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Erythema nodosum leprosum (ENL), also known as type 2 reaction (T2R) is an immune

complex mediated (type III hypersensitivity) reactional state encountered in patients

with borderline lepromatous and lepromatous leprosy (BL and LL) either before, during,

or after the institution of anti-leprosy treatment (ALT). The consequences of ENL

may be serious, leading to permanent nerve damage and deformities, constituting

a major cause of leprosy-related morbidity. The incidence of ENL is increasing

with the increasing number of multibacillary cases. Although the diagnosis of ENL

is not difficult to make for physicians involved in the care of leprosy patients, its

management continues to be a most challenging aspect of the leprosy eradication

program: the chronic and recurrent painful skin lesions, neuritis, and organ involvement

necessitates prolonged treatment with prednisolone, thalidomide, and anti-inflammatory

and immunosuppressive drugs, which further adds to the existing morbidity. In addition,

the use of immunosuppressants like methotrexate, azathioprine, cyclosporine, or

biologics carries a risk of reactivation of persisters (Mycobacterium leprae), apart

from their own end-organ toxicities. Most ENL therapeutic guidelines are primarily

designed for acute episodes and there is scarcity of literature on management of

patients with chronic and recurrent ENL. It is difficult to predict which patients will

develop chronic or recurrent ENL and plan the treatment accordingly. We need simple

point-of-care or ELISA-based tests from blood or skin biopsy samples, which can

help us in identifying patients who are likely to require prolonged treatment and

also inform us about the prognosis of reactions so that appropriate therapy may be

started and continued for better ENL control in such patients. There is a significant

unmet need for research for better understanding the immunopathogenesis of, and

biomarkers for, ENL to improve clinical stratification and therapeutics. In this review we

will discuss the potential of neutrophils (polymorphonuclear granulocytes) as putative

diagnostic and prognostic biomarkers by virtue of their universal abundance in human

blood, functional versatility, phenotypic heterogeneity, metabolic plasticity, differential

hierarchical cytoplasmic granule mobilization, and their ability to form NETs (neutrophil

extracellular traps). We will touch upon the various aspects of neutrophil biology relevant
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to ENL pathophysiology in a step-wise manner. We also hypothesize about an element

of metabolic reprogramming of neutrophils by M. leprae that could be investigated and

exploited for biomarker discovery. In the end, a potential role for neutrophil derived

exosomes as a novel biomarker for ENL will also be explored.

Keywords: ENL, neutrophils, biomarker, NETs, biology, reprogramming, exosomes

INTRODUCTION

Leprosy is a chronic granulomatous infectious disease caused
by an intracellular pathogen Mycobacterium leprae where the
clinical spectrum of the illness is dictated by the host immune
response to the pathogen (1). The clinical course of leprosy
is punctuated by dynamic, unpredictable, painful immune-
mediated inflammatory episodes known as reactions. These
leprosy reactions are a major clinical concern and up to 50%
of leprosy patients experience at least one reaction during
their lifetime (2). Erythema nodosum leprosum (ENL)/type 2
reaction (T2R), an acute nerve-destructive immune exacerbation,
is encountered in patients with borderline lepromatous (BL)
and lepromatous leprosy (LL) and can occur before, during,
or after multi-drug treatment (3). It is estimated that annually
over 50,000 newly diagnosed leprosy patients are at risk
of developing ENL (4). These patients classically present
with tender, erythematous, evanescent subcutaneous nodules
along with multisystemic illness manifesting as neutrophilic
leukocytosis, fever, sepsis-like malaise, iritis, iridocyclitis or
conjunctivitis, arthritis or arthralgia, bone pain and tenderness
especially tibial tenderness, dactylitis, lymphadenitis, oedema of
extremities, orchitis, and neuritis ultimately leading to significant
sequelae associated with peripheral nerve dysfunction. The
clinical manifestations of ENL can occur in any of 3 patterns
viz. single acute episodes, recurrent episodes, and chronic disease
with varying grades of severity (5). ENLIST ENL Severity Scale
(EESS) a 10-point severity scale system is a validated tool used in
clinics to assess ENL severity (6). Atypical clinical manifestations
like pustular, bullous, necrotic, and annular ENL have also been
reported and sometimes T2Rs may present with rheumatologic
complaints leading to misdiagnosis. Besides a high index of
clinical suspicion, point-of-care diagnostic assays or biomarkers
are needed that could be used by leprosy workers in the field to
confirm the diagnosis and initiate treatment to avoid deformities
and disabilities.

The incidence of this multi-system inflammatory disorder is
certainly on the rise with the increasing number of multibacillary
cases (7). The bactericidal effect of Multi-drug therapy (MDT)
or other antibiotics on M. leprae results in the release of an
enormous amount of bacterial breakdown products that are
recognized by the innate immune system as antigens resulting in
activation of pro-inflammatory cytokines (7, 8).

These reactions are often diagnosed late in the absence
of reliable, early diagnostic tests. Attempts to identify general
biomarker signatures (Table 1) for ENL are often hampered
due to patient heterogeneity, different male/female ratios across
various studies, lack of sufficient power of many studies due

to low number of disease subjects, long incubation times of
leprosy and lack of appropriate control groups (LL/BL patients
without ENL, instead of healthy controls) (9). There is an unmet
need for predictive correlates as a diagnostic tool allowing early
diagnosis of ENL duringMDT in high-risk leprosy patients that is
simultaneously useful for discriminating patients with ENL from
those with Type-1 reactions.

Neutrophils, ascribed as warriors against pathogens and
critical actors in the innate immune system with high pro-
inflammatory activity constitute the dominant immune cell
population in human blood with ∼1011 neutrophils generated
every day in the bone marrow (24, 25). They are the first
responders to infection and inflammation, providing a key pivot
between resolution or propagation of collateral damage that can
result in multi-system organ failure. They possess an enormous
armamentarium to counter pathogens. These cells are endowed
with huge microbicidal potential by virtue of their phagocytic
capacity, ability to produce reactive oxygen intermediates, a
rich array of granule-derived lytic enzymes and a tendency
to release neutrophil extracellular traps (NETs). A vast body
of literature shows that neutrophil dysfunction can contribute
significantly to sepsis and a variety of autoimmune diseases
(24, 26, 27). Neutrophils can promote cancer progression by
facilitating matrix remodeling, stimulating angiogenesis, and by
disabling T-cell-dependent antitumor immunity (28).

ENL is considered a neutrophil-mediated immune-complex
reactional state, histologically defined by leukocytoclastic
vasculitis and prominent neutrophilic infiltrate throughout the
dermis and subcutis during the acute stage that is gradually
replaced by lymphocytes with the evolution of the lesion
(3–6). Neutrophils are considered as the “signature cell”
in T2R that contribute to ENL-associated multi-systemic
inflammation in multiple ways (29). Neutrophils circulating
in peripheral blood of multibacillary leprosy patients are
heavily bacillated, with no apparent sign of systemic
inflammation (30). These neutrophils are effectively cleared
of bacilli only after some months of multidrug therapy
(31). A variety of neutrophilic functional abnormalities
including enhanced spontaneous defective random migration,
chemotaxis and chemokinesis, and increased apoptosis
associated with increased production of pro-inflammatory
cytokines (32) has already been demonstrated in ENL patients
suggesting the role of neutrophils as active effector players in
T2R (32–36).

In the present review, novel aspects of neutrophil
biology and their links to ENL pathophysiology are
discussed, highlighting their clinical usefulness as a
potential biomarker.
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TABLE 1 | List of putative biomarkers for Erythema nodosum leprosum/Type 2 reaction in leprosy patients.

S No Biomarkers Total No. of subjects Sample type Applied

technique

Remark Place of

study

Year

(References)

01 IL-7, PDGF-BB, IL-6,

VEGF

ENL-10

Non-reactional LL-10

Plasma Luminex Elevated plasma IL-7 and PDGF-BB levels can act

as a putative biomarker for ENL when compared

with Type 1 reaction leprosy patients

Goiania city,

Brazil

2009 (10)

02 Alpha 1-Acid

glycoprotein (AGP)

ENL (Untreated)-6

ENL (Treated)−6

Non-reactional LL-6

RR-7

BT-5

BB-4

BL-5

HC-9

Serum ELISA,

2D electrophoresis

MALDI-TOF

Increased serum levels of AGP in untreated ENL

patients can be used as biomarker to differentiate

these patients from non-reaction patients

Madurai, India 2010 (11)

03 Alpha 1-Acid

glycoprotein (AGP)

ENL-32

RR-17

Non-reactional LL-39

Serum

Skin biopsies

ELISA

qPCR

The higher AGP levels as reflected in the serum

profile, in active reaction patients than in controls

with no reaction could be an early indication of

disease progression.

Delhi, India 2015 (12)

04 CD 64 on neutrophils ENL (Untreated)−11

ENL (Treated)-10

LL-8

HC-10

Whole blood and

skin biopsies

Flowcytometry

(Whole blood)

qPCR (Skin

Biopsy)

CD64 was significantly down regulated in ENL

lesions after beginning thalidomide treatment.

Increased CD64 expression on the surface of

neutrophils in circulation as well as in biopsy can be

used as biomarker for ENL.

Rio de

Janeiro, Brazil

2016 (13)

05 Pentraxin-3 (PTX-3) ENL (MB)-27

RR (MB)-11

RR (PB)-9

MB-19

PB-15

Serum ELISA PTX-3 levels were assessed as a biomarker for

active ENL which was suppressed after thalidomide

treatment

Rio de

Janeiro, Brazil

2017 (14)

06 LID-1 ENL-41

RR-119

Reaction free-292

Serum ELISA Higher serum levels of LID-1 in RR patients isolates

them from the non-reaction patients

Goniana city,

Brazil

2017 (15)

07 Activated B cells and

tissue-like memory B

(TLM-B) cells

ENL-41

Non-reactional LL- 30

Whole blood Flowcytometry Increase in activated B cells and reduction in

tissue-like memory B cells in ENL as compared to

LL patients can be used as biomarker for ENL.

Addis Ababa,

Ethiopia

2017 (16)

08 C1q (C1qA, C1qB, and

C1qC)

ENL (untreated)- 30

Non-reactional ENL-30

Whole blood and

skin biopsies

qPCR, ELISA Circulating C1q in the peripheral blood of untreated

ENL patients was significantly lower compared to LL

patient controls. C1qA and C1qC gene expression

were substantially increased in the skin biopsies of

untreated ENL patients compared to LL controls.

Ethiopia

(Addis Ababa)

2018 (17)

09 Neutrophils in dermis ENL-10

MB-23

Skin biopsies Histopathology Elevated number of neutrophils can be used as a

biomarker for the ENL.

Denpasar,

Bali

2018 (18)

10 IgM, IgG1, C3d ENL-29

RR-35

MB-51

HC-15

Serum ELISA Association of increased IgM, IgG1, and

C3d-associated immune complexes could be used

to estimate risk of developing reactions.

Natal, Brazil 2019 (19)

(Continued)
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NEUTROPHIL BIOLOGY

Neutrophil Generation and Activation: Birth
and Evolution of “Forefront Warriors”
Steady-state granulopoiesis is stringently regulated by various
factors including PU.1, CCAAT/enhancer binding protein
α and growth factor independence 1. Normal homeostatic
neutrophil counts are maintained by expression of granulocyte
colony stimulating factor (G-CSF) tied to interleukin (IL)-
23 and IL-17 production by lymphocytes. The short-lived
CD66b+CD117−CD34− neutrophil precursors mature rapidly
inside the bone marrow and are released into the peripheral
blood where the expression of membrane-bound receptors such
as CXCR4 and CD117(c-kit) and integrin α4β1 (VLA4) gradually
decreases while expression of toll-like receptor 4 (TLR4) and
CXCR2 and other chemokine receptors progressively increases
(37–39). Throughout granulopoiesis, chemokine receptors act in
concert with selectins and β2 integrins in a short feedback circuit
to regulate the circadian fluctuations of circulating neutrophils.

During acute or chronic infection, “emergency granulopoiesis”
occurs as the earliest protective innate response, with increased
production of IL-23 and IL-17 in the inflamed milieu providing
increased G-CSF and IL-6 leading to appearance of immature
neutrophils with lower buoyancy in circulation, better defined as
Low Density Neutrophils (LDNs) (40).

Neutrophilic leukocytosis as an indicator of systemic
inflammation is one of the earliest features noted in ENL
patients. Among various parameters used for monitoring
neutrophil counts, the neutrophil-to-lymphocyte ratio (NLR)
has been recognized as a unique, stable marker reflecting
underlying acute inflammatory response. NLR is considered an
easy, inexpensive, and reproducible parameter associated with
clinical outcome and disease severity (41–45). In recent years,
its role as an independent prognostic factor for neoplasms and
as an inflammatory biomarker in various acute and chronic
cardiovascular/metabolic/ infectious/inflammatory diseases has
been increasingly established (22, 46, 47).

Gomes et al. reported a mean NLR value of 9.7 ± 2.4 (p <

0.001) for ENL diagnosis that easily differentiated ENL patients
from those with Type 1 reaction with high validity cut-off of
2.95, high diagnostic accuracy (accuracy 78.0%, sensitivity 81.0%,
specificity 74.0%) and an area under curve value of 0.796 (22),
higher than those observed for other infectious diseases (48–50).

Oliveira et al. have already investigated the potential of
M. leprae to induce neutrophil-mediated secretion of pro-
inflammatory cytokines subsequent to their treatment with M.
leprae ex vivo (32). Their observation reiterated the role of
neutrophils as effector cell in T2R.

The neutrophil surface expression of CD64 (FcγRI), a marker
of neutrophilic activation, is upregulated by a direct effect of
interferon-gamma (IFN-γ) and G-CSF on precursor cells in bone
marrow. Increased CD64 expression on circulating neutrophils
as well as increased mRNA expression in situ in ENL skin lesions
has been correlated with severity and advocated as a prognostic
biomarker for ENL (13).

Bioinformatic pathway analyses of the gene expression
profiles from ENL skin lesions have observed a role of an
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integrated axis comprising of TLR2/FcR activation/neutrophil
migration/inflammation as a mechanism of neutrophil
recruitment in ENL providing a deeper insight into neutrophil
biology (51). Transcriptomic analysis has shown elevated
expression of genes involved in neutrophilic degranulation and
activation (52, 53). Global transcriptional profiling of peripheral
bloodmononuclear cells via microarray showed 517 differentially
expressed genes revealing a granulocytic gene signature with
significant involvement of the innate immune system (54).

Acute systemic inflammation gives rise to three different
subsets of neutrophils in circulation viz., conventional nuclear-
segmented neutrophils (CD16bright/CD62Lbright), banded
neutrophils (CD16dim/CD62Lbright), and a third subset
comprising of CD16bright/CD62Ldim neutrophils exhibiting
immunosuppressive properties (38).

The presence of a unique subset of IL-10R1 expressing
neutrophils in peripheral circulation and in situ in skin lesions
of ENL patients and its clinical usefulness indicating disease
outcome has also been demonstrated (21).

Apart from these inflammatory neutrophils, varied neutrophil
subsets based on survival time, density, NET-releasing
capacity, receptor expression profile, and functions have
been observed (55).

Defined in 1986, a subset of neutrophils was found to be
co-segregated with monocytes in the density gradient isolation
and termed as LDNs based on their density being <1.07 gm/ml.
These LDNs are comprised of a broad cell population with both
pro-inflammatory and anti-inflammatory properties displaying
mature hyper-segmented, as well as immature banded, nuclei.
Hassani et al. have defined these LDNs as CD16dim/CD62Lhigh

banded neutrophils exhibiting enhanced bacterial containment,
spontaneous NETs generating ability, and the capacity to
supress T-cell proliferation (56). LDNs tend to express increased
levels of CD66b, CD11b, and CD35 in stimulated state in
comparison to normal density neutrophils (57, 58). Studies
in Systemic Lupus Erythematosus have suggested LDNs to be
a distinct neutrophil subset with an increased level of copy
number alterations, losses of heterozygosity and microsatellite
instability, distinct proteomic, and biomechanical properties
impacting their ability to travel through the vasculature
(56, 59–62).

It is tempting to speculate that M. leprae has the potential to
alter the immunomodulatory capacity of neutrophils resulting in
the shift to lower buoyancy that could be related to maturation
stage/degranulation status/activation level of neutrophils
during ENL. Elucidation of the molecular underpinnings
of the role played by LDNs in ENL pathophysiology could
provide better insight into their use as biomarkers in
clinical practice.

Thus, studying and monitoring neutrophil phenotypic,
density, and functional heterogeneity for better
assessment of immune response and severity of ENL
pathology holds promise in their exploration as
ENL biomarkers.

Neutrophil Cytoplasmic Granules and Their
Contribution Toward Phenotypic
Heterogeneity and Functional Versatility:
The Armamentarium
After stimulation by diverse stimuli, neutrophils
mobilize different granules including primary/azurophilic,
secondary/specific, and tertiary/gelatinase granules that
subsequently degranulate releasing various compounds that
modulate neutrophil trafficking and migration, and also facilitate
their interaction with other innate and adaptive immune
cells, thus playing an important role in inflicting collateral
tissue damage. These granules are acquired sequentially during
neutrophil maturation in bone marrow. The release of granular
protein is a tightly regulated receptor-coupled process, mediated
by distinct signaling events for each granule type, allowing
the selective, differential, hierarchical mobilization of distinct
subsets with the tertiary granules being the most readily
mobilizable upon activation followed by specific granules, the
primary ones bringing up the rear. This distinct readiness
of different granule subsets toward degranulation modulates
neutrophil heterogeneity and functional versatility by altering
the neutrophil cell-surface protein composition that generates
different cellular phenotypes underlying remarkable neutrophil
plasticity (28, 53, 63–65).

These released granule matrix proteins act as mediators
of neutrophil orchestration of innate and adaptive immunity.
Teles et al. have demonstrated increased expression MMP2 and
MMP9 mRNA expression in skin biopsy specimens as well
as their increased serum levels in ENL patients. MMP3 has
already been implicated in mediating vasculitic ENL processes
(66, 67). Pentraxin-3, stored in specific granules rises quickly after
degranulation and has already been shown to be associated with
the exacerbation of inflammation in ENL (14).

These released contents of neutrophil granules and surface
expression level of various markers of neutrophil activity i.e.,
CD66b (specific granule) and CD11b (tertiary granules) could be
explored for their role in ENL progression.

Neutrophil Extracellular Traps: Extra Armor
After encountering micro-organisms, neutrophils destroy them
intracellularly as well as extracellularly: in their fight with
microbes, dead neutrophils provide chromatin and proteins to
form NETs and, live neutrophils create a cytoneme network (68).

NETs play a role in autoimmunity and thrombosis by
accelerating the inflammatory response either as danger-
associated molecular patterns or complement activators (69–76).
They have not only been implicated as drivers of inflammation,
but are also linked to resolution of inflammation, thus emerging
as a double-edged sword and making them promising targets for
future biomarker discovery.

Notably, NETs have been reported to be associated with
disease-specific bioactive proteins loaded onto them (70).
Intriguingly, emerging clinical and experimental studies indicate
that neutrophils are able to release intrinsically and qualitatively
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different extracellular NETs decorated with disease-specific
bioactive proteins dictated by the diseased inflammatory
environment containing tissue factor, IL-1β, IL-17, and LL-
37, suggesting systemic inflammation driven transcriptional-
reprogramming in circulating neutrophils, which triggers de novo
expression of disease-specific protein fingerprints which could
accelerate the inflammatory response (77).

The potential of M. leprae to induce NETs formation in vitro
and the contribution of these NETs in triggering ENL has already
been investigated. da Silva et al. have clearly demonstrated NETs
abundance in skin lesions and significantly increased DNA-
histone/DNA-MPO complexes in the serum of ENL patients in
addition to an increased tendency of peripheral blood neutrophils
from ENL patients toward spontaneous NETs formation that
showed marked reduction in all evaluated in vivo and ex vivo
NETosis parameters in response to thalidomide treatment (78).

Investigating ENL-specific bioactive proteins loaded on NETs
could offer insight into the pathogenesis of ENL and provide
promise in developing disease-specific biomarkers therefore we
advocate that the prognostic values for increased serum levels
of NETs/NETs-related markers should be explored in future
prospective large cohorts of multibacillary leprosy patients.

Metabolic Reconfiguration of Neutrophils
During M leprae Infection: Exploitation of
Warriors by an External Agency
Over the last decade, a new concept of “immunometabolism”
has emerged, which describes the changes that occur in the
intracellular metabolic pathways in host immune cells during
proliferation, differentiation, activation, and execution of effector
function thereby maintaining body homeostasis (79–82). There
is a vast body of literature indicating crosstalk between cellular
metabolism and inflammatory/immune responses and how these
two influences each other. This metabolic reprogramming of
immune cells also has implications in the regulation of antitumor
immune response as immune cells become tolerogenic and
inefficient in cancer cell eradication (83). Tumor-elicited c-kit
signaling triggers metabolic neutrophil modification leading to
sustained levels of reactive oxygen species that suppress the
functions of anti-tumor CD8+ T cells (84).

As recently as 2019, several investigators started studying
the relationship between metabolism and the immune response
at the cellular and organismal levels in infectious diseases and
investigating how the pathogen-induced remodeling in the host
cell metabolism influences the infectious disease pathogenesis
and host physiology (85–87).

Our understanding of how host macrophage and Schwann
cell metabolism can be altered by M. leprae and how these
metabolic alterations can influence the outcome of infection
has grown considerably over the past few years (88, 89).
M. leprae chemically and metabolically impacts the cytosolic
environment of the host cell, facilitating its persistence,
proliferation, dissemination, and continued transmission (90–
92). Histochemical, metabolomic, and transcriptional analyses
have already confirmed that many biosynthetic pathways, such
as those of cholesterol, phospholipids, and fatty acid biosynthesis

are upregulated, underscoring the metabolic interface in the
molecular pathogenesis of leprosy (93, 94). In Schwann cells,
host cell energy metabolism is subverted, culminating in
reduced mitochondrial action potential and reduced generation
of reactive oxygen species resulting in allocation of as much
carbon and reducing power as possible to lipid synthesis
(95–97). Furthermore, pathways regulating tryptophan and
iron metabolism have also been found to be defective in
leprosy patients, favoring pathogen survival with high bacterial
loads (97–99). Upregulation of omega-3 and omega-6 PUFA
metabolism and the presence of higher levels of omega-6–
derived-prostaglandin E2, lipoxin A4, and omega-3-derived
lipid mediators have been reported in LL patients with high
bacterial index (94). Lipid droplet accumulation represents a
link between innate immune response and energy metabolism,
making it worthwhile to study immunometabolic associations in
leprosy (92).

Neutrophils exhibit a remarkable metabolic plasticity
allowing them to survive in extremes of metabolite availability
and contributing toward neutrophil population heterogeneity
described in cancer-associated neutrophils and in density-
gradient isolated low and high buoyancy neutrophils seen in
auto-immune diseases (100). The metabolic reconfiguration
of neutrophils effected by mediators released during chronic
inflammatory states and carcinogenesis is an area of intense
investigation and research (101).

However, the potential of M. leprae to induce alterations in
biosynthetic pathways associated with neutrophil maturation,
activation, and degranulation by virtue of its metabolic
reprogramming ability remains unexplored. It is interesting to
speculate that metabolic reconfiguration of neutrophils during
M. leprae infection might differentially regulate various cytokines
and chemokines as well as antimicrobial responses, resulting in
detrimental overt inflammation that could ultimately determine
the outcome ofM. leprae-host interactions.

More research is needed to identify metabolic adaptations
occurring in neutrophils and to link them to the corresponding
exaggerated immune responses in ENL. Unraveling the cellular
and molecular mechanisms involved in the regulation of
metabolism in different neutrophil populations can lead to the
discovery of biomarkers useful for investigating susceptibility to
this life-threatening complication of leprosy, facilitating its early
diagnosis and monitoring disease progression.

Neutrophil Derived Exosomes
Exosomes are native nanovesicles that can regulate
pathological processes including cancer cell immunity, immune
regulation, inflammation, angiogenesis, fibrosis, and cell
proliferation/differentiation/death. Emerging studies project
exosomes as “high-resolution snapshots” that can efficiently
and dynamically capture the complexity of cancer disease
progression. However, for chronic inflammatory, autoimmune,
infectious, metabolic, and fibrotic diseases exosome research
is yet to mechanistically and technologically advance beyond
“photograph negatives” that require extended processing to
extract meaningful clinical information and benefits (85, 102–
104). Diverse exosome cargo comprising of nucleic acids (DNA,
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RNA, miRNA), proteins, and microbial-derived components
mediating cell-cell communication can potentially capture
altered cell physiology, reflect disease progression/severity,
stratify risks for therapeutic consideration (as in tumor patients),
and inform decision-making between active surveillance or
further clinical work-up.

Studies conducted so far have demonstrated the release
of exosomes during extracellular and intracellular bacterial
infections. The significance of these cargos in host-pathogen
interactions is at a preliminary stage of investigation, and the role
of exosomes in host defense and in determining disease outcomes
remains unexplored (86, 87, 105–108).

Identification of neutrophil-derived exosomes as a new
subcellular entity could result in elucidation of a molecular
player providing a fundamental link between neutrophil-driven
inflammation and multi-organ tissue damage observed in ENL
with far-reaching implications for future research. Neutrophil-
derived exosomes have already been demonstrated as a new
means of intercellular communication promoting extracellular
matrix destruction in an array of chronic inflammatory
lung disease and have key immunomodulatory roles in a
variety of inflammatory dermatological disorders, justifying their
role as biomarkers indicating a variety of pathophysiological
states (109–111).

Neutrophil-derived exosomes could be candidates for various
clinical applications in leprosy. Analysis of exosomal content
can reveal signature molecules including proteins and miRNAs,
which might be relevant in detecting ENL susceptibility in LL
patients, identifying patients who require prolonged treatment,
and indicating the prognosis of immune reactions. In future
endeavors, the functional and diagnostic potential of neutrophil-
derived exosomal protein and/or miRNAs in leprosy could
be investigated.

FUTURE INSIGHTS

• The utility of NLR in ENL needs to be tested in large
prospective cohorts of multibacillary patients: the
identification of adequate cut-off values or longitudinal
evaluations over a prolonged treatment period is mandatory
to determine its clinical usefulness.

• The phenotypical and functional divergence of neutrophil
subpopulations in ENL needs further evaluation. Identifying
subpopulations and related inflammatory mediators is of
utmost significance within the context of applied immunology,
as this allows for their application in clinical practice to assess
disease activity, severity and the course of the reaction (acute
vs. chronic).

• Investigations are required to elucidate the frequency and
clinical significance of LDNs as well as expression of various
activation surfacemarkers to test their potential as a biomarker
for ENL.

• The potential prognostic serum levels of NETs/NETs
associated proteins should be evaluated in prospective follow
up studies of ENL patients and its correlation with disease

activity tested in larger cohorts. This could prove helpful in
determination of the duration of therapy.

• How M. leprae interferes with metabolic pathways in
neutrophils to precipitate ENL in LL patients merits
further exploration.

• We support investigations into the concept of “M leprae-
specific transcriptional-reprogramming” in neutrophils/NETs.
Subsequent translation can yield altered molecular
configurations that can be packaged into exosome
vesicles and released out of NETs; such NET-associated
exosomes may serve as potential “messengers/transmitters”
that may cross talk with other active immune
cells/tissue resident cells/Schwann cells resulting in
the progressive fulminant multi-organ pathology seen
in ENL.

OPEN QUESTIONS

• What are the signals that cause neutrophil activation
and subsequent development into LDNs following M.
leprae infection?

• How do the newly recognized neutrophil
subsets/subtypes/subpopulations (identified by phenotypic
markers and segregated on basis of density centrifugation)
contribute to ENL pathophysiology?

• Do these neutrophil subpopulations exhibit any differences
in granule protein content and secretion in the context of
ENL susceptibility?

• Does M. leprae alter metabolic configuration of neutrophils?
How does it alter its metabolic configuration to precipitate
immunological exacerbation in LL patients?

• How does M. leprae use its weaponry (lipid virulence factors)
to exploit various host biological pathways to rewire the host
innate immune/cytokine responses in ENL?

Many aspects related to ENL pathophysiology remain
enigmatic. Answers to these questions have the potential
to facilitate discovery of clinical useful biomarkers in the
near future.

SUMMARY AND CONCLUSION

Profound metabolic changes are posited to occur in neutrophils
during normal physiological processes and under various
pathophysiological conditions including M. leprae infection,
more research is required to shed light on the signaling
pathways governing these perturbations and to elucidate the
intricate interactions among various metabolic programming
pathways in neutrophils, with the hope that this basic
research can translate into the development of biomarker
discovery and novel therapeutics and diagnostic strategies. This
might help to identify patients who are prone to develop
recurrent or chronic/recalcitrant T2R and initiate them on to
targeted therapy.

Neutrophils are the key players in ENL and have a potential
role as biomarkers of disease outcome or as therapeutic targets.
However, there is still much work to be done before they
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FIGURE 1 | Model depicting various approaches for exploring different aspects of neutrophil biology for future biomarker discovery. (1) Identification of adequate

cut-off values of NLR and their longitudinal evaluations over a prolonged treatment period in larger study cohorts. (2) Elucidation of frequency as well as the expression

of various activation surface markers for LDNs (and determination of their clinical significance in ENL pathophysiology). (3) Assessment of differences in neutrophil

granules’ protein content and their secretion. (4) Evaluation of serum levels of NETs/NETs associated proteins in prospective follow up studies of ENL patients and

their correlation with disease activity and also investigation of ENL-specific bioactive proteins loaded on NETs. (5) Exploration of the hypothesis of “M leprae-induced

transcriptional-reprogramming” in neutrophils/NETs resulting in alterations in biosynthetic pathways associated with neutrophil maturation, activation, and

degranulation. (6) Investigation of functional and diagnostic potential of neutrophil-derived exosomal protein and/or miRNAs. NLR, Neutrophil-lymphocyte ratio; LDNs,

low density neutrophils; ENL, eryhtema nodosum leprosum; NETs, neutrophil extracelluar traps; TLRs, Toll like receptors; CRs, complement receptors; MPO,

Myeloperoxidase; BPI, Bactericidal/permeability-increasing protein; NE, Neutrophil elastase; PTX3, Pentraxin-3.

might be used as validated prognostic markers. Moreover, newer
therapeutic agents targeting particularly neutrophil migration
and mobilization without causing global immunosuppression
could be designed.

Exploiting various aspects of neutrophil biology (Figure 1)
can lead us to discover signature molecules that can be
investigated as biomarkers for ENL. These biomarkers could also
help us in diagnosis as well as prognostication of ENL patients.

We envision that liquid-biopsy based exosomal biomarkers
for ENL can be developed and validated in the near future
with the potential for enhanced early detection, improved
diagnosis, disease outcome predictability, and therapeutic
window determination.

Moreover, an integration of information from different
“-omics” studies could provide scientists and clinicians
with a powerful tool to understand the various aspects

of neutrophil biology involved in development and
progression of ENL. It will provide a great opportunity and
hope to identify biomarkers specific for different cellular
processes/states along with those indicating efficacious
therapeutic intervention.
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