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A B S T R A C T

The F-box proteins (FBPs) TIR1/AFBs are the substrate recognition subunits of SKP1–cullin–F-box (SCF) ubi-
quitin ligase complexes and together with Aux/IAAs form the auxin co-receptor. Although tremendous knowl-
edge on auxin perception and signaling has been gained in the last years, SCFTIR1/AFBs complex assembly and
stabilization are emerging as new layers of regulation. Here, we investigated how nitric oxide (NO), through S-
nitrosylation of ASK1 is involved in SCFTIR1/AFBs assembly. We demonstrate that ASK1 is S-nitrosylated and S-
glutathionylated in cysteine (Cys) 37 and Cys118 residues in vitro. Both, in vitro and in vivo protein-protein
interaction assays show that NO enhances ASK1 binding to CUL1 and TIR1/AFB2, required for SCFTIR1/AFB2

assembly. In addition, we demonstrate that Cys37 and Cys118 are essential residues for proper activation of
auxin signaling pathway in planta. Phylogenetic analysis revealed that Cys37 residue is only conserved in SKP
proteins in Angiosperms, suggesting that S-nitrosylation on Cys37 could represent an evolutionary adaption for
SKP1 function in flowering plants. Collectively, these findings indicate that multiple events of redox modifica-
tions might be part of a fine-tuning regulation of SCFTIR1/AFBs for proper auxin signal transduction.

1. Introduction

Auxin is an omnipotent regulator of growth and development
throughout the entire lifespan of the plants. Within the multifaceted
function in different processes, auxin exerts a pivotal role in the es-
tablishment of root architecture by inducing adventitious root, lateral
root, root hair formation, and also in the regulation of the gravitropic
response [12]. The modulation of endogenous auxin level and its re-
distribution along the root is responsible for the dynamic growth to the
highly changeable environmental conditions, including the formation

of new roots [56,57]. In addition to auxin, nitric oxide (NO) is con-
sidered a ubiquitous signal in plants which contributes to determining
the morphology and developmental pattern of roots, in part by the
modulation of auxin response. Auxin-NO crosstalk involves indole-3-
acetic acid (IAA)-mediated NO production, where peroxisomes are a
major cellular site of NO production during the IBA to IAA conversion
by β-oxidation [12,74,76]. Moreover, NO also modulates auxin meta-
bolism, transport and signaling including the post-translational reg-
ulation of the auxin efflux protein PIN-FORMED 1 (PIN1) and Transport
Inhibitor Resistant 1 (TIR1) auxin receptor [21,25,80]. Besides the
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peroxisome-derived NO origin, many sources of NO production have
been described in different plant cell compartments [9]. Enzymatic and
non-enzymatic activities have been characterized as generating NO
through the reduction of nitrites, or through an oxidative pathway in-
volving an NO-synthase like activity and arginine (revised by [23]). All
of those pathways could potentially co-exist in the same cell, depicting
a complex scenario for its analysis.

Multimeric cullin-RING ligases (CRLs) are the largest group of E3
ubiquitin ligases in eukaryotic organism. CRLs that contain a Cullin1
(CUL1) subunit, also called SCF-type complex are pivotal for hormone
sensing and transduction in plants. SCF E3 ligase complex is involved in
the last step of protein ubiquitination to be degraded through the 26S
proteasome and is composed by four primary subunits: the CUL1 scaf-
fold protein, S-phase kinase-associated protein 1 (SKP1), Ring Box 1
(RBX1), and a substrate receptor F-box protein (FBP) [6,72,8]. CUL1
and RBX1 subunits recruit the E2-ubiquitin conjugating enzyme, while
SKP1 serves as a bridge between CUL1, and one of the interchangeable
and highly variable FBPs. Among the 21 Arabidopsis SKP1-like genes
(ASKs), Arabidopsis SKP1-like1 (ASK1) protein plays important roles in
multiple cellular processes in plants. The ask1 mutation causes male
sterility since ASK1 is essential for early nuclear reorganization during
male meiosis [95,96]. A proteomic analysis revealed that several pro-
teins involved in growth processes, photomorphogenesis, circadian
clock oscillation and defense response against stress are altered in the
ask1-1 mutant [86]. In the nuclear auxin signaling pathway, ASK1 acts
as a bridge between CUL1 and the TIR1/Auxin Signaling F-Box (AFBs)
receptors which are the FBPs subunits of the SCFTIR1/AFBs ubiquitin li-
gase E3 complex. Auxin signaling activation initiates when the hor-
mone physically interacts with TIR1/AFBs and the auxin co-receptor
Auxin/Indole-3-Acetic Acid (Aux/IAA) proteins [14,15,36,78]. This
interaction promotes the polyubiquitination and degradation of Aux/
IAA repressors through the 26S proteasome leading to the consequent
induction of three families of early auxin-response genes: Aux/IAAs,
Small Auxin Up Rna (SAURs) and Gretchen Hagen 3 (GH3) [8,45,88].

Since the Arabidopsis genome encodes hundreds of FBPs, and ASK1
is able to associate with FBPs in an interchangeable manner [66], the
challenge of regulating SCF assembly is particularly relevant. Several
FBPs show a tissue-specific preference interaction with particular ASKs
and more than two hundred FBPs do not interact with any of 19 dif-
ferent assayed ASK proteins, implying that additional regulations for
their in vivo interactions within the SCF complex could be necessary
[39]. The role of SCFTIR1/AFBs complex during auxin signaling activation
has been extensively studied and several proteins including the COP9
signalosome (CSN) complex, RUB/NEDD8, CAND1 and ALF4 have been
associated to the exchange of substrate adapters and the regulation of
SCFTIR1/AFBs activity [16,18,3,60,65,89]. In addition, HSP90 and the co-
chaperone SGT1 have been related to the stabilization of TIR1 [85],
which may also involve an autocatalytic mechanism [97]. However,
recent reports suggest that additional post-translational modifications
including thiol redox regulation are emerging as new regulatory me-
chanisms in the modulation of E3 ligases [71].

The reactive thiol groups of cysteine (Cys) residues can sense fluc-
tuations in redox status leading to protein post-translational modifica-
tions including S-sulfonation, S-glutathionylation and S-nitrosylation
[13,47,50,73]. Redox post-translational modifications are central for
multiple cellular signaling in plants, of which NO-based S-nitrosylation
has been consolidated as a ubiquitous signal in physiological processes
requiring a rapid and versatile regulation [2,41]. S-nitrosylation con-
sists in the incorporation of a NO moiety to a reactive thiol group in a
Cys residue to form an S-nitrosothiol (SNO) regulating the stability,
subcellular localization, conformational changes, and biochemical ac-
tivities of a target protein [28,46,48]. S-nitrosylation has been asso-
ciated to the regulation of plant growth and development processes, as
well as stress responses [1,29,42,77,83,84,94,98]. In contrast to other
post-translational protein modifications, S-nitrosylation is generally
considered to be a non-enzymatic process. However, a recent report

described the hybrid cluster protein Hcp involving activities of three
types of enzymes that coordinately generate NO, convert NO to SNO,
and propagate SNO-based signaling in Escherichia coli [68]. The dy-
namics of cellular S-nitrosylated proteins are also influenced by
different enzymes with de-nitrosylation activities such S-ni-
trosoglutathione reductase (GSNOR) and thioredoxin [20,43,5,66,77].
GSNOR was reported to be a key enzyme in the regulation of the cel-
lular level of SNOs under different physiological and stress processes in
plants [40,90]. Impairment in GSNOR1 function causes defects in
growth and development due to deregulation of auxin signaling and
transport, suggesting that multiple events of S-nitrosylation could be
affecting the auxin response [69].

Auxin signaling activation by modulating TIR1-Aux/IAA interaction
and facilitating Aux/IAA degradation is affected by S-nitrosylation of
TIR1 protein [80]. In order to fully understand the regulation of auxin
signaling by NO, we evaluated whether in addition to the FBP TIR1/
AFBs, the adaptor protein ASK1 could be also a target for S-nitrosyla-
tion. We demonstrate that ASK1 is sensitive to S-nitrosylation on Cys37
and Cys118 residues. Our results show that S-nitrosylation enhanced
protein-protein interactions between ASK1 and its partners, TIR1, AFB2
and CUL1, modulating thereby the SCFTIR1/AFBs complex assembly and
auxin signaling response in plants. Collectively, our results shed light on
the biochemistry of NO and its multiple roles in the regulation of
SCFTIR1/AFBs complex. These findings underline even more the impact of
NO signaling and S-nitrosylation in auxin transduction pathway in
plants.

2. Material and methods

2.1. Plant material

Nicotiana benthamiana L. seeds were grown in soil mixed with ver-
miculite at a 3:1 ratio in a greenhouse with a 16-h photoperiod
(150 μEm2 s−1 of photosynthetically active radiation) at 25 °C and 60%
relative humidity.

2.2. Plasmid constructs

ASK1 ORF was amplified via PCR using the primers described in
Table S1 and first strained cDNA from 2-week-old Arabidopsis plants as
template. The resulting amplicon was cloned into a Gateway pENTR/
TOPO vector by BP reaction (Gateway; Life Technologies, USA). The
resultant plasmid pENTR-ASK1 was subjected to site directed muta-
genesis using QuickChange Site-Directed Mutagenesis kit (Stratagene,
USA) and the primers listed in Table S1 (altered residues underlined) to
generate the ask1Q27K, ask1C37A, ask1C59A and ask1C118A muta-
tions. Then, plasmids were subjected to the LR reaction using gateway
technology with the following destination vectors: pGEX-4T-2 (GE
Healthcare Life Sciences, USA) for recombinant protein expression in E.
coli as GST-ASK1 fusion proteins; pB42AD (Clontech, USA) for Yeast
two-hybrid system (Y2H); and pEarleyGate203 [17] for transient ex-
pression in N. benthamiana.

2.3. Transformation assay and auxin treatment

N. benthamiana leaves from 4-week-old plants were infiltrated with
Agrobacterium tumefaciens strain GV3101 carrying Pro35S-ASK1
pEarleyGate203 expression vector (or alternatively, Pro35S-ask1C37A,
Pro35S-ask1C59A, Pro35S-ask1C118A) together with p19 (a gene si-
lencing suppressor) for transient expression of ASK1 protein or with
infiltration solution (10mM MgCl2, 10mM MES pH 5.6, 100 µM acet-
osyringone) as control. Twenty four h post-infiltration, plants were
sprayed with 10 µM IAA or mock solution (supplemented with an equal
amount of ethanol used to prepare the IAA solution) as control. Leaves
were harvested 1 h later and stored at −80 °C.
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2.4. RNA isolation and quantitative real-time RT-qPCR

Total RNA from N. benthamiana leaves treated as described in 2.3 was
extracted using TRIzol reagent (Invitrogen, USA) according to the manu-
facturer’s recommendations, and samples were treated with RQ1 RNase-free
DNase (Promega, USA) for DNA contamination removal. For cDNA
synthesis, 1 µg of total RNA was reverse transcribed by IMPROM II (Thermo
Fisher Scientific, USA) using random primers (Biodynamics SRL, Argentine).
The expression of a subset of early auxin response genes (NbGH3.6
-Niben101Scf13270g03004.1-; NbGH3.2 -Niben101Scf12751g00003.1-;
NbGH3.1 -Niben101Scf12751g00003.1-; NbIAA3-Niben101Scf12159g-
09021.1-; NbIAA19 -Niben101Scf02572g04006.1-; NbEF-1α -Niben101-
Scf12941g01003.1-) was analyzed by qPCR. The primers used are listed in
Table S1. qPCR reactions were conducted in triplicates (40 cycles at 95 °C
for 10min and 1min at 60 °C) in a Step One real-time PCR system (Applied
Biosystems, USA) using SYBR green PCR master mix (Applied Biosystems,
USA) following manufacturer´s instructions. Primer pairs were tested for
specificity and for amplification efficiency with a standard cDNA dilution
curve. Data presented are normalized to the expression level of the control
gene EF-1α [63] of three independent experiments involving 2 plants per
treatment with similar ASK1 overexpression.

2.5. Recombinant ASK1 protein expression

The GST-tagged ASK1 proteins were expressed in E. coli BL21 (DE3)
cells. Harvested cells were resuspended and sonicated in lysis buffer
(50mM Tris pH 8.0, 200mM NaCl, and EDTA-free protease inhibitor
-Roche, USA-). Lysate supernatant was used for purification using GSH-
sepharose according to the manufacturer’s instructions (GE Healthcare
Life Sciences).

2.6. Immunoblotting

Proteins were run on SDS-PAGE and electrotransferred to ni-
trocellulose membranes, probed with primary antibody overnight, and
then incubated with secondary antibody coupled to peroxidase
(Invitrogen, USA). The visualization was performed using the ECL kit
(Amersham Biosciences, USA) in a FUJI ImageQuant LAS-4000 system
(Fujifilm, Japan). All immunoblottings were repeated at least three
times. Ponceau or Sypro Ruby (Molecular Probes, USA) staining was
used to visually check the loading uniformity.

2.7. Biotin switch assay

ASK1, wild type (WT) and mutant purified proteins were S-ni-
trosylated with the stated concentrations of NO-Cys (0, 10, 50 and
100 µM) or diethylamine NONOate (DEANO; 0, 10, 50 and 100 µM) for
15min in the dark with frequent vortexing. Then, proteins were sub-
jected to biotin switch assay [33,49] including control treatments ac-
cording to Forrester et al [24]. Briefly, proteins were incubated with
30mM methyl-methanethiosulfate (MMTS; Sigma-Aldrich, USA) and
3.3% SDS in HEN buffer (25mM HEPES pH 7.7, 1 mM EDTA, 0.1mM
neocuproine -Sigma-Aldrich, USA-) at 50 ºC for 20min to block free Cys
residues. Proteins were precipitated with 2 volumes of cold acetone and
resuspended in HEN buffer with 1% SDS. After the addition of 20mM
ascorbic acid and 1mM biotin-HPDP (Pierce Chemical, USA), the
mixture was incubated for 1 h at room temperature in the dark. Sub-
sequently, proteins were subjected to protein blotting analysis using
anti-biotin antibody (Sigma-Aldrich, USA).

2.8. Fluorescence switch assay

Proteins were incubated with different oxidant agents: S-ni-
trosoglutathione (10 and 100 µM GSNO), hydrogen peroxide (100 µM

H2O2) or glutathione disulfide (100 µM GSSG) for 15min in the dark
and then subjected either to the fluorescence switch assay to detect S-
nitrosylation [79] or to the redox fluorescence switch to detect re-
versibly oxidized Cys [31]. Proteins were blocked with 4 volumes of
blocking buffer (250mM HEPES, pH 7.7, 1 mM EDTA, 0.1 mM neocu-
proine, 2.5% SDS and 30mM NEM) at 37 °C for 30min. Then, proteins
were precipitated with 2 volumes of cold acetone and resuspended in
250mM HEPES, pH 7.7, 1 mM EDTA, 0.1mM neocuproine, 1% SDS.
After the addition of 100mM ascorbic acid and 40 µM Bodipy-FL -(2-
aminoethyl) maleimide (Life Technologies, USA), the mixture was in-
cubated for 1 h at room temperature. In the case of redox fluorescence
switch, after acetone precipitation proteins were resuspended in
250mM HEPES, pH 7.7, 1 mM EDTA, 0.1mM neocuproine, 1% SDS and
2.5 mM DTT and incubated for 10min at room temperature. Samples
were again precipitated with acetone, resuspended in 250mM HEPES,
pH 7.7, 1 mM EDTA, 0.1 mM neocuproine and 1% SDS with 40 µM
Bodipy-FL -(2-aminoethyl) maleimide and incubated for 30min at
37 °C. Finally, proteins were acetone-precipitated before separation by
15% SDS-PAGE and visualized by Fuji ImageQuant LAS-4000 system
(Fujifilm, Japan).

2.9. Pull-down assays

Five µg of GST-ASK1 protein or its mutated versions were im-
mobilized in GSH-sepharose beads (GE Healthcare, USA), and in-
cubated with 100 µM NO-Cys in 200 μl of 1X PBS buffer during 1 h in
the dark. DTT was added for 10min as control. After washing samples
with 10 bed volumes of 1X PBS, beads were incubated with TIR1-myc
during 30min. TIR1-myc was obtained by in vitro translation using TNT
coupled wheat germ extract system (Promega, USA) according to
Terrile et al. [80]. Finally, proteins were eluted in 50mM Tris-HCl pH
8.0 containing 200mM NaCl and 10mM GSH, denatured and separated
on 15% SDS-PAGE. TIR1-myc was detected by immunoblotting with
anti-myc antibody (Sigma-Aldrich, USA).

2.10. Yeast two-hybrid system

pGILDA-TIR1, pGILDA-AFB2 [7] and pB42AD-ASK1 or the corre-
sponding ASK1 mutant constructs were used to transform Sacchar-
omyces cerevisiae strain EGY48 [pSH18-34] (Clontech, USA; [27]). Yeast
cells co-expressing DBD-TIR1/AFB2 and AD-ASK1 (or AD-mutated
ask1) were grown on SD–U–H–T selective media containing or not
different concentrations (100 or 300 µM) of sodium nitroprusside (SNP)
and 5-bromo-4-chloro-indolyl-b-D-galactopyranoside (X-Gal) to de-
velop β-galactosidase activity under ambient light. Handling of yeast
cultures and β-galactosidase assays were performed according to
Clontech Yeast Protocols Handbook (Protocol PT3024-1, Version
PR973283, 2009).

2.11. In-gel digestion for mass spectrometry (MS) analysis

After drying, gel bands or spots were washed in acetonitrile: water
(ACN:H2O, 1:1) and digested in situ in non-reducing conditions with
sequencing grade trypsin (Promega, USA) as described by Shevchenko
et al [68] with minor modifications [53]. The gel pieces were shrunk by
removing all liquid using sufficient ACN. ACN was pipetted out and the
gel pieces were dried in a speedvac. The dried gel pieces were re-
swollen in 50mM ammonium bicarbonate pH 8.8 with 12.5 ng/μl
trypsin for 1 h in an ice bath. The digestion buffer was removed and gel
pieces were covered again with 50mM NH4CO3 and incubated at 37 °C
for 12 h. Digestion was stopped by the addition of 1% trifluoroacetic
acid. Whole supernatants were dried down and then desalted onto
ZipTip C18 Pipette tips (Millipore, USA) before the MS analysis.
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2.12. Reverse phase-liquid chromatography MS (RP-LC-MS/MS) analysis
in SMIM mode

Protein identification by LC-MS/MS and identification of post-
translational modifications were carried out in the Centro de Biología
Molecular Severo Ochoa (CBMSO, España) protein chemistry facility, a
member of ProteoRed network.

The desalted protein digest was dried, resuspended in 10 μl of 0.1%
formic acid and analyzed by RP-LC-MS/MS in an Easy-nLC II system
coupled to an ion trap LTQ-Orbitrap-Velos-Pro mass spectrometer
(Thermo Scientific, USA). The peptides were concentrated (on-line) by
reverse phase chromatography using a 0.1mm×20mm precolumn
Acclaim PepMap C18, 5 µm, 100 A (Thermo Scientific, USA), and then
separated using a 0.075mm×100mm column Acclaim PepMap C18,
3 µm, 100 A (Thermo Scientific, USA) operating at 0.3 μl/min. Peptides
were eluted using a 90-min gradient from 5% to 40% solvent B (solvent
A: 0,1% formic acid in water; solvent B: 0,1% formic acid, 80% ACN in
water). Electrospray ionization (ESI) was done using a Nano-bore
emitters stainless steel ID 30 µm interface. The Orbitrap resolution was
set at 30.000. The mass spectrometer was operated in the selected MS/
MS ion monitoring mode (SMIM mode; [34]). In this mode, the LTQ-
Orbitrap-Velos-Pro detector was programmed to perform, along the
same entire gradient, a continuous sequential operation in the MS/MS
mode on the doubly or triply charged ions corresponding to the pep-
tide/s selected previously from the theoretical prediction. The MS/MS
spectra from the peptide were analyzed by assigning the fragments to
the candidate sequence, after calculation the series of theoretical frag-
mentations, according to the nomenclature of the series as previously
described [62].

2.13. Circular dichroism (CD)

CD measurements were performed on a Jasco Model J-715
Spectropolarimeter (Japan Spectroscopic Co., Japan). Measurements
were carried out at 25 °C with a thermostated cell holder and a ther-
mostatic Neslab RTE-110 circulating water bath, at 0.2 nm s–1 scanning
speed. The far-UV spectra were recorded from 190 to 250 nm at a
protein concentration of 40 µM, as an average of 5 scans after being
corrected by substraction of a buffer blank [51]. Mean residue weight
ellipticities were expressed in terms of residue molar ellipticity in
deg cm2 dmol−1. For GSH and GSNO treatments, proteins were in-
cubated during 30min at room temperature in buffer (50mM Tris-HCl
pH 8.0, 100mM NaCl, 1 mM EDTA, 0.1 mM neocuproine) with the
addition of 0.5mM GSNO or 0.5mM GSH in the dark.

2.14. Bioinformatic and phylogenetic analysis

Protein sequences alignments were performed using MEGA7 version
7.0.14 [38]. Phylogenetic trees were constructed using the neighbor-
joining method and the default settings of MEGA7 version 7.0.14 [38].
Optimal trees are shown in Fig. 1D (the sum of branch length
= 2.29501151), Supplementary Fig. S1 (sum of branch length
= 4.39274666) and Supplementary Fig. S2 (sum of branch
length=8.11938003). The evolutionary distances were computed
using the Poisson correction method [99] and are in the units of the
number of amino acid substitutions per site. Analysis involved 15
amino acid sequences and a total of 213 positions in the final dataset
(Fig. 1D), 21 amino acid sequences and a total of 419 positions
(Supplementary Fig. S1) and 22 amino acid sequences and a total of 328
positions in the final dataset (Supplementary Fig. S2). Graphic display
of identities was visualized using Geneious (9.1.4 version, http://www.

geneious.com) based on an identity matrix [35]. Molecular modeling
was built via PyMOL package (https://pymol.org). Crystallographic
data from Protein Data Bank were used to build the model, ASK1 (3ogl),
TIR1 (2p1q) and CUL1 (1ldk). 1ldk was used to model the cartoon re-
presentation of AtCUL1 amino acid sequence (At4g02570) with SWISS-
MODEL (https://swissmodel.expasy.org/)

2.15. Densitometry analysis

The densitometry analyses were performed with the ImageJ soft-
ware (http://rsb.info.nih.gov/ij/).

2.16. Statistical Analysis

The values shown in each figure are mean values± SE. The data
were subjected to t-test or analysis of variance (one-way or two-way
ANOVA) and post hoc comparisons with Tukey’s multiple range test
(*p < 0.05, **p < 0.01, ***p < 0.001) using Graphpad Prism ver-
sion 5.01 software.

3. Results

3.1. ASK1 protein structure exhibits two conserved Cys residues in the
interaction interface with CUL1 and TIR1

We firstly explored the potential functional implications of redox
post-translational modification on the three Cys residues in ASK1
(Cys37, Cys59 and Cys118) by analyzing localization and conservation
through a bioinformatic approach. We modeled SCFTIR1 complex from
crystallographic data and determined the location of putative ni-
trosylated Cys residues of ASK1 in the respective interfaces: ASK1-TIR1
and ASK1-CUL1 (Fig. 1A). According to crystal structure, Cys37 is in the
flexible loop of the N-terminal region of ASK1 in the interface involved
in the interaction with CUL1 (Fig. 1C). SNO-Cys118 would reside in the
H6 helix of ASK1 in the interaction interface with the H1 helix of TIR1
(Fig. 1B). Contrary, SNO-Cys59 would localize in H3 helix of ASK1, in a
region with no interaction with SCF protein partners. Modeling pre-
dictions indicate that all Cys residues are exposed to the solvent and
therefore, would be accessible to redox-mediated modifications. To
address whether specific Cys residues work as cis-acting regulators of
ASK1 protein function we reasoned that they should exhibit a high
degree of conservation within SKP1 family in eukaryotic organisms. An
exhaustive Blast search of SKP1 sequences along all life Kingdoms using
ASK1 as a query was performed. A protein sequence alignment of SKP1s
from representative members of different eukaryotic Kingdoms showed
a high degree of evolutionary conservation of Cys59 and Cys118 re-
sidues (Fig. 1D). However, the Cys37 residue is only present in SKPs of
Angiosperms including monocots and dicots, but not in sequences
neither of the rest of Viridiplantae group nor in fungi or animals
(Fig. 1D and E). Cys37 is conserved in 19 of 21 members of the SKP1
family in Arabidopsis, and 14 of the 22 members in rice (Supplementary
Figs. S1, S2, respectively). This suggests that S-nitrosylation of Cys37 in
ASK1 could probably emerged as an adaptation in the most recent
common ancestor of both dicots and monocots before the multiple
duplication events that expand SKPs in Angiosperms [37]. Although
Cys118 is highly conserved among Kingdoms, 9 members of ASKs and 8
of OsSKPs have lost this residue, allowing differential regulatory re-
sponses inside each family (Supplementary Figs. S1, S2, respectively).
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3.2. Purified ASK1 protein undergoes redox regulation

To study if the thiol groups of Cys residues in ASK1 are sensitive to
redox regulation, recombinant ASK1 protein was purified from bacteria
extracts and incubated with increasing concentrations of NO-Cys. Then,
ASK1 was subjected to the biotin switch assay [32,49] by which S-ni-
trosylation is specifically reduced by ascorbate and a biotin moiety is
attached to the Cys residues that were previously S-nitrosylated. After

15min of treatment, 10 µM NO-Cys triggers ASK1 biotinylation, and the
signal correlated with the dosage of added NO-Cys (Fig. 2A and B). As
expected, the biotin signal was abolished when the reducing agent DTT
was added after NO-Cys treatment. No signal was obtained in the ab-
sence of reduction by ascorbate, indicating the specificity of the biotin
switch method. S-nitrosylation of ASK1 was also validated by the ad-
dition of the NO donors, GSNO and DEANO (Supplementary Fig. S3).

Since Cys residues are postulated as redox sensors susceptible to

Fig. 1. In silico analysis of predicted localization and conservation of ASK1 Cys. (A) Cartoon representation of the N-term CUL1-ASK1-TIR1 interaction where
Cys residues in ASK1 are represented by green spheres. Detailed views of the interfaces between (B) ASK1-TIR1 and (C) ASK1-CUL1 are shown. ASK1, CUL1 and TIR1
are represented in yellow, blue and red, respectively. S-nitrosylation of Cys residues are modeled and proximal residues are shown as stick models colored by element
(yellow: sulphur; cyan: nitrogen; red: oxygen). Crystallographic data from Protein Data Bank were used to build the model, ASK1 (3ogl), TIR1 (2p1q), CUL1 (1ldk).
(D) Sequence conservation among SKP family members across phylogeny. Partial sequence alignments of representative SKP1 sequences showing regions including
conserved Cys. Residues aligned with ASK1 Cys37, Cys59 and Cys118 are boxed. The phylogenetic tree was constructed using the complete protein sequences.
Bootstrap values higher than 60% (1000 replicates over) are shown. Shaded residues correspond to conservation higher than 50%; more intense shading represent
higher degree of conservation. (E) Tree of life representing the occurrence of SKP1, CUL1, TIR1 and the conservation of the ASK1 Cys37 residue in the SKP1
homologs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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several covalent post-translational modifications, ASK1 oxidations by
H2O2, GSSG and the physiological nitrosative agent GSNO were also
evaluated. A modified version of the fluorescence switch, called redox
fluorescence switch where oxidized Cys are labeled with fluorescent
maleimide was carried out. In this assay, DTT as reducing agent was
employed, which reduced S-nitrosylation but also all the putative re-
versible oxidative modifications triggered by the other oxidants [31].
Fig. 2C and D show weak oxidations with H2O2 and GSSG in compar-
ison with the strong modification of ASK1 by GSNO. Although S-glu-
tathionylation could not be discarded, this result suggests a major
susceptibility of ASK1 Cys residues to S-nitrosylation.

3.3. Cys37 and Cys118 residues are S-nitrosylated in vitro

In order to identify the S-nitrosylated residues in ASK1, recombinant
double mutant ask1C37A/C59A, ask1C59A/C118A and ask1C37A/
C118A proteins were generated by replacing two Cys by Ala residues,
leaving a single Cys in each mutant protein. WT and all mutated pro-
teins were analyzed by biotin switch assays. Cys residues in ASK1 were
differentially modified by the NO donor, NO-Cys (Fig. 3). While Cys37
residue (C59A/C118A mutant) clearly undergoes S-nitrosylation at 10
and 100 µM NO-Cys treatments (Fig. 3B and A, respectively), Cys118
(C37A/C59A mutant) was only modified at 100 µM NO-Cys and to a

Fig. 2. S-nitrosylation of recombinant ASK1 recombinant. ASK1 recombinant protein was incubated with increasing concentrations of NO-Cys for 15min and subjected to
biotin-switch assay. S-nitrosylated proteins were detected by immunoblot using an anti-biotin antibody (upper panels). Sypro ruby staining is shown as a loading control (lower
panels). Controls of the biotin switch assay minus ascorbate (Asc), minus biotin, minus methyl methanethiosulfonate (MMTS) and with DTT reduction before the biotin switch are
shown. (A) Representative experiment and (B) quantification of the biotin signal of three independent experiments are shown. (C) ASK1 recombinant protein was incubated with
100µMGSNO, 100 µM GSSH and 100µMH2O2 for 15min and subjected to redox fluorescence switch assay to detect reversibly oxidized Cys. Modified proteins were detected by
their fluorescent maleimide signal (upper panel). Coomassie staining is shown as a loading control (lower panel). (D) Quantification of fluorescence signal of three independent
experiments. Different letters indicate a significant difference at P≤0.05 (one way ANOVA, post hoc Tukey).

Fig. 3. S-nitrosylation of recombinant ASK1 and its mutants in Cys37, Cys59 and Cys118. (A, B) Double Cys mutants of ASK1 recombinant protein were
incubated with (A) 100 µM NO-Cys or (B) 10 µM NO-Cys for 15min and subjected to biotin switch assay. S-nitrosylated proteins were detected by immunoblot using
an anti-biotin antibody (upper panel). Ponceau staining is shown as a loading control (lower panel). The experiment was repeated three times with similar results.
Treatment without ascorbate (Asc) reveals the specificity of the biotn switch assay. (C, D) MS/MS spectra showing fragmentation patterns that correspond with ions
of the y (blue) and the b (red) series of (C) S-nitrosylated ask1Q27K Cys37 peptide and (D) S-biotinylated ask1Q27K Cys118 peptide. m, methionine sulfoxide.
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very limited extent. Cys59 (C37A/C118A mutant) was not detected S-
nitrosylated under our assayed conditions (Fig. 3A and B). Next, to
confirm redox modifications of Cys residues, MS analyses were per-
formed. Since the trypsin-digested peptide containing the Cys37 residue
was not clearly detected by MS, an ask1Q27K mutant protein including
a new site for trypsin digestion was generated. S-nitrosylation of this
mutant using 100 μM NO-Cys is shown in Supplementary Fig. S4. Pur-
ified ask1Q27K protein was treated with 10 and 100 µM NO-Cys or
GSNO for 15min, digested with trypsin and analyzed by MS. In addi-
tion, the mutant protein was subjected to biotin switch prior to MS
analyses. At 10 µM NO-Cys, Cys37 was found to be S-nitrosylated as
shown in the MS/MS spectrum of 28TIAHmVEDDcNOVDNGVPLPNV-
TSK50 (Fig. 3C), while Cys118 was detected biotinylated upon 100 µM
NO-Cys and 10–100 µM GSNO treatment followed by biotin switch
assay in the peptide 112NLLDLTcbiotinQTVADmIK126 (Fig. 3D and
Supplementary Table S2). At 10 µM GSNO, S-glutathionylation was also
observed in Cys37 and Cys118 (Supplementary Fig. S5A and B).
Supplementary Table S2 summarizes the observed S-nitrosylated and S-
glutathionylated Cys residues and the tryptic peptides in which they
have been found.

In order to evaluate whether S-nitrosylation of Cys37 and Cys118
residues or even point mutations could affect ASK1 protein conforma-
tion, CD analysis was performed. The CD spectrum in the far UV re-
vealed a typical α-helix secondary structure profile with minimal val-
leys at 208 nm and 222 nm (Supplementary Fig. S6A). ask1C37A and
ask1C118A mutants have the same CD spectra than ASK1 suggesting
that at least the secondary structure is not affected by these mutations.
Treatment with 100 µM GSNO produced a slight alteration of the CD
spectrum (Supplementary Fig. S6B); however, this cannot be attributed
to S-nitrosylation, as treatment with reduced GSH produces the same
variation of the spectrum, probably due to the optical effect of the thiol
group added at relatively high concentration.

3.4. NO modulates ASK1-TIR1/AFB2 and ASK1-CUL1 interactions
through Cys118 and Cys37

Based on the function of ASK1 as a bridge between TIR1/AFBs and
CUL1 in the SCFTIR1/AFBs , we investigated the effect of ASK1 S-ni-
trosylation on the interaction with its partners. First, we studied the
interaction of ASK1 with TIR1, as Cys118 lies in the interface between
both proteins. We performed pull-down assays, where GST-ASK1 im-
mobilized in GSH-sepharose beads was S-nitrosylated in the presence of
100 µM NO-Cys and incubated with in vitro-translated TIR1-myc. ASK1
S-nitrosylation resulted in a significant increase of TIR1-myc protein
recovery (Fig. 4A). However, ASK1-TIR1 interaction was diminished
when ASK1 was treated with NO-Cys followed by DTT reducing agent
which abolished S-nitrosylation (Fig. 4A). In order to confirm NO-
mediated regulation in vivo, TIR1-ASK1 and AFB2-ASK1 interactions
were tested by yeast two-hybrid system. Yeast co-expressing DBD-TIR1
or DBD-AFB2 and AD-ASK1 were treated with the slow-release NO
donor, SNP [22]. β-Galactosidase reporter expression was analyzed two
days after spotting, observing that SNP treatment enhanced both ASK1-
TIR1 and ASK1-AFB2 interactions (Fig. 4B and Supplementary Fig.
S7A). We next investigated the in vivo role of putatively S-nitrosylated
Cys residues. In comparison to AD-ASK1, AD-ask1C118A mutant
showed weak interaction with DBD-TIR1 and DBD-AFB2 proteins, while
ask1C37A and ask1C59A showed similar interactions with ASK1
(Fig. 4C and F), strongly suggesting the role of Cys118 S-nitrosylation in
favoring the interaction. In support of these findings, a reduced inter-
action between ask1C118A and TIR1 was also detected by GST pull-
down assay (Supplementary Fig. S8A).

Since Cys37 residue is located in the interface involved in the in-
teraction with CUL1, we further investigated whether NO could also
modulate ASK1-CUL1 interaction. Yeast cells co-expressing AD-ASK1
and DBD-CUL1 were grown in the presence of increasing concentrations
of SNP. A positive increase of β-galactosidase activity revealed the in

vivo and NO-dependent ASK1-CUL1 interaction (Fig. 4D and
Supplementary Fig. S7B). While ask1C37A-CUL1 was highly dimin-
ished, mutations on Cys59 and Cys118 residues of ASK1 had no effect
on their binding to CUL1 protein (Fig. 4E and F, Supplementary Fig.
S8B).

3.5. Cys37 and Cys118 have a pivotal role in auxin signaling activation in
planta

To assess the functional relevance of S-nitrosylation of Cys37 and
Cys118 in ASK1 in planta, each single mutant was transiently expressed
under the control of the constitutive cauliflower mosaic virus 35S
promoter in N. benthamiana leaves. Then, the ability to activate auxin
signaling was tested. Leaves were sprayed with 10 µM IAA and Aux/
IAAs and GH3s gene expression was analyzed 1 h later. The median and
dispersion of the expression of five early auxin response genes with and
without IAA treatment for each ASK1 mutant are shown in Fig. 5A.
While overexpressing ASK1 and ask1C59 showed an increased auxin
response gene expression upon IAA treatment, the overexpression of
ask1C37 and ask1C118 mutants failed to activate the auxin signaling
pathway. All these findings provide further evidence about the re-
levance of ASK1 Cys37 and Cys118 residues on SCFTIR1/AFBs action in
planta.

4. Discussion

Our data suggest a novel mechanism by which NO directly regulates
SCFTIR1/AFBs E3 ubiquitin ligase complex assembly through S-ni-
trosylation of ASK1 impacting on auxin signaling activation (Fig. 5B).
Since TIR1 F-box protein is also redox-regulated by S-nitrosylation
[80], collectively our results substantiate the interplay between S-ni-
trosylation and ubiquitination regulation which may constitute a robust
control mechanism to fine-tune auxin responses during plant growth
and development. Reciprocal regulation of multiple post-translational
modifications constitutes a common strategy in plant signaling reg-
ulation. Recent evidence described S-nitrosylation of histone deacety-
lases modulating histone acetylation [52]. In addition, S-nitrosylation
of the arginine methyltransferase PRMT5 leads to methylation control
of pre-mRNA splicing in response to environmental changes [29].

Interestingly, in vitro ASK1 undergoes NO-induced redox modifica-
tions, including S-nitrosylation on Cys37 and Cys118 (Figs. 2 and 3), as
well as S-glutathionylation on these same residues (Supplementary Fig.
S5). Here, it is necessary to highlight the yet unsolved problem derived
from unknowing the real concentration of NO in specific subcellular
microdomains. Thus, it is not recommendable to establish conclusions
from comparisons between concentrations of NO required for mod-
ifying Cys residues in vitro and physiological NO concentrations. In
other words, the in vitro experiments hardly can reconstruct in a precise
way and with the same efficiency, the cellular environments where the
S-nitrosylation and S-glutathionylation of proteins takes place. Several
methods have been assessed to approach the measuring of NO con-
centrations in different plant organs in vivo. Even if some discrepancies
appear, it is conceivable that the range of NO concentrations under
normal growth conditions varies between 10 nM and 1 µM [82], very
close to NO concentrations found in animal tissues [30].

NO-mediated modification of Cys118 and Cys 37 regulates ASK1
interaction with TIR1/AFB2 and CUL1 scaffold protein, respectively
(Fig. 4). Consequently, mutations in those residues significantly reduce
these interactions impairing auxin signaling activation in plant tissues
(Fig. 5). ASK1 together with TGA, NPR1 and APX1 constitute valuable
Arabidopsis examples where the diversity of putative thiol redox states
offers the possibility to use Cys residues of a single protein for a wide
range of molecular switches [59,71,10]. S-glutathionylation was in-
itially considered to protect proteins from over-oxidation of Cys during
oxidative stress but actually, it is also emerging in association with S-
nitrosylation as a regulatory modification in mammals [26,50]. In
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plants, evidences of regulation by S-glutathionylation comes from in
vitro and proteomic studies, but in vivo function of S-glutathionylation is
in its infancy [4]. GSNO was reported to mediate β-amylase3 activity
inhibition by S-glutathionylation under cold stress in Arabidopsis, al-
though S-nitrosylation was not analyzed [75]. It will be of interest in
future studies to explore events that distinctively can be mediated by S-
glutathionylation or S-nitrosylation of ASK1.

Highlighting the role of proteasome degradation on the regulation
of multiple signaling transduction pathways during plant life, the sub-
units of ubiquitin ligase complexes represents the 6% of Arabidopsis
proteome with approximately 700 F-box proteins comparing to 69
identified in humans [81]. In addition, whereas protists, algae, fungi,
and vertebrates have a single SKP1 gene, vascular plants possess mul-
tiple SKP1 homologs [19,37,55,93]. The presence of a multi-gene SKP1
family is probably a general feature of plants where more dynamic
regulation of protein level is required to modulate their responses to
environmental stimuli. In addition, diversification of this gene family
could allow acquisition of new regulation points through inclusion of
amino acids susceptible to versatile and reversible redox control. Phy-
logenetic analysis of Cys residues conservation in SKP1s reveals that
Cys37 is conserved only in Angiosperms (Fig. 1), where SKP gene family
suffered a large expansion mainly through repeated tandem duplication
[37]. Cys37 S-nitrosylation in ASK1 could represent an evolutionary
leap for the assembly dynamics of SCF complexes with multiple impacts

in flowering plants. The relatively rapid evolution of F-box proteins and
SKPs partners suggests that SKP1 modifications could constitute an
outsized role in environmental regulation of unique lineage with spe-
cies-specific functions. Coincidently, a particular post-translational
modification which includes hydroxylation and subsequent glycosyla-
tion in Pro143/154 that serves as O2-sensing mechanism controlling
development was reported in SKP1 from two unrelated protists, the
amoeba Dictyostelium and the parasite Toxoplasma, respectively
[61,87,91,92]. Validation of this mechanism in diverged unrelated
protists suggests that SKP1 hydroxylation and glycosylation occurred in
ancestral eukaryotes and was lost in fungi, higher plants and animals.

SCF E3 ubiquitin ligases have been shown to be essential for sensing
and signaling in response to various hormones in plants, where NO acts
as a versatile and extensive second messenger [70]. It is well reported
that auxin promotes the induction of NO in different plant species
[11,44,58,80]. It appeared that NO-dependent post-translational mod-
ification of different components of SCF ubiquitin ligase complex may
function as a key strategy to determinate precise SCFTIR1/AFBs assembly.
This regulation might involve a time-dependent and tissue-specific
proper activation of auxin signal transduction pathway. Although S-
nitrosylation of TIR1 and ASK1 is currently the only evidence of NO
directly regulating the ubiquitin machinery in plants that we know, the
regulation of ubiquitin-proteasome system by S-nitrosylation is a con-
served mechanism associated to neurodegenerative diseases in animals

Fig. 4. S-nitrosylation on Cys37 and Cys118 modulates assembly of ASK1 in an SCF E3 ubiquitin ligase complex. (A) Pull-down reactions were performed
using in vitro synthesized TIR1-myc and recombinant GST-ASK1 proteins. Reactions were carried out without any addition or in the presence of 100 µM NO-Cys in
combination or not with DTT. TIR1 protein was detected using anti-myc antibody. Coomassie blue-stained GST–ASK1 was used as a loading control (lower panel). (B,
D) Yeast two-hybrid assays were carried out with cells co-transformed with the indicated constructs and grown on SD–U–H–T selective media plus the addition of 100
and 300 µM SNP and X-Gal to develop β-galactosidase activity. (C, E) Yeast two-hybrid interaction experiments between the different ASK1 Cys mutants, and TIR1-
AFB2 or CUL1, respectively. The experiment was repeated at least three times with similar results. (F) Densitometry of yeast two-hybrid activity (n=3; * p < 0.01,
t-test).
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[54]. Our results establish a molecular framework for NO modulation of
SCF complexes in plants. The universality of both S-nitrosylation and
SCF complexes associated to the regulation of ubiquitin-proteasome
system provides a valuable platform to extend this study to other eu-
karyotic organisms.
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