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Background. Oxidative stress is crucial in stroke pathogenesis. Many cohort-based studies suggested that the intake of exogenous
antioxidants originated from food may prevent stroke. However, the corresponding randomized controlled trials did not show
diet-derived antioxidants have a protective effect on stroke. Objectives. To examine the association of genetically proxied diet-
derived antioxidants with stroke risk using Mendelian randomization. Methods. We performed a two-sample Mendelian
randomization (MR) analysis to evaluate the causal effect of diet-derived antioxidants on stroke risk. For exposure data, we
extracted genetic variants as instrumental variables (IVs) that are strongly associated with frequently used diet-derived
antioxidants, including vitamin C, vitamin E (α-tocopherol, γ-tocopherol), carotene, retinol, zinc, and selenium, from a large-
scale genome-wide association study (GWAS). We obtained IVs’ corresponding effect estimates on the risk of total stroke and
ischemic stroke from a GWAS meta-analysis with 40,585 cases and 406,111 controls. Finally, we applied five types of
Mendelian randomization analysis to obtain preliminary MR results and performed four three kinds of sensitivity analysis to
verify them. Results. According to the primary MR estimations and further sensitivity analyses, we established two robust
associations after Bonferroni correction: genetically proxied circulating γ-tocopherol was causally associated with total stroke
[odds ratio ðORÞ = 0:68, 95% confidence interval (CI) (0.52-0.88), p = 3:78E − 03] and ischemic stroke [OR = 0:66, 95% CI
(0.51-0.86), p = 2:34E − 03]. There was no evidence to support the causal effect of other diet-derived antioxidants on the risk of
total stroke and ischemic stroke. Conclusion. Our study revealed a protective impact of genetic susceptibility to high circulating
γ-tocopherol levels on stroke risk, providing new information on the potential therapeutic targets for primary stroke prevention.

1. Introduction

According to World Health Organization, stroke has
become the second-leading cause of total death and the third
leading cause of disability worldwide. In 2019, there were
12.2 million incident cases and 101 million prevalent cases
of stroke globally, where ischemic stroke accounted for
62.4%. Evidence-based prevention strategies by reducing

the exposure to stroke risk factors were vital for relieving
the burden of public health. Currently, the established top
five risk factors for stroke are high systolic blood pressure,
body mass index, fasting plasma glucose, ambient particulate
matter pollution, and smoking [1]. Notably, in addition to
these conventional risk factors, oxidative stress associated
with excessive production of reactive oxygen species (ROS)
is involved in the pathogenesis of stroke [2]. High
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concentrations of ROS like prooxidant exceeds the counter-
balance ability of antioxidants, resulting in cerebrovascular
impairment through cellular and vascular mechanism,
including endothelial dysfunction, platelet aggregation, and
atherosclerosis [3]. It is not surprising that nonselective anti-
oxidants are potentially protective in stroke prevention via
scavenging excessive ROS. In fact, it has been reported that
endogenous antioxidant substances, such as bilirubin, are
causally associated with decreased stroke risk [4]. Many
cohort-based studies on stroke prevention support our
hypothesis that stroke-susceptible individuals will benefit
from regular intake of diet-derived antioxidants [5–7]. Stud-
ies suggested zinc and selenium, as antioxidants and anti-
inflammatory agents, were inversely associated with the inci-
dence of stroke [8–10]. Conversely, many randomized con-
trolled trials (RCTs) and their meta-analyses have failed to
demonstrate that supplementary antioxidants reduce the
incidence of stroke [11–13]. It is unclear whether the protec-
tive effect of antioxidants on stroke incidence in observa-
tional studies was attributed to the bias by confounders
such as subjects who preferred healthy diets containing mul-
tiple antioxidants or were stuck to a healthier lifestyle. These
confounding factors potentially affected cerebrovascular
condition. Moreover, reverse causation between diet-
derived antioxidants and stroke should also be considered.

To overcome the bias from previous studies, we improve
the research design by applying Mendelian randomization
(MR) analysis that exploited genetic variants as instrumental
variables to establish a strong causal inference between expo-
sure levels of common diet-derived antioxidants and risk of
total and ischemic stroke without involving confounders and
reverse causations [14].

2. Method

2.1. Study Design. The general design of the current study is
illustrated in Figure 1. First of all, we obtained available
genetic variants from the large-scale GWASs for vitamin C
(ascorbate), vitamin E (α-tocopherol), vitamin E (γ-tocoph-
erol), carotene, vitamin A (retinol), zinc, and selenium. Sec-
ondly, we selected the summary data of stroke and ischemic
stroke from a GWAS meta-analysis. Finally, the causal rela-
tionships between diet-derived antioxidants and stroke risk
were assessed by a two-sample MR analysis and several sen-
sitivity analyses.

2.2. Data for Exposures. Our primary exposures were geneti-
cally determined diet-derived antioxidants. In this study, a
total of seven diet-derived antioxidants were considered: vita-
min C (ascorbate), vitamin E (α-tocopherol), vitamin E (γ-
tocopherol), carotene, vitamin A (retinol), zinc, and selenium.
We identified single-nucleotide polymorphisms (SNPs) asso-
ciated with these diet-derived antioxidants as IVs
[p < 5 × 10−6; linkage disequilibrium (LD); r2 < 0:001, LD
distance > 10,000 kb] from the large-scale GWASs (sample
sizes ranging from 2,085 to 64,979) [15, 16]. The strength of
the correlation between SNP and diet-derived antioxidants

was expressed as an F-statistic. Overall, F − statistic > 10 sug-
gested a strong correlation between the IVs and antioxidants.

2.3. Data for Outcomes. We selected total stroke and ische-
mic stroke as the main outcomes in our study. Summary sta-
tistics on the association of exposure-related SNPs with
outcomes were abstracted from a large meta-analysis includ-
ing 17 studies for European participants. The dataset
involved 40,585 total stroke cases, 34,217 ischemic stroke
cases, and 406,111 controls [17]. To our knowledge, there
was no sample overlap between the exposure and outcome
GWASs.

2.4. Statistical Analysis

2.4.1. Two-Sample Mendelian Randomization Analysis. We
used the classical MR model to examine the causal relation-
ships between these diet-derived antioxidants and the stroke
risk (Figure S1). The selection of IVs includes the following
criteria: (i) the IVs must be closely associated with diet-
derived antioxidants (in this study, defined as the genetic
association p < 5 × 10−6); (ii) not related to confounders of
antioxidants and stroke (we conducted a phenome-wide
association test to evaluate the relationship between IVs
and potential confounders such as body mass index, blood
pressure, plasma lipid levels, hypertension, and smoking
using PhenoScanner V2 [18]; and (iii) affect stroke only
through these antioxidants. In our MR analysis, we used
five different methods [inverse-variance weighted (IVW),
weighted median, MR-Egger regression, MR-robust
adjusted profile score (MR-RAPS), and MR-Pleiotropy
Residual Sum and Outlier (MR-PRESSO)] to test the
association between dietary antioxidants and stroke or
ischemic stroke. The IVW provides MR estimation by
combining each Wald ratio of multiple SNPs, showing the
largest statistical power among all MR methods [19]. If
more than 50% of the weight comes from valid genetic
variation, the weighted median could provide accurate
estimations [20]. The MR-Egger regression mainly detects
and explains horizontal pleiotropy [21]. Furthermore, we
also used MR-PRESSO to detect potential outliers and
adjust pleiotropy by removing outliers if necessary [22].
Since we used a relatively higher significant threshold
(p < 5 × 10−6) to select genetic variants, we further
performed the MR-RAPS to obtain MR estimations using
potentially weak instruments [23].

2.4.2. Sensitivity MR Analyses. In this study, Cochrane’s Q
test [24], Egger regression intercepts [25], and MR-
PRESSO global test were used for sensitivity analysis to fur-
ther examine heterogeneity and horizontal pleiotropy.
Cochrane’s Q test was applied to quantify heterogeneity
across instrumental variables. MR-Egger intercept tests were
used to describe the potential horizontal pleiotropy in the
analysis. In addition, we performed a leave-one-out test by
sequentially removing each SNP and reestimated the MR
results. Based on the above analyses, we took IVW as the pri-
mary causal effect estimates and considered the consistency
across all MR methods.
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MR analysis was performed in R (version 4.0.3) with R
packages “TwoSampleMR”, “MR-raps”, and “MR-
PRESSO”. The multiple comparisons adjusted p value <
0.0007 (0.05/7) after Bonferroni correction was thought to
be statistically significant.

3. Results

3.1. Exposure and Outcome. The characteristics of the partic-
ipants from antioxidants and stroke datasets are shown in
Table 1. We exhibited SNPs associated with vitamin C
(ascorbate), vitamin E (α-tocopherol), vitamin E (γ-tocoph-
erol), carotene, vitamin A (retinol), zinc, and selenium in
Table S1. Totally, we enrolled 61 SNPs as IVs for seven
antioxidants (F-statistics: 20.75-152.28).

3.2. Main Findings. Table 2 and Figure 2 show MR results
for the effects of diet-derived antioxidants on stroke and
ischemic stroke. There was clear evidence that genetically
determined blood γ-tocopherol level was causally associated
with total stroke [OR = 0:68, 95% CI (0.52-0.88), p = 3:78E
− 03] and ischemic stroke [OR = 0:66, 95% CI (0.51-0.86),
p = 2:34E − 03]. The results from other MR methods showed
good consistency with IVW (p < 0:05 in weighted median
and MR-RAPS). Although we did not find a potent connec-
tion between γ-tocopherol and total stroke [OR = 0:80, 95%
CI (0.21-3.03), p = 7:57E − 01] or ischemic stroke
[OR = 0:67, 95% CI (0.19-2.45), p = 5:75E − 01] in MR-

Egger regression, we observed that estimates had similar
magnitude and direction with other MR methods. There
was little evidence of causal effects for other diet-derived
antioxidants on total stroke and ischemic stroke risk.

3.3. Sensitivity Analysis. Cochrane’s Q test showed that only
in vitamin C (ascorbate) did significant heterogeneity exists
with total stroke and ischemic stroke (all p < 0:05 in IVW
and MR-Egger regression). There was no evidence of direc-
tional pleiotropy existing for all antioxidants according to
MR-Egger intercept and MR-PRESSO global test except for
the association between vitamin C and total stroke
(p < 1:00E − 03) and ischemic stroke (p = 1:00E − 03)
(Table 3). Besides, we identified rs68344631 as an outlier
SNP (p < 1:00E − 02) in the MR-PRESSO outlier test, and
then, we found that the outlier-corrected result had a similar
range and direction with raw analyses (Table S2). We further
performed a phenome-wide association analysis using
PhenoScanner V2, suggesting that rs261301 (an IV of γ-
tocopherol) was associated with lipoprotein and cholesterol
(p = 4:39E − 24). However, we did not find there were any
IVs connected with body mass index, blood pressure,
smoking, and hypertension (Table S4). Therefore, we
recalculated the MR estimation by removing the invalid
SNP and found that the association between γ-tocopherol
and total stroke [OR = 0:68, 95% CI (0.50-0.93), p = 1:53E
− 02] and ischemic stroke [OR = 0:66, 95% CI (0.49-0.89),
p = 6:40E − 03] kept consistent with primary analysis
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Figure 1: Diagram of Mendelian randomization framework in this study. SNPs for dietary antioxidants (vitamin A, vitamin E, vitamin C,
carotene, zinc, and selenium) were identified as genetic instrumental variables. Summary statistics for gene-stroke or gene-ischemic stroke
associations were obtained from UK Biobank. For each exposure, MR analyses (primary analysis using inverse-variance weighted (IVW),
weighted median, MR-Egger regression, MR-RAPS, MR-PRESSO, and sensitivity analyses using Cochrane’s test, Egger intercept, MR-
PRESSO global test, and leave-one-out test) were performed. GWAS: genome-wide association study; SNP: single-nucleotide
polymorphism; MR: Mendelian randomization.
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(Table S3). Finally, in the leave-one-out analyses, we found
that the risk estimates of genetically predicted antioxidants
in diet and risk of stroke or ischemic stroke kept consistent
substantially after excluding one SNP at each time
(Figure S2 and Figure S3).

4. Discussion

The current MR study demonstrated that genetically proxied
higher circulating γ-tocopherol levels were causally associ-
ated with total and ischemic stroke, but we were unable to
find significant associations between genetically higher
exposures of other typical antioxidants levels (circulating
ascorbate, α-tocopherol, carotene, retinol, zinc, and sele-
nium) and stroke/ischemic stroke.

An RCT explored the preventive effect of vitamin E on
ischemic stroke when it was used alone, and the outcome
remained inconclusive [12]. When exploring the effect of
isomer products of vitamin E, a former study found that
serum γ-tocopherol was inversely associated with ischemic
stroke in men from a large-scale cohort [26]. In addition
to the effect of subtypes, we should notice that genetic pre-
disposition affected the entire life cycle, whereas supplemen-
tation only worked during the trial. A low-dose lifelong
exposure may accumulate stronger potential biological
effects than the temporary high-dose supplements when a
long period of time is needed to develop stroke. To our
knowledge, this was the first robust causal evidence that γ-
tocopherol could be potentially applied in stroke prevention.
With genetic variants as instrumental variables, MR over-
came the limitation of considerable confounding factors in
observational studies and provided a more precise estima-
tion of causality. A few RCTs suggested that short-term sup-
plementation of a γ-tocopherol-rich mixture of tocopherols
restored vascular endothelial function from hyperglycemia
and smoking-induced impairment [27, 28], implying the
translational value of γ-tocopherol in early-stage protection
against subsequent atherosclerosis and vascular disease. As
to the finding that no effect of α-tocopherol was observed,
it might result from a paradoxical effect of α-tocopherol on
oxidation. As the most active form of vitamin E in human

body, previous studies have reported that excessive concen-
trations of α-tocopherol can cause oxidative stress, leading
to lipid peroxidation mediated by the tocopherol radi-
cals [29].

The robust null results of circulating ascorbate, carotene,
retinol, zinc, and selenium in our study suggested that kinds
of long-term exposure to higher levels of antioxidant did not
reduce the risk of stroke, which was consistent with early
findings from the large-scale RCT and meta-analyses on tri-
als [11, 30–32]. However, there were always exceptions: an
RCT [33] found that taking the β-carotene supplement
alone modestly decreased the incidence of cerebral infarc-
tion among men with greater alcohol consumption; the
case-control trial showed a significant inverse association
between plasma retinol and the risk of the first time stroke
among Chinese hypertensive adults [34]. These were incon-
sistent with our results and might be due to the underlying
fact that the characteristics of the population included in
the MR and RCT did not coincide. Therefore, we assumed
that the use of antioxidants was supposed to be selective, at
least according to the gender and existing cardiovascular
risks, and further population categories should be done. As
previously reported similar cases, implementation of MR
could be an informative step in the assessment of antioxi-
dant as a chemoprotection targeting cardiovascular diseases:
three large databases for genetically predicted antioxidants
(α-, γ-tocopherol, retinol, ascorbate, and carotene) and cor-
onary heart disease (CHD) associations were MR-analyzed;
the results did not support the protective effect of these
diet-derived antioxidants on CHD risk [35], suggesting the
limited CHD prevention benefit from antioxidant supple-
ment. Another MR study indicated that higher circulating
vitamin E level might increase the risk of CHD and myocar-
dial infarction [36], thus promoting the reassessment of the
safety and efficacy of vitamin E supplementation. Genetically
instrumented zinc [37] but not selenium [38] was positively
associated with CHD; this implied the underlying risk of
microelements with antioxidative capacity in vascular
health. For completeness, our outcome revealed the limited
value of antioxidants in cerebrovascular protection, except
for γ-tocopherol as a promising supplement.

Table 1: Characteristics of diet-derived antioxidants and stroke datasets.

Exposures Data source SNP F-statistic Sample size Population

Vit. C (ascorbate) Shin et al. 10 23.67 2,085 European

Vit. E (α-tocopherol) Shin et al. 5 71.42 7,725 European

Vit. E (γ-tocopherol) Shin et al. 7 55.22 6,226 European

Carotene MRC-IEU 13 76.98 64,979 European

Vit. A (retinol) MRC-IEU 8 136.20 62,991 European

Zinc Evans et al. 8 40.13 2,603 European

Selenium Evans et al. 6 49.70 2,603 European

Outcomes Data source Studies Cases/controls Sample size Population

Stroke Meta-analysis 17 40,585/406,111 446,696 European

Ischemic stroke Meta-analysis 17 34,217/406,111 440,328 European

Vit: vitamin; SNP: single-nucleotide polymorphism.
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γ-Tocopherol is the most common form of vitamin E
found in plant seeds and the derivatives [39]. Epidemiologi-
cal evidence [40] had indicated that intake of γ-tocopherol
but not α-tocopherol was significantly inversely associated
with the risk of death from cardiovascular disease. Mecha-
nistically, γ-tocopherol had certain biologically protective
properties: γ-tocopherol was potent in enhancing the activ-
ity of superoxide dismutase (SOD) and endothelial cell nitric
oxide synthase in arterial tissue, and increasing the expres-
sion of both manganese/copper SOD in the antioxidative
manner [41, 42]; besides, γ-tocopherol possessed the capac-
ity of anti-inflammation and antiplatelet aggregation inde-
pendent of antioxidant activity [41, 43]. Previous studies
have reported that γ-tocopherol may inhibit lipid peroxida-
tion damage and trap reactive nitrogen species [44]. Cooney
et al. demonstrated that NO2, also a lipid-soluble species,
was sequestered through nitration of γ-tocopherol which
was superior to α-tocopherol in the detoxification of NO2
[45]. γ-Tocopherol may have the potential to scavenge per-
oxynitrite in inflamed vascular endothelium, thereby limit-
ing the oxidation of BH4 and helping to preserve effective
eNOS activity [46]. With all these potencies, γ-tocopherol
exerted a comprehensive effect against vascular impairment

and atherosclerosis originating from diabetes, smoking,
aging, and so on.

The strength of the current study was that our MR anal-
ysis reflected the impact of lifelong exposure to higher levels
of diet-derived antioxidants, considering long-term risks
that may not be modified by short-term supplementation
treatment. More importantly, MR did not require subjects
to be directly exposed to antioxidants, which means it could
be implemented at any point without time and resource
requirements as RCTs did, thus reducing the possibility of
exposing subjects to unnecessary risks and harms [47].

The limitations of our research are as follows: first, the
beneficial effects of antioxidants may still exist in unselected
subgroups, especially in those with elevated oxidative levels.
Besides, traditional treatment plus antioxidants may have a
synergistic benefit on stroke. Second, due to the lack of rele-
vant data, we were not able to perform the next step of
stroke subtype analysis. Further stroke subtype analysis is
needed to determine the correlation between antioxidants
and stroke of various subtypes. Third, though no causal
association was detected, the potential for the effect size to
be too small for identification cannot be fully excluded.
Finally, the genetic variants relied on European samples

Ascorbate

Alpha-tocopherol

Gamma-tocopherol

Carotene

Retinol

Zinc

Selenium

OR (95% CI) for per unit increased antioxidants on the risk of stroke

0.5 0.6 0.7 0.8 1.0 1.5

Stroke
Ischemic stroke

Figure 2: The association between genetically determined diet-derived antioxidants and the risk of stroke. Estimated ORs (odds ratio) for
the effect of per unit increase in ascorbate, alpha-tocopherol, gamma-tocopherol, carotene, retinol, zinc, and selenium on stroke and
ischemic stroke obtained from an inverse-variance weighted (IVW) analysis.
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too much, and this was owing to the lack of corresponding
data from Asian populations.

5. Conclusion

In summary, we have posted evidence of a causal relation-
ship between circulating diet-derived antioxidant/metabo-
lites levels and decreased risk of total and ischemic stroke.
The study provided information that though most null
results limit the application of antioxidants in preventing
stroke, γ-tocopherol is a promising chemoprotection target-
ing stroke incidence.
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Figure S1: instrumental variable (IV) assumptions of Men-
delian randomization. Figure S2: scatter plot (A, C, E, G, I,
K, M) and leave-one-out test (B, D, F, H, J, L, N) for genet-
ically determined antioxidants and risk of stroke. Figure S3:
scatter plot (A, C, E, G, I, K, M) and leave-one-out test (B, D,
F, H, J, L, N) for genetically determined antioxidants and
risk of ischemic stroke. Table S1: single-nucleotide polymor-
phisms (SNP) associated with diet-derived antioxidants.
Table S2: MR-PRESSO outlier-corrected MR analysis for
vitamin C (ascorbate) and risk of stroke and ischemic stroke.

Table 3: The estimations of heterogeneity and horizontal pleiotropy for MR results.

Outcomes Exposures
IVW MR-Egger MR-PRESSO

Q
-statistic

p value
Q

-statistic
p value Egger intercept p value p for global test

Stroke

Vit. C (ascorbate) 30.83 3:16E − 04 30.26 1:90E − 04 0.008 (-0.033-0.049) 7:07E − 01 <1:00E − 03
Vit. E (α-
tocopherol)

5.90 2:07E − 01 2.05 8:43E − 01 0.014 (-0.034-0.062) 6:11E − 01 2:69E − 01

Vit. E (γ-tocopherol) 6.56 3:64E − 01 6.48 2:62E − 01 -0.005 (-0.042-0.033) 8:16E − 01 3:75E − 01
Carotene 19.24 8:30E − 02 19.00 6:12E − 02 -0.004 (-0.023-0.016) 7:20E − 01 9:20E − 02

Vit. A (retinol) 8.07 3:27E − 01 6.97 3:24E − 01 -0.012 (-0.037-0.012) 3:68E − 01 3:60E − 01
Zinc 5.44 6:07E − 01 2.15 9:05E − 01 0.022 (-0.002-0.045) 1:20E − 01 5:43E − 01

Selenium 2.79 7:31E − 01 2.38 6:66E − 01 -0.006 (-0.024-0.012) 5:56E − 01 7:17E − 01

Ischemic
stroke

Vit. C (ascorbate) 33.50 1:09E − 04 32.95 6:29E − 05 0.008 (-0.037-0.053) 7:25E − 01 1:00E − 03
Vit. E (α-
tocopherol)

4.74 3:15E − 01 4.62 2:02E − 01 0.007 (-0.040-0.053) 8:00E − 01 3:27E − 01

Vit. E (γ-tocopherol) 5.31 5:05E − 01 5.31 3:79E − 01 -0.001 (-0.037-0.036) 9:78E − 01 5:47E − 01
Carotene 12.80 3:06E − 01 12.63 2:45E − 01 -0.003 (-0.021-0.015) 7:16E − 01 3:36E − 01

Vit. A (retinol) 9.05 2:49E − 01 8.40 2:10E − 01 -0.010 (-0.039-0.019) 5:23E − 01 2:88E − 01
Zinc 5.63 5:84E − 01 2.31 8:89E − 01 0.024 (-0.002-0.049) 1:18E − 01 5:10E − 01

Selenium 2.05 8:43E − 01 1.93 7:48E − 01 -0.003 (-0.022-0.016) 7:52E − 01 8:32E − 01
Vit: vitamin; MR: Mendelian randomization; IVW: inverse-variance weighted.
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Table S3: two-sample Mendelian randomization estimations
showing the effects of vit. E (γ-tocopherol) on the risk of
stroke and ischemic stroke by removing outlier rs261301.
Table S4: instrumental variable trait of dietary antioxidants
in PhenoScanner V2. (Supplementary Materials)
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