronic
supplementary material. Using the IGA apparatus, the mathematical treatment is then cast into
a numerical formulation that allows for solving the governing equations to obtain the spatial
evolution of membrane deformation. These aspects of the framework are discussed under the
computational implementation subsection.

(a) Mathematical framework
The mathematical treatment introduced here follows from Sauer et al. [42]. Only the important
results are summarized in this section, and the detailed derivations are presented in the electronic
supplementary material.

(i) Surface parametrization and kinematics

Consider a lipid bilayer represented as a surface (2-manifold) embedded in a three-dimensional
volume, as shown in figure 2. Let the reference (undeformed) configuration and the current
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Figure 2. Surface parametrization of a biomembrane in the reference undeformed configuration (Ω0) and current deformed
configuration (Ω ). The two-dimensional surface,Ω0, is boundedby the curves∂Ω0 (highlightedwith colour), and embedded
in a three-dimensional volume. Here, X is the position vector of a point on the surface parametrized in terms of the surface
coordinates (ξ 1,ξ 2) which are associated with a flat two-dimensional domain that is then mapped toΩ0 asX = X(ξ 1, ξ 2).
The local tangent vectors to the surface at X are A1 and A2, and N is the corresponding surface normal. The position
dependent triads {A1,A2,N} and {a1,a2,n} form the local curvilinear coordinate basis for the reference undeformed
configuration and current deformed configuration, respectively. (Online version in colour.)

(deformed) configuration of the surface geometry be denoted by Ω0 and Ω , respectively. The
configurations Ω0 and Ω are parametrized by the coordinates ξ1 and ξ2 that map a flat
two-dimensional domain to the surface coordinates X and x:

X = X(ξ1, ξ2) ∀ X ∈ Ω0 and x = x(ξ1, ξ2) ∀ x ∈ Ω . (2.1)

The (covariant) tangent vectors in the reference and current configuration are given by

AI = ∂X
∂ξ I = X,I and ai = ∂x

∂ξ i
= x,i . (2.2)

In the expressions that follow, except when indicated otherwise, uppercase letters are
associated with the reference configuration and lowercase letters are associated with the current
configuration.

Using the tangent vectors, we define the surface normals as follows:

N = A1 × A2

‖A1 × A2‖
and n = a1 × a2

‖a1 × a2‖
. (2.3)

From the triad consisting of the tangent vectors and the normal that form the local curvilinear
coordinate basis, we can obtain expressions for the metric tensor,

AIJ = AI · AJ and aij = ai · aj. (2.4)

The second-order derivatives of the surface coordinates X and x are given by

AI,J = ∂AI

∂ξJ
and ai,j = ∂ai

∂ξj
, (2.5)

and from them we obtain the components of the curvature tensor,

BIJ = AI,J · N and bij = ai,j · n. (2.6)

We are now able to define the primary kinematic metrics of interest: the mean and Gaussian
curvature. The mean curvature and Gaussian curvature are frame invariant measures of a surface
geometry, and hence are natural choices for representing the kinematics of the surface as it
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deforms. Using the components of the curvature tensor, we can obtain expressions for the mean
curvature,

H = 1
2

BIJAIJ on Ω0, h = 1
2

bijaij on Ω , (2.7)

and the Gaussian curvature,

K = |B|
|A| on Ω0, κ = |b|

|a| on Ω , |·| = det(·). (2.8)

(ii) Biophysics of membrane deformation

With a focus on representing the correct deformation, a biomembrane is often modelled as a
thin elastic shell governed by the classical Helfrich formulation [14,56,57] of membrane bending
energy. In this treatment, the primary kinematic variables are the curvatures capturing the
bending of the membrane, and the elastic energy density of the membrane is given by

w = kB(h − h0)2 + kGκ , (2.9)

where kB and kG are the bending modulus and the Gaussian curvature modulus of the membrane,
and h0 represents the instantaneous curvature induced in the membrane.

Furthermore, we assume that the membrane is area preserving (i.e the membrane area is
constant) [58]—a constraint that is implemented using a Lagrange multiplier field. Enforcing the
area-preserving condition results in the following field expression for the elastic energy density:

w = kB(h − h0)2 + kGκ + λ(J − 1), (2.10)

where λ is the point value of the Lagrange multiplier field, and J is the surface Jacobian field
(ratio of an infinitesimal area element in the current configuration to the area of its pre-image in
the reference configuration). Here, the Lagrange multiplier field represents the membrane tension
[45,59] that enforces the area-preserving property of biomembranes and thus influences the
minimum energy configuration. The Lagrange multiplier field is position dependent, is obtained
as part of the solution process, and thus permits non-homogeneous membrane tensions that are
needed to ensure that the membrane is area preserving under general deformation conditions. In
this model, we neglect in-plane fluidity of the membrane [60,61] and friction in the bilayer [62–64],
as we are interested in determining the elastic equilibrium states under quasi-static conditions and
not the underlying membrane relaxation or rate processes. The augmented Helfrich Hamiltonian
whose extremum is sought over the membrane surface, including the Lagrange multiplier field λ

is given as

E =
∫
Ω

(kB(h − h0)2 + kGκ + λ(J − 1)) da, (2.11)

where Ω is the domain of integration over the membrane surface.

(iii) Governing equations

The governing equation for quasi-static mechanical equilibrium in three-dimensional simulations
is obtained as the Euler–Lagrange condition of the Helfrich energy functional following standard
variational arguments, and is given by

∫
Ω

1
2
δaijσ

ij da +
∫
Ω

δbijM
ij da −

∫
Ω

δx · p da −
∫
∂Ω

δx · t ds = 0, (2.12)

where ∂Ω is the membrane boundary on which surface tractions and displacement boundary
conditions can be applied, as shown in figure 2. Furthermore, δaij and δbij are variations of the
components of the metric tensor and the curvature tensor, respectively,

Here, σ ij are the components of the stress tensor, Mij are components of the moment tensor
(in the current configuration), p is a body force, which can be used to apply surface pressure for
constriction (in the case of the tube constriction boundary value problem), and t is the surface
traction.



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210246

..........................................................

For a hyperelastic material model, we can express the stress and moment components in terms
of the strain energy density as [44]

σ ij = 2
J

∂w
∂aij

(2.13)

and
Mij = 1

J
∂w
∂bij

. (2.14)

For the Helfrich type strain energy density, these take the form

σ ij = (kB(h − h0)2 − kGκ)aij − 2kB(h − h0)bij (2.15)

and
Mij = (kB(h − h0) + 2kGh)aij − kGbij. (2.16)

Here, it is important to note that the Helfrich elastic model inherently lacks resistance to
shear deformation modes in three dimensions. This lack of shear stiffness correctly represents the
fluidity of the biomembranes, but induces numerical instabilities while solving boundary value
problems involving three-dimensional membrane deformation. We eliminate these numerical
instabilities by adding shear stabilization terms to the material model but ensure that these terms
are of smaller magnitude than the bending energy terms in the Helfrich energy [42]. We perform
convergence studies with respect to both the underlying mesh (ensuring mesh-objectivity) and
the dependence on the shear stabilization terms. The results reported in this manuscript are for
sufficiently refined meshes. The elastic modulus corresponding to the shear stabilization is small
compared to the bending modulus and is chosen to have minimal effect on the overall stiffness or
the deformation energy of the membrane.

(b) Computational implementation
In this framework, we solve the governing equation given by equation (2.12) using the
methodology of Isogeometric Analysis (IGA) [36]. As stated in the introduction, IGA is a mesh-
based numerical discretization scheme for finding approximate solutions to general partial
differential equations [36], and is a generalization of the classical finite-element method [46–48].
Numerical discretization of the problem geometry in IGA is accomplished by using a spline-based
C1-continuous basis. In the context of biomembranes, this ensures accurate representation of both
the reference and deformed geometries without the spurious slope discontinuities observed in
more traditional finite-element schemes and other grid-based numerical schemes. We developed
a first of its kind in-house, parallel, C++ programming language-based open-source library for
membrane mechanics in three dimensions. The important components of this modular library
are the implementation of membrane kinematics without any axisymmetric restrictions, Helfrich
material model, weak form of the governing equations of membrane mechanics, and the setup of
the global boundary value problem with biomembrane-specific boundary conditions. This library
sits on top of the PetIGA [65] open-source library that provides the spline (NURBS) discretization
capability and the PETSc [66] open-source library that provides a suite of data structures and
routines for the scalable (parallel) solution of partial differential equations. The computational
framework is implemented as an open-source software library and is provided as a resource to
the biophysics community through a GitHub repository [55].

3. Results
We demonstrate the simulation framework using three classical membrane deformation
problems: formation of tubular shapes and their lateral constriction, Piezo1-induced membrane
footprint generation and gating response, and the budding of membranes by protein coats
during endocytosis. Through these examples, we also demonstrate the emergence of increasingly
complex membrane deformations that are beyond the scope of traditional axisymmetric
formulations. These problems are described in detail below.
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(a) Formation of tubular shapes and their lateral constriction
Many cell organelles and cytoplasmic projections are shaped as vesicles, tubes or elongated
membrane structures. Some examples of such shapes are the filopodia protrusions, inner
mitochondrial region, endoplasmic reticulum, the Golgi complex, etc. (figure 1). These tubular
structures play an important role in the locomotion of cells, production and folding of proteins,
and in the formation of vesicles for transporting proteins and lipids among others. A typical
mechanism for producing these tubular shapes involves motor proteins that attach to the
cell membrane and pull it along the filaments of the cytoskeleton [67,68]. Further, as is the
case with the fission of endocytic vesicles, the tubular or vesicular structures also undergo
constriction by scission proteins like dynamin [69–71]. This constriction mediates a membrane
pinch-off mechanism that leads to the formation of vesicles. From a biophysical standpoint, it
is important to gain a quantitative understanding of the interaction between the proteins and
the membranes by determining the deformation mechanisms, forces exerted by proteins, and
kinematic constraints.

A classic benchmark problem in the understanding of elongated biomembrane structures is
the analytical model of the formation and interaction of membrane tubes proposed by Derényi
et al. [17]. Some key results of this model are the prediction of the magnitude of protein-
membrane interaction forces and tubule radius, and their dependence on the membrane bending
modulus (κB) and surface tension (γ ). The protein pulling force, ty, and the tubule radius, r, are
related to the bending modulus and surface tension of the membrane as follows: ty ∝ √

κB γ and
r ∝ √

κB/γ . In addition to these analytical estimates, numerical solutions to the problem of
membrane tube pulling, albeit with axisymmetric constraints on deformation, are available
in the literature [72,73] and in our earlier work [21]. We take advantage of the analytical
estimates proposed by Derényi et al., the numerical solutions available from axisymmetric
models [21], and validate the computational framework proposed in this work by comparing
the load–displacement response of membrane tube pulling from these three approaches.

The boundary value problem solved, along with the spatial discretization (mesh), boundary
conditions on the displacement (u) and the membrane boundary slope (φ) are shown in figure 3a.
The simulation results are shown in figure 4: figure 4a is the deformation profile obtained
during tube pulling, and in figure 4b is the load–displacement response of the three-dimensional
framework compared to the asymmetric result and the equilibrium value of tube pulling force
predicted by the analytical model. We note that the analytical model only predicts the final
equilibrium value of the tube pulling force, and hence only a single value of the force from the
analytical model is plotted. As can be seen from figure 4b, the three-dimensional model very
closely tracks the axisymmetric solution and asymptotically approaches the equilibrium value
of force from the analytical solution. Furthermore, we show the evolution of the deformation
profile with increasing tube pulling force in figure 4c, and the dependence of the deformation
profile and tubule radius on the applied surface tension in figure 4d. Here, we note that the small
deviation of the three-dimensional model results from the axisymmetric solution in figure 4b is
due to the fact that the three-dimensional model boundary value problem is less constrained
along the outer rim than the axisymmetric boundary value problem. For the three-dimensional
problem, we enforce uy = 0 along the outer rim, whereas the axisymmetric problem also enforces
complete radial symmetry of the ux and uz displacements in addition to enforcing uy = 0 (see
figure 3a). This makes the axisymmetric problem more stiff to the applied load.

We further consider the effect of lateral constriction pressure on the tubular geometry
and demonstrate the non-axisymmetric pinching deformation profile that is predicted by the
computational framework. For this boundary value problem, we consider a tubular geometry
(shown in figure 1a, under tube constriction) and apply an axisymmetric constriction pressure
that would be applied by a spiral collar protein like dynamin [57,74,75]. As can be expected,
an axisymmetric model would predict an axisymmetric pinching profile in the vicinity of
the constriction pressure [21]. However, the fully three-dimensional model considered in this
computational framework is not limited to axisymmetric solutions, and is thus able to predict
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(a)  membrane tube pulling and tube constriction

(b)  Piezo1-induced membrane footprint generation
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Figure 3. Schematic of the various membrane boundary value problems considered in this work. Shown are the geometry and
boundary conditions for (a) formation of tubular shapes and their lateral constriction due to the application of axisymmetric
constriction pressure, (b) Piezo1-induced membrane footprint generation, and (c) the budding of membranes due to
the spontaneous curvature of the protein coats during endocytosis. Here, ux , uy and uz are the displacement components, t
is the surface traction and ty its component along the y-axis, ñ is the normal to the boundary curve,φ is the boundary slope,
γ is the surface tension applied on the membrane boundary, and h0 is the instantaneous curvature. Blue and orange colours
identify the outer and inner rims, respectively. (Online version in colour.)

non-axisymmetric states when they are the energy minimizing solutions to the governing
equations of membrane deformation. The progression of the non-axisymmetric solution with
increasing constriction pressure is shown in figure 5. This shape of the membrane has significant
implication on the force and energy barrier of protein induced pinching of membranes, as
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Figure 4. Deformation profile and force–displacement response of a membrane during tube pulling. Shown are the (a)
deformation profile with the application of axial force (ty) on a membrane with a bending modulus (κB) of 20 pN · nm
under a surface tension (γ ) of 0.1 pN nm−1, (b) comparison of the three-dimensional force–displacement response with
the axisymmetric solution and the equilibrium tube pulling force predicted by the analytical model, (c) progression of tube
pulling with increasing axial force and (d) dependence of the deformation profile and tube radius on the surface tension of the
membrane. (Online version in colour.)

has been studied in detail in our recent work demonstrating how non-axisymmetric buckling
lowers the energy barrier associated with membrane neck constriction [21]. In that study, we
used an earlier version of the computational framework proposed here to study the influence of
location, symmetry constraints and helical forces on membrane neck constriction in a lipid bilayer.
Simulations from our model demonstrated that the energy barriers associated with constriction
of a membrane neck are location dependent, and if symmetry restrictions are relaxed, the energy
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Figure 5. Progression ofmembrane tube constrictionwith increasing constriction pressure leading to non-symmetric pinching
profiles of deformation. Shown are the tube geometry and the computational mesh, and the progression of the non-symmetric
membrane constriction due to the constriction pressure. (Online version in colour.)

barrier for constriction is dramatically lowered and the membrane buckles at lower values of
the constriction pressure. These studies helped establish that even though there exist different
molecular mechanisms of neck formation in cells, the mechanics of constriction of a cylindrical
membrane tubule naturally leads to a loss of symmetry that can lower the energy barrier to
constriction. This loss of symmetry may be a common mechanism for different scission processes
and clearly demonstrates the need for a fully three-dimensional computational framework to give
predictive insights into membrane deformation.

(b) Piezo1-induced membrane footprint and gating response
We next investigate how mechanosensitive channels can deform the membrane. Mechanosensitive
ion channels on the cell membrane play an important role in the mechanosensory transduction
processes of the cell. These ion channels are sensitive to the forces acting on the cell membrane
and respond to these forces by undergoing conformational changes. These changes result in
the opening and closing of pores in the cell membrane and thereby regulate the flow of ions
and solutes entering and egressing the cell. Examples of such mechanosensitive ion channels
include Piezo1, MscL and TREK-2 [76]. In the case of Piezo1, a gated ion channel made up of
three protein subunits that induce a dome-shaped structure on the cell membrane, the gating
mechanism is triggered by the membrane surface tension. The membrane deformation induced
by the surface tension acts as a mechanical signal that activates the protein subunits and causes
them to undergo a conformational change that results in pore opening and transport of ions and
solutes [77–79].

While the exact mechanism of mechanosensory transduction effected by the Piezo1 ion
channel is still an open question, the extent of the deformed shape induced by the Piezo1 dome
(referred to as the membrane footprint) is understood to significantly influence the sensitivity
of the gating response of the channel [80]. As observed by Haselwandter & MacKinnon [80], an
extended membrane footprint amplifies the sensitivity of Piezo1 subunits to respond to changes
in the membrane surface tension. At the same time, increasing membrane tension significantly
reduces the membrane footprint and thereby renders the Piezo1 subunits less sensitive to detect
membrane mechanical signals.

In this analysis, we model the effect of surface tension on the area of the membrane footprint
induced by the Piezo1 dome. Our modelling goal for this problem is to demonstrate the
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Figure6. Effect of surface tensionon themembrane footprint area inducedbyaPiezo1dome.Plottedare the three-dimensional
displacement profile, and its projection on the x–y and z–x planes. The bending modulus (κB) of the membrane is taken to be
30 pN · nm, and a rigid Piezo dome effect is simulated by rotating the membrane (slope boundary condition) at the inner rim
of the annular geometry to a value ofφ = 70 ◦. To clearly visualize the increasingmembrane footprint with decreasing surface
tension, we scale the y component of the displacement (uy) by a factor of three in the x–y oriented plots. (a)γ = 1.0 pN nm−1,
(b) γ = 0.1 pN nm−1, (c) γ = 0.05 pN nm−1 and (d) γ = 0.01 pN nm−1. (Online version in colour.)

effect of membrane tension on: (1) the membrane footprint, and (2) the out-of-plane membrane
displacement that can be interpreted as a kinematic trigger to activate the gating mechanism in the
protein subunits of Piezo1. The schematic for this boundary value problem is shown in figure 3b,
and the simulation results demonstrating the effect of surface tension on the membrane footprint
are presented in figure 6. The plots show the three-dimensional displacement profiles and
their two-dimensional projections under the boundary conditions enforced by the Piezo1 dome.
A Piezo dome effect on the membrane is modelled by rotating the membrane (slope boundary
condition) at the inner rim of the annular geometry to a value of φ = 70 ◦ that is chosen so as to
simulate the effect of a nearly hemispherical dome (which would correspond to φ = 90 ◦). This
slope boundary condition assumes that the Piezo1 protein complex is a rigid dome that enforces
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a rotation on the surrounding membrane to ensure slope continuity between the hemispherical
dome and the connected membrane. As can be seen from the figure 6a–d, decreasing the surface
tension increases the membrane footprint. Especially, in the limit of very low surface tension
(γ = 0.01 pN nm−1), we see a significantly enhanced membrane footprint. The change in the
out-of-plane displacement of the membrane, (uy), shows a similar dependence on the surface
tension. Since the out-of-plane displacement can be interpreted as a kinematic trigger to activate
the gating mechanism in the protein subunits of Piezo1, this implies that at lower surface tension
values, a higher value of uy is attained, thus delivering an amplified kinematic trigger, and
therefore greater sensitivity of the Piezo1 dome to changes in surface tension. These results
are consistent with the observations by Haselwandter & MacKinnon [80] that use the classical
reduced order Monge and arc-length axisymmetric parametrization methods to model the Piezo1-
induced membrane deformation. Note that the deformation profile at the inner rim is, in general,
non-axisymmetric, an effect that increases with membrane tension, γ . This illustrates the power
of the three-dimensional computational framework, which while it encompasses axisymmetric
deformation, also admits non-axisymmetric modes. With access to the larger space, deformation
profiles that are attainable at lower energies are indeed attained since the elasticity problem results
in a (local-) minimum energy configuration. Thus, while the three-dimensional model reproduces
the trends predicted by the reduced order models, its true power is in identifying more complex
deformation patterns that are not accessible to the reduced order axisymmetric models.

(c) Budding of membranes by protein coats during endocytosis
Budding of membranes by protein coats is a critical process in clathrin-mediated endocytosis
(CME) that transports substance from the extracellular matrix to the cell interior. Several key
features, including protein-induced spontaneous curvature, membrane properties, membrane
tension and force from actin polymerization, have been identified to govern the bud formation
in CME [19,81,82]. The ability to simulate the morphological progression of bud formation in
the three-dimensional setting under different combinations of these identified features is crucial
for understanding the mechanical progression of CME. To further demonstrate the predictive
capability of our simulation framework, we investigate the relationships between coat area, coat
curvature and degrees of symmetry during the budding of a vesicle as part of the endocytosis
phenomena. The schematic of the simulation set-up is given in figure 3c. We simulated bud
formation under two different conditions in our framework, similar to the setup explored in
Hassinger et al. [19]. In the first case (i), the coated region has a fixed spontaneous curvature
h0 = 0.02 nm−1 with progressively increasing area of the coat. In the second case (ii), the coated
region has a fixed radius of 80 nm with progressively increasing spontaneous curvature. In
both cases, the uncoated membrane has a radius of 400 nm and has a surface tension with
γ = 0.002 pN nm−1. The bending modulus (kB) for all cases is taken to be 320 pN · nm. The slope
boundary condition with φ = 0 is enforced at both the inner and outer rims of the membrane
through the penalty method to ensure the continuous differentiability with the flat membrane
reservoir. As illustrated in figure 3c, Dirichlet boundary conditions are enforced to eliminate
rigid body motions. The hyperbolic tangent function proposed in Hassinger et al. and Rangamani
et al. [19,83] (see electronic supplementary material for illustration of this function) is used to
ensure sharp but smooth transitions at the boundaries of the coated region and the uncoated
membrane.

The simulation results from both set-ups are reported in figures 7 and 8, where the coated
membrane progresses from a flat shape to a bud-like shape. In addition, symmetry breaking of
the membrane is observed in both cases. This is confirmed by the curved contour plot insets of h
in the x–y plane in figures 7 and 8, which would otherwise be straight lines, indicating constant
heights in the y-direction. Figures 7 and 8 further show that an additional instability mode exists
in case (ii), where a rapid change in the maximum curvature curve between stage 3 and 4 occurs.
It is worth mentioning that the spatial location of the maximum curvature evolves during the



14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210246

..........................................................xx xx xx

x

x

x

x

x

yy yy
yy

y

y

y

y

y

zz

zz
zz

z

z

z

z

z

view Aview A

view Aview A

view Bview B

view Bview B

h = 0.0158h = 0.0158

1: area = 22167 (nm2)

2: area = 34636 (nm2)

3: area = 44488 (nm2) 4: area = 49876 (nm2)

5: area = 54408 (nm2)

h (nm−1)

–0.002 0.01 0.02

coat area (nm2) × 104

m
ax

 c
ur

v.
 (

nm
−

1 )

0.020

0.015

0.010

0.005

0

1
2 3 4 5

0 2 4

Figure 7. Formation of membrane buds with applied spontaneous curvature and increasing coat area. A surface tension γ =
0.002 pN nm−1 is applied at the outer rim of the membrane. The coated region has a spontaneous curvature h0 = 0.02 nm−1,
corresponding to a curvature radius of 50 nm. As illustrated by snapshots of the membrane at five different simulation stages,
each with increasing area, the membrane progresses from a flat shape to a bud-like shape with increasing coated area. The
evolution of the maximum curvature curve is plotted, which is smooth throughout the simulation. Symmetry breaking is
observed in this simulation, as the curvature contour plots at stage 3 and 4 with h= 0.0158 nm−1 in the x–y plane are not
straight in the y-direction. (Online version in colour.)

simulation. The different behaviour of the maximum curvature curve in figures 7 and 8 indicates
that the two simulations possess different energetic paths for their solutions.

Next, we conducted six simulations for each case to construct the membrane morphology
evolution phase diagram. In each simulation of case (i), a different value of h0 is assigned to the
coated region. For a given value of h0, we progressively increase the area of the coated region at
an identical increment for all the simulations to allow the bud to form. In each simulation of case
(ii), the radius of the coated region was set to a different value and then h0 of the coated region
was progressively increased at an identical increment for all the simulations to allow the bud to
form. The membrane morphology evolution phase diagrams for both simulation set-ups appear
in figure 9 with arrows indicating progressively increasing quantities, where different patterns
appear in the asymmetric region. To detect the symmetry breaking in each simulation, first, we
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Figure 8. Formation of membrane buds with coat area and increasing spontaneous curvature. A surface tension γ =
0.002 pN nm−1 is applied at the outer rim of the membrane. The coated region has a fixed radius of 80 nm. As illustrated by
snapshots of the membrane at five different simulation stages, each with increasing h0, the membrane progresses from a flat
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h= 0.018 nm−1 indicates the existence of symmetry breaking in the simulation. The sudden change of themaximumcurvature
curve between stage 3 and 4 indicates a growth of the associated instability in this simulation set-up, which is elaborated by
the insets of simulation results at stage 3 and 4. (Online version in colour.)

uniformly sample 20 discrete values of uy between its minimum and maximum at each increment
of the coat area for case (i) or the coat h0 for case (ii). Next, the range of the curvature h, [hmin, hmax],
at every discrete uy is computed. For those heights with hmin > 0, the relative change of h, denoted
as �h = 2(hmax − hmin)/(abs(hmax) + abs(hmin)), is computed. At each incremental step, we thus
have multiple values of �h. Then the median value of �h, denoted as �hmed, is computed for
that step. Now, for each simulation, we have an array of �hmed, whose length is equal to the total
number of incremental steps of either the coat area or the coat h0. Our results show that symmetry
breaking usually can be detected when �hmed is at its minimum over increments of coat area
or h0, pointing to a close to uniform value of �h for that increment. We remark that this is a
loose criterion for detecting symmetry breaking, as not all the symmetry-breaking events occur
precisely at the loading step where �hmed is minimal. However, this criterion generally provides
a consistent indication of symmetry breaking compared with our visual observation. Detailed
discussion on the chosen symmetry-breaking criteria is provided in the electronic supplementary
material.
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Figure 9. Membrane morphology evolution phase diagram for (a) similar simulation set-up as in figure 7 with fixed discrete
h0 but increasing protein-coated area, (b) similar simulation set-up as in figure 8 with fixed discrete protein-coated area but
increasing h0. The arrows indicate the progressively increasing quantities. The asymmetry morphology patterns differ for these
two simulation set-ups. For case (a), both twisting (cross) and twofold (dot) wave shapes were captured in the asymmetry
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asymmetry region. Representative bud shapes coloured by curvature values are shown in different views, where x–z view is in
the undeformed configuration, and x–y view and 3D view are in the deformed configuration. The dots with empty surrounding
square indicate the cases where the proposed symmetry-breaking criterion does not hold. (Online version in colour.)

The associated values of h0 and the area of the coated region at the specific incremental
step where �hmed is at its minimum are used to construct the phase diagram in figure 9. The
dots with an empty surrounding square in figure 9 indicate the cases where the proposed
symmetry breaking criterion does not hold. In the asymmetry region, not all the asymmetric
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patterns could be captured by the numerical simulations due to loss of numerical convergence
during the solution iterations. This is due to the ill-conditioning of the system Jacobian
matrix, that in turn is caused by the severe geometric and material nonlinearity, potentially
including bifurcation points, in the vicinity of asymmetric deformation modes. We use standard
unconstrained optimization methods like arc-length and trust-region to achieve convergence of
the solution iterations, whenever possible, and report successfully captured asymmetric patterns.
The placement of the reported patterns are shown in figure 9. Here, the same markers are chosen
to denote similar shapes. The fact that our computational framework could capture the symmetry-
breaking behaviour, and even the pattern changes from twofold to threefold/fourfold/fivefold,
demonstrates the advantages of the proposed three-dimensional model over a reduced order
axisymmetric model [19,20,81].

4. Discussion
Biomembranes play central roles in various cell-scale and organelle-scale phenomena like
locomotion of cells [2], packaging and trafficking of nutrients and signalling constituents [4],
maintaining organelle morphology and functionality [6–8], etc. In almost all these processes, these
surfaces are known to undergo significant deformation through bending; and the evolution of
the out-of-plane bending deformation is a key mechanism of morphological evolution, besides
in-plane fluidity. Thus, many analytical and numerical approaches exist in the literature to model
bending and curvature generation, especially for solving the governing equations resulting from
the Helfrich-Canham [14] characterization of membrane elasticity.

While these widely used analytical and numerical approaches (e.g. Monge parametrization,
arc-length parametrization and asymptotic methods) yield solutions to a wide range of boundary
value problems of membrane bending, they are intrinsically limiting in capturing the complete
envelope of membrane deformations due to the underlying axisymmetric restrictions on the
kinematics and boundary conditions. Since the study of biomembrane deformation draws heavily
from the well-established models of elastic shells [14,27], it is only natural to look for the
validity of axisymmetric approximations and for the existence of non-axisymmetric solutions in
the deformation of elastic shell geometries. Interestingly, many classical elastic structures have
intrinsic unstable modes (eigen modes) that lead to a snap-through buckling like deformation or
collapse of structures and are associated with lower deformation energy than the corresponding
axisymmetric (non-buckling) modes of deformation. Such modes are ubiquitous in elastic shells
and manifest as barrelling modes of thin cylinders [84], snap-through of elastic columns [85],
and in folding, wrinkling and creasing of elastic membranes [86], etc. Notably, they have lower
symmetry than the fully axisymmetric deformations. If such modes exist, and are accessible in
biomembranes, then they would naturally lead to a reduction in the load and energy barriers
to membrane deformation, and may result in heretobefore numerically unexplored deformation
profiles and membrane morphologies. Accessing these lower symmetry modes and predicting
the complex, three-dimensional deformation profiles in biomembranes provided the primary
motivation for developing the computational framework presented in this work.

We note that the first application of this framework was in our recent study demonstrating
how non-axisymmetric buckling lowers the energy barrier associated with membrane neck
constriction in biomembranes [21]. In that study, we used a mechanical model of the lipid bilayer
to systematically investigate the influence of location, symmetry constraints and helical forces on
membrane neck constriction. Simulations from our model demonstrated that the energy barriers
associated with constriction of a membrane neck are location-dependent and are significantly
affected by kinematic constraints on the deformation. Importantly, if symmetry restrictions on
the membrane deformation are relaxed, the constriction pressure and thus the energy barrier for
constriction are dramatically lowered. Our studies established that despite different molecular
mechanisms of neck formation in cells, the mechanics of constriction naturally leads to a loss
of symmetry and occurs at a much lower load/energy threshold. Motivated by the improved
understanding of membrane deformation and the undesired effects of axisymmetry restrictions
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observed in that study, we have further developed the framework and expanded its scope to
modelling other important membrane deformation processes.

Accordingly, in this work, we model three classical biomembrane problems: formation of
tubular shapes and their lateral constriction, Piezo1-induced membrane footprint generation, and
budding of membranes during endocytosis. For each of these problems, we are able to validate
against results and observation available in the literature for the simpler deformation modes,
and also predict the more complex, less symmetric deformation profiles that are not accessible
by the traditional analytical methods and axisymmetric numerical methods. Moreover, for the
problem of endocytic vesicle budding, we also map a phase diagram classifying the symmetric
and less-symmetric states.

The computational framework is implemented as an open-source software library and
provided as a resource to the biophysics community. It is expected that this framework will serve
as a platform for exploring complex deformation mechanisms (including geometric bifurcations
and post-bifurcation responses) in biomembranes, and result in an improved understanding of
the mechanics underlying various biomembrane phenomena. Future extensions envisioned are
support for in-plane fluidity [60], surface diffusion (to model protein transport on the membrane),
and a contact model (to model membrane–membrane interactions). In addition, the inability of
the current framework to apply non-uniform Dirichlet boundary conditions and constraints on
displacement degrees of freedom inside the domain (i.e. at non-interpolatory knots of the spline
surface) are significant limitations and will be addressed in future developments.
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