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Early diagnosis of acute ST-segment elevation myocardial infarction (STEMI) and early

determination of the culprit vessel are associated with a better clinical outcome. We

developed three deep learning (DL) models for detecting STEMIs and culprit vessels

based on 12-lead electrocardiography (ECG) and compared them with conclusions

of experienced doctors, including cardiologists, emergency physicians, and internists.

After screening the coronary angiography (CAG) results, 883 cases (506 control

and 377 STEMI) from internal and external datasets were enrolled for testing DL

models. Convolutional neural network-long short-term memory (CNN-LSTM) (AUC:

0.99) performed better than CNN, LSTM, and doctors in detecting STEMI. Deep

learning models (AUC: 0.96) performed similarly to experienced cardiologists and

emergency physicians in discriminating the left anterior descending (LAD) artery.

Regarding distinguishing RCA from LCX, DL models were comparable to doctors (AUC:

0.81). In summary, we developed ECG-based DL diagnosis systems to detect STEMI

and predict culprit vessel occlusion, thus enhancing the accuracy and effectiveness of

STEMI diagnosis.

Keywords: ST-segment elevation myocardial infarction (STEMI), electrocardiogram (ECG), convolutional neural

network (CNN), long short-term memory (LSTM), CNN-LSTM, deep learning (DL), culprit vessel

1. INTRODUCTION

ST-segment elevation myocardial infarction (STEMI) is one of the leading cardiovascular diseases,
with a high morbidity and mortality (1). ST-segment elevation is considered to reflect acute
transmural ischemia caused by epicardial coronary artery blockage. The timely diagnosis of
STEMI is crucial to guide therapy and lower sudden cardiac death (2). Coronary angiography
(CAG) is the gold standard for diagnosing STEMI. However, CAG is an invasive, inconvenient,
expensive, and radioactive examination and requires a monitoring infrastructure. As a result, an
effective technique for screening STEMI patients is urgently required to distinguish STEMI from
other diseases.
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Twelve-lead electrocardiography (ECG) may potentially be
a rapid, cost-effective, and non-invasive method of screening
STEMI. However, it remains challenging to distinguish STEMI
from other diseases with chest pain symptoms such as
pneumothorax, aortic dissection, and pulmonary embolism
(3). However, ST-segment elevation secondary to non-ischemic
etiologies is widespread, which concurrently complicates the
differential diagnosis of STEMI. Moreover, ischemic ST elevation
is highly dynamic and demonstrates spontaneous elevation,
such as Prinzmetal’s variant angina pectoris. In addition, lead
positioning changes, improper high-pass filter setting, QRS
width, and axis may affect the magnitude of ST elevation.
On the other hand, patients with real transmural ischemia are
difficult to differentiate when their ST elevation was less than the
recommended threshold. As a consequence, the specificity and
sensitivity of ECG for STEMI are low (4).

Previous studies have used artificial intelligence (AI) networks
to improve signal analysis, automated feature extraction, and
non-linear models (5–7). Deep learning (DL)-based ECG
interpretation focuses on noise reduction (8), ECG feature
extraction (9), arrhythmia detection (10), and cardiovascular
diseases (11). However, the application of this research on ECG
has been limited by the small number of studies that employed
data from the MIT-BIH (PhysioNET) and PTB (Physiobank)
databases (7, 12). Moreover, several researchers employed the
typical STEMI ECG pattern and excluded other ECG-related
ST-segment changes, such as ventricular premature beat, left
ventricular hypertrophy, complete left bundle branch block,
and complete right bundle branch block. Salah Al-Zaiti et al.
improved a machine learning model to predict ACS based
on prospective real-world prehospital ECG data. However,
CAG corroborated only part of this study’s findings (13).
In conclusion, certain models were machine learning-based,
requiring extraction of the ECG features and then feeding them
into the prediction model, while other models used DL to make
end-to-end predictions, which only predicted two categories
(control and STEMI).

To avoid the shortcomings of previous DL models, we
aimed to develop highly effective and accurate DL models for
diagnosing STEMI and culprit vessels. First, we established a
real-world ECG dataset based on CAG. Then, we developed
convolutional neural network (CNN), long short-term memory
(LSTM), and CNN-LSTM models and investigated the accuracy
and effectiveness of ECG-based STEMI detection.

2. METHODS

2.1. Data Sources and Study Population
2.1.1. Study Design
This was a retrospective case-control study. To develop a training
algorithmmodel, we selected STEMI and control ECG data from
the Hospital Information System (HIS) and the Cardio-Catheter
Room database from January 2015 to December 2018 in the
Third Affiliated Hospital of Sun Yat-sen University (Cohort 1).
The flowchart of the study is depicted in Figure 1. The inclusion
criteria of STEMI ECG were as follows: final diagnosis of
STEMI, without history of myocardial infarction or percutaneous

coronary intervention (PCI). The inclusion criteria of control
ECG were as follows: final diagnosis of STEMI, without history
of myocardial infarction or PCI. The exclusion criteria included:
Patients who need CAG for any reason do not reach the diagnosis
of STEMI. Excessive noise in the data, unstable baseline, multiple
vessel disease, no CAG performed during the first 24 h of the
onset of symptoms (such as angina pain, chest pain, backache,
shoulder pain, and stomachache), and no complete baseline
data. The external test of ECG data was retrospectively collected
from the ECG database of Guangzhou First People’s Hospital
(Cohort 2) (Figure 1B). The inclusion and exclusion criteria
were consistent with those in Cohort 1. The diagnosis of
myocardial infarction was based on clinical symptoms (angina
pain lasting for over 20 min), ECG findings, and enzymatic
changes. A cardiologist committee was composed of two board-
certified practicing cardiac electrophysiologists and one board-
certified practicing cardiologist. The committee discussed all
ECG records and agreed on a gold standard of arrhythmia.
The definitions of ST elevation at J points are based on the
American College of Cardiology/American Heart Association
and the European Society of Cardiology STEMI guidelines. This
study was approved by the Human Ethics Boards of the Third
Affiliated Hospital of Sun Yat-sen University and Guangzhou
First People’s Hospital. All of the studies were conducted in
accordance with the Declaration of Helsinki. Informed consent
was not required, as this was a retrospective study.

2.1.2. ECG Data
A resting surface ECG was digital, standard, 10-s, 12-lead ECG.
Electrocardiography was performed at a sampling rate of 1,000
Hz using a hospital ECG management system (ECGNET Vision
3.0, SanRui Electronic Technology, Guangdong, China). The raw
ECG sequence data were acquired by a physician in the supine
position (paper speed: 25 mm/s, calibration: 1 mV = 10 mm). All
ECG data were labeled with the study ID and stored on a secure
server. Initially, ECGs with excessive noise were excluded by two
independent clinicians. The interpretation of ECG characteristics
is shown in Supplementary Table 1. Diagnostic ST elevation
is defined by the following Fourth Universal Definition of
Myocardial Infarction consensus statement: (1) ST elevation in
V2-V3 ≥ 2.0 mm in men ≥ 40 years, ≥ 2.5 mm in men < 40
years, or ≥ 1.5 mm in women, or ST-elevation ≥ 1 mm in other
leads; (2) ST depression ≥ 0.5 mm; or (3) T-wave inversion ≥ 1
mm in leads with prominent R wave or R/S ratio≥ 1.

2.2. Data Preprocessing
Electrocardiography data were stored by XML and parsed by
the parser. We applied wavelet transform to remove noise.
During signal processing, there was an apparent contrast
between the wavelet component amplitude and noise component
at high frequencies. After wavelet decomposition, wavelet
coefficients with large amplitudes were mostly useful signals,
while coefficients with small amplitudes were generally noise. To
standardize the data, we utilized a 5-s segment ECG input model.
The ECG data had 12 channels, and the specification of each
segment of ECG data was finally intercepted (5,000, 12).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 March 2022 | Volume 9 | Article 797207

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Wu et al. Deep Learning Model Diagnosis STEMI

FIGURE 1 | A flow diagram indicating the selection of individuals for the training, validation, and testing datasets. (A) The selection steps of Cohort 1 for the internal

dataset. Of the 793 ECGs collected, Cohort 1 included 315 individuals with STEMI and 478 control individuals without STEMI. (B) The selection steps of external

validation of ECG. Of the 90 ECGs collected, Cohort 2 included 62 individuals with STEMI and 28 control individuals without STEMI. The inclusion and exclusion

criteria were consistent with those in Cohort 1. STEMI, ST segment elevation myocardial infarction.

2.3. Model Development
In this study, we designed three different architectures (CNN,
LSTM, and CNN-LSTM) to explore the best architecture of the
model. Briefly, we designed two stages to classify different levels
of STEMI (Figure 2D). The first stage (stage 1) was to train one
model to distinguish between control and STEMI. The second
stage (stage 2) was to train two models separately and then
combine them to identify the control, LAD, LCX, and RCA. The
first model in stage 2 identified the control, LAD, and LCX-RCA,
whereas the secondmodel in stage 2 identified the LCX and RCA.

2.3.1. CNN
The CNN included three layers (Supplementary Materials and
Supplementary Figure 1). Each kernel size was 2, and the
number of kernels was randomly selected from a list of
parameters 16, 24, 32, 48, and 64. Finally, the parameters of 32,
32, and 48 were the best for the CNN model to classify control,
LAD, and LCX-RCA. The shape of input data was (5,000, 12)
(Supplementary Figure 14). After the first CNN layer, the output
data shape became (5,000, 32). Each CNN layer was followed by
a pooling layer. After a pooling layer, the output data’s shape was
2,500, 32. Similarly, the data shapes after the following layers were
(2,500, 32), (1,250, 32), (1,250, 48), and (625, 48). Then, we added
a dropout layer to increase the model’s generalizability. Finally,
we used a fully connected/dense layer with three nodes to predict
the control, LAD, and LCX-RCA.

2.3.2. LSTM
We built an LSTM model including two LSTM layers
(Supplementary Materials and Supplementary Figure 2). The
first LSTM layer possessed 100 neurons, and the second
LSTM layer had 50 neurons. The numbers of LSTM neurons
were randomly selected from a list of parameters of 500,
200, 100, and 50. The shape of input data was (5,000, 12)
(Supplementary Figure 15). After the first LSTM layer, the
output data’s shape was (5,000, 100). After the second LSTM
layer, the output data’s shape was (50, 12). Each LSTM layer was
followed by a dropout layer to enhance themodel’s generalization
ability. Each dropout layer’s dropout rate was 0.2. Finally, we
utilized a fully connected/dense layer with two nodes to predict
control and STEMI.

2.3.3. CNN-LSTM
We established a CNN-LSTM model that combined CNN
and LSTM (Figures 3C–E; Supplementary Materials and
Supplementary Figure 2). The final output was (50, 12, and 48),
reshaped into (50, 576), and then fed into subsequent LSTM
networks (Supplementary Figure 16). We set 50 LSTM cells
to calculate 50 samples of 576 dimensions, which became 50
dimensions after calculation (Supplementary Figure 16). The
last layer of the model was a fully connected layer, with two
nodes set as outputs, corresponding to the probability of control
and STEMI (Figures 3A,B).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 March 2022 | Volume 9 | Article 797207

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Wu et al. Deep Learning Model Diagnosis STEMI

FIGURE 2 | CNN-LSTM achieved the highest accuracy among CNN, LSTM, CNN-LSTM, and doctors. (A) ROC curve calculated at the sequence level for control

and STEMI in the Test 2 dataset. (B) ROC curve calculated at the sequence level for control, LAD, LCX, and RCA. (C) ROC curve calculated for LCX and RCA. (D)

Schematic of deep learning architecture.

2.4. Comparative Test
Analysis of ECG images was performed by 16 doctors for
comparison with our DL algorithms. Each doctor made a
diagnosis blindly and independently. A total of 16 doctors
contained four medical interns, four internal medicine residents
and four experienced cardiologists, and four emergency
physicians. The medical interns had completed the theoretical
studies of cardiology and ECG. The internal medicine residents
were doctors who held a medical license but had not majored
in cardiology. The experienced cardiologists had at least 5-
year experience working in cardiovascular department. The
emergency physicians had at least 2-year experience working in
emergency department. Each doctor made a diagnosis blindly
and independently.

2.5. Statistical Analysis
Baseline characteristics in the STEMI and control groups
were retrieved using inpatient ICD-9 and ICD-10 diagnostic
codes. Continuous data are expressed as the mean value ±

standard deviation, and categorical data are presented as absolute
numbers and percentages. Differences in continuous data were
analyzed using Student’s t-test for variables with a normal
distribution and the Mann-Whitney U-test for variables with a
non-normal distribution. Categorical data were analyzed using

Pearson’s chi-square test. The different performancemetrics were
AUC, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) evaluated for a certain
classification cut off value. P< 0.05 was considered statistically
significant. IBM SPSS version 26.0 software was used for all
statistical analyses.

3. RESULTS

3.1. Study Population and Clinical
Characteristics
A total of 1,259 individuals performed CAG were collected in the
Third Affiliated Hospital of Sun Yat-sen University (Figure 1A).
Patients had multiple vessel diseases or with poor image quality
or without complete baseline data were excluded. Finally, 793
patients were enrolled in Cohort 1. In this cohort, 315 patients
had STEMI, of which, 163 patients had isolated LAD artery
branch disease, 107 patients had isolated right coronary artery
(RCA), and 45 patients had isolated left circumflex artery (LCX).
The control group included 478 patients without obstructive
coronary artery disease. A total of 90 patients were enrolled
from January 2017 to December 2018 in Guangzhou First
People’s Hospital. This cohort included 62 patients with STEMI
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FIGURE 3 | Plot of logarithmic accuracy/loss for the training step of CNN-LSTM. Train and test accuracy/loss diagrams of the models. (A,B) Train and test

accuracy/loss diagrams of the optimum result on the CNN-LSMT model. (C,D) Confusion matrices for predicting control and STEMI using the CNN-LSTM model in

the test dataset. (E) Schematic of the CNN-LSTM architecture.
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and 28 control subjects. Thirty-one patients had isolated LAD
branch disease, 21 patients had isolated RCA, and 10 patients
had isolated LCX. Overall, STEMI patients were older than
those without STEMI (control: 55.3±12.5; STEMI: 60.4±13.2,
Table 1). There were significantly more males in the STEMI
group than in the control group. No significant difference was
observed in the prevalence of diabetes, chronic kidney disease,
or family history of cardiovascular disease between the STEMI
and control groups. Notably, the proportion of hypertension in
STEMI patients was lower than that in the control group. No
significant difference was identified in age, gender, prevalence of
chronic kidney disease, or CVD family history between Cohorts
1 and 2. However, the prevalence of hypertension and diabetes
was higher in Cohort 1 than in Cohort 2 (Table 2). In our
study, we did not exclude arrhythmias. There were 18 ventricular
premature beats, one complete left bundle branch block, five
atrial fibrillation, and two ventricular preexcitation cases in
the control and STEMI groups. In the control group, 19 left
ventricular hypertrophy and nine complete right bundle branch
block cases were identified, whereas the STEMI group included
eight left ventricular hypertrophy, 11 complete right bundle
branch block, and one pacing case. There was no statistically
significant difference in the cardiac arrhythmia ratio (Table 1).

3.2. Model Performance
Misdiagnosis of STEMI may lead to severe events such as
sudden death. Overdiagnosis of other diseases with ST-segment
elevation would waste medical resources and needlessly invasive
treatments. To accurately assess STEMI, we constructed CNN
and LSTM models, combined them and developed a classifier to
improve the accuracy of STEMI diagnosis.

3.2.1. Stage 1: Control vs. STEMI
The first step was to distinguish between STEMI and control
cases. First, after using a 10-fold cross-validation approach, we
trained CNN, LSTM, and CNN-LSTM using each ECG raw data
in the training dataset, followed by testing model performance in
the internal test dataset (Test 1) and external test dataset (Test 2).
Using the optimal probability threshold in CNN, the best AUC
of STEMI was 0.95 (F1 score: 0.87) (Table 2; Figure 2A) in Test
1 and 0.96 (F1 score: 0.94) in Test 1 and Test 2, respectively.
Second, after training, we validated the sensitivity, specificity,
PPV, and NPV between the control and STEMI groups in two
tests. The results of LSTM were 0.78, 0.80, 0.85, and 0.81 in
the Test 1 dataset and 0.93, 0.79, 0.94, and 0.92 in the Test
2 dataset, respectively. Finally, we combined CNN and LSTM
models to obtain a better performance with AUCs of 1.00 and
0.99 in Test 1 and Test 2, respectively (Figures 2C,D). The
sensitivity, specificity, PPV, NPV, ACC, and F1 scores were
improved after combining CNN and LSTM (Table 2; Figure 2A;
Supplementary Figures 4–6).

3.2.2. Stage 2 Model 1: Control vs. LAD vs. RCA-LCX
ROC analysis was utilized to discriminate the location of culprit
vessels (Figure 2B). Interestingly, three models performed well
in determining the location of culprit vessels, especially in the
LAD subgroups (Table 2; Figure 2B). In Test 1 and Test 2, CNN

TABLE 1 | Baseline characteristics between patients with or without STEMI.

Control STEMI P-value

506 377

Age (years) 55.3 ± 12.5 60.4 ± 13.2 0.000

Gender (female) 227 (44.9%) 69 (18.3%) 0.000

Diabetes mellitus 101 (20.0%) 71 (18.8%) 0.676

Hypertension 226 (44.7%) 135 (35.8%) 0.008

Chronic kidney disease 12 (2.4%) 9 (2.4%) 0.989

CVD family history 23 (4.5%) 21 (5.6%) 0.489

White blood cell (*109/L) 7.33 ± 2.98 9.01 ± 3.12 0.000

Red blood cell (*109/L) 4.28 ± 0.95 4.39 ± 0.69 0.039

Hemoglobin (g/ml) 128.05 ± 16.84 131.16 ± 19.52 0.011

Platelet (*109/L) 207.21 ± 59.3 218.37 ± 61.25 0.007

ALB (g/L) 39.29 ± 4.43 38.61 ± 4.69 0.028

Globulin (g/L) 24.65 ± 3.91 25.18 ± 4.83 0.070

Potassium (mmol/L) 3.58 ± 0.42 3.78 ± 0.52 0.000

Sodium (mmol/L) 137.47 ± 4.61 137.91 ± 4.96 0.179

Ca (mmol/L) 2.15 ± 0.31 2.13 ± 1.16 0.697

Fasting glucose (mmol/L) 6.71 ± 2.99 7.17 ± 2.82 0.020

Blood urea nitrogen (mmol/L) 5.12 ± 2.74 5.77 ± 3.00 0.001

Serum creatinine (mmol/L) 81.71 ± 58.42 77.07 ± 44.97 0.199

CHOL (mmol/L) 4.52 ± 1.23 4.50 ± 1.22 0.860

TG (mmol/L) 1.59 ± 1.08 1.65 ± 1.12 0.461

HDL (mmol/L) 1.09 ± 0.32 1.00 ± 0.3 0.000

LDL (mmol/L) 2.79 ± 1.01 2.94 ± 1.04 0.042

CK-MB (U/L) 6.76 ± 6.31 32.83 ± 58.49 0.000

Ventricular premature beat 18 (3.6%) 18 (4.8%) 0.073

Preexcitation syndrome 2 (0.4%) 2 (0.5%) 0.617

Complete left bundle branch block 1 (0.2%) 1 (0.3%) 1.000

Complete right bundle branch block 9 (1.8%) 11 (2.9%) 0.094

Left ventricular hypertrophy 19 (3.8%) 8 (2.1%) 0.682

Atrial fibrillation 5 (1.0%) 2 (0.5%) 1.000

Pacing 0 (0) 1 (0.3%) 0.352

achieved AUCs of 0.93 and 0.93, and LSTM achieved AUCs of
0.89 and 0.89, respectively. After combining CNN and LSTM
as CNN-LSTM, the model performance improved to 0.96 and
0.97 in Test 1 and Test 2, respectively. The detailed analysis was
summarized in Table 2. The accuracy and AUC of CNN-LSTM
were better than those of CNN and LSTM in Tests 1 and 2
(Supplementary Figures 7–9).

3.2.3. Stage 2 Model 2: RCA vs. LCX
Stage 2 model 2 was used to distinguish between RCA and LCX
(Table 2; Figure 2C). The AUC values of CNN, LSTM, and CNN-
LSTM in Test 1 were 0.70, 0.77, and 0.81, respectively, indicating
that CNN and LSTM as single methods performed worse than
CNN-LSTM. However, the F1 scores of CNN-LSTM in Tests 1
and 2 were worse than those of CNN and LSTM. However, the
PPV and NPV of CNN-LSTM were similar to those of CNN and
LSTM (Supplementary Figures 10–12).
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TABLE 2 | Diagnostic performance of CNN-LSTM, CNN, LSTM, and doctors in different datasets.

n AUC ACC SEN SPEC PPV NPV F1

Model 1 Test 1

CNN 1,393 0.95 0.87 0.90 0.91 0.83 0.84 0.87

LSTM 1,801 0.90 0.83 0.78 0.80 0.85 0.81 0.84

CNN-LSTM 1,484 1.00 0.98 0.97 0.97 0.99 0.99 0.98

Model 1 Test 2

CNN 1,857 0.96 0.84 0.90 0.69 0.99 0.99 0.94

LSTM 1,857 0.95 0.86 0.93 0.79 0.94 0.92 0.93

CNN-LSTM 1,857 0.99 0.91 0.94 0.83 0.98 0.98 0.96

Model 2 Test 1

CNN 3,395 0.93 0.79 0.78 0.89 0.81 0.89 0.80

LSTM 1,801 0.89 0.77 0.78 0.91 0.67 0.91 0.72

CNN-LSTM 3,395 0.96 0.89 0.83 0.91 0.9 0.91 0.87

Model 2 Test 2

CNN 1,857 0.93 0.79 0.72 0.82 0.88 0.82 0.79

LSTM 1,857 0.89 0.79 0.86 0.94 0.74 0.94 0.79

CNN-LSTM 1,857 0.96 0.87 0.83 0.90 0.95 0.90 0.89

Model 3 Test 1

CNN 263 0.70 0.70 0.68 0.68 0.93 0.93 0.79

LSTM 263 0.77 0.78 0.78 0.78 0.94 0.94 0.85

CNN-LSTM 263 0.81 0.67 0.66 0.66 0.92 0.92 0.77

Model 3 Test 2

CNN 710 0.75 0.69 0.73 0.73 0.78 0.78 0.75

LSTM 710 0.70 0.68 0.64 0.64 0.83 0.83 0.73

CNN-LSTM 710 0.68 0.59 0.69 0.69 0.69 0.69 0.69

3.3. Generalization Capacity
The CNN specificity differed significantly in model 1. For PPV
and NPV, CNN performance in models 2 and 3 was inconsistent.
The PPV and NPV of LSTMwere unbalanced in models 1, 2, and
3. The generalization capacity of CNN-LSTM in the independent
test dataset was better than that in CNN and LSTM (Table 3).
For the model performance of CNN-LSTM in models 1 and 2,
no significant difference was observed between Tests 1 and 2.
For AUC, PPV, and NPV, the performance of CNN-LSTM was
inconsistent in model 3 (Supplementary Figures 4–12).

3.4. Comparative Test
In the comparative test of model 1, CNN-LSTM achieved an
AUC of 1.00, outperforming experienced cardiologists (0.94),
emergency physicians (0.92), internal medicine residents (0.92),
and medical interns (0.91). Doctors’ performance at all levels was
comparable in distinguishing STEMI from the control (Table 4;
Figures 2A–C). In model 2, to determine LAD, there was no
significant difference in predicting performance among CNN-
LSTM, experienced cardiologists, and emergency physicians. In
model 3, CNN-LSTM had the highest AUC (0.81) compared to
doctors’ performance at all levels. When comparing LCX to RCA
cases, CNN-LSTM had a sensitivity and specificity of 0.70 and
0.70, respectively, which were slightly lower than those obtained
from experienced cardiologists (sensitivity: 0.75; specificity: 0.75)
and emergency physicians (sensitivity: 0.75; specificity: 0.75)
(Supplementary Figure 13).

4. DISCUSSION

ST-segment elevation myocardial infarction is the most
dangerous type of coronary heart disease, having the highest
mortality and disability rates. It has been reported that
inappropriate and false-positive activation of the cardiac
catheterization laboratory for STEMI was approximately 2.7
% and 20 % (14, 15). However, due to the different levels of
diagnosis and uneven coverage of medical resources, there is a
large chance for misdiagnosis and missed diagnosis of STEMI,
which affects the optimal diagnosis and treatment strategy.
Electrocardiography is an objective, inexpensive, and widely
used diagnostic tool for STEMI that provides guidance for
revascularization. When a doctor performs an electrocardiogram
diagnosis, the doctor often makes the diagnosis inconsistent due
to different experiences, and it is time-consuming and labor-
intensive. Based on ECG, the rapid diagnosis of STEMI using AI
technology represents a significant progress in shortening the
Door to Balloon time, as shorter Door to Balloon times were
closely associated with lower in-hospital mortality and 6-month
mortality (16).

4.1. Based on a Real-World ECG Database
We established a real-world ECG database containing
arrhythmias that affect ST segment changes, including
ventricular premature beat, ventricular preexcitation, pacemaker,
bundle branch block, and so on. As far as we know, previous
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TABLE 3 | Diagnosis performance of CNN-LSTM, CNN, and LSTM between internal and external test.

n AUC ACC SEN SPEC PPV NPV F1

Model 1

CNN-LSTM Test 1 1,484 1.00 0.98 0.97 0.97 0.99 0.99 0.98

Test 2 1,857 0.99 0.91 0.94 0.83 0.98 0.98 0.96

CNN Test 1 1,393 0.95 0.87 0.90 0.91 0.83 0.84 0.87

Test 2 1,857 0.96 0.84 0.90 0.69 0.99 0.99 0.94

LSTM Test 1 1,801 0.90 0.83 0.78 0.80 0.85 0.81 0.84

Test 2 1,857 0.95 0.86 0.93 0.79 0.94 0.92 0.93

Model 2

CNN-LSTM Test 1 1,484 1.00 0.98 0.97 0.97 0.99 0.99 0.98

Test 2 1,857 0.99 0.91 0.94 0.83 0.98 0.98 0.96

CNN Test 1 1,393 0.95 0.87 0.90 0.91 0.83 0.84 0.87

Test 2 1,857 0.96 0.84 0.90 0.69 0.99 0.99 0.94

LSTM Test 1 1,801 0.90 0.83 0.78 0.80 0.85 0.81 0.84

Test 2 1,857 0.95 0.86 0.93 0.79 0.94 0.92 0.93

Model 3

CNN-LSTM Test 1 263 0.81 0.67 0.66 0.66 0.92 0.92 0.77

Test 2 710 0.68 0.59 0.69 0.69 0.69 0.69 0.69

CNN Test 1 263 0.70 0.70 0.68 0.68 0.93 0.93 0.79

Test 2 710 0.75 0.69 0.73 0.73 0.78 0.78 0.75

LSTM Test 1 263 0.77 0.78 0.78 0.78 0.94 0.94 0.85

Test 2 710 0.70 0.68 0.64 0.64 0.83 0.83 0.73

TABLE 4 | Diagnosis performance of CNN-LSTM and of different levels of doctors.

Cases AUC ACC SEN SPEC PPV NPV F1

Model 1

CNN-LSTM 78 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DOCTOR 147 0.92 0.92 0.92 0.92 0.92 0.92 0.92

experienced cardiologists 147 0.94 0.94 0.94 0.94 0.94 0.94 0.93

emergency physicians 147 0.92 0.92 0.91 0.91 0.92 0.92 0.91

internal medicine residents 147 0.92 0.91 0.91 0.91 0.91 0.91 0.91

medical interns 147 0.90 0.90 0.90 0.90 0.90 0.90 0.90

Model 2

CNN-LSTM 81 0.96 0.93 0.88 0.90 0.79 0.90 0.83

DOCTOR 147 0.92 0.90 0.85 0.94 0.87 0.94 0.89

experienced cardiologists 147 0.94 0.92 0.88 0.95 0.88 0.95 0.88

emergency physicians 147 0.93 0.93 0.86 0.94 0.89 0.94 0.87

internal medicine residents 147 0.91 0.88 0.81 0.92 0.84 0.92 0.82

medical interns 147 0.91 0.88 0.84 0.93 0.85 0.93 0.85

Model 3

CNN-LSTM 14 0.81 0.71 0.70 0.70 0.88 0.88 0.78

DOCTOR 147 0.84 0.84 0.72 0.72 0.87 0.87 0.72

experienced cardiologists 147 0.86 0.86 0.75 0.75 0.89 0.89 0.78

emergency physicians 147 0.87 0.87 0.75 0.75 0.92 0.92 0.80

internal medicine residents 147 0.81 0.81 0.69 0.69 0.79 0.79 0.72

medical interns 147 0.82 0.82 0.68 0.68 0.86 0.86 0.70

studies are primarily based on ECG data obtained from the
MIT-BIH (PhysioNET) and PTB databases (Physiobank) (7, 12),
both of which eliminated arrhythmia. By including arrhythmia

data, our DL model achieves better sensitivity and specificity.
Furthermore, we input the raw ECG data rather than extracting
features from it. In this way, we are able to reduce feature
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loss, maintain data integrity, and improve diagnosis accuracy.
Therefore, compared to previous models, our model is more
realistic and is easier to apply in primary medical units.

4.2. Input the Raw ECG Data
Compared to previous ML or DL methods that require a
very large amount of labeled data and time-consuming human
labeling effort (17), our CNN-LSTM model is an end-to-
end approach that does not require such efforts. It only
utilized raw ECG data input and built binary classification and
multiclassification without experts or experienced cardiologists.
On the internal test dataset, our DL models achieved high
sensitivity and NPV. A previous study reported that an ML-
based ECG autodiagnostic system could improve the sensitivity
of STEMI (0.90) compared to medical doctors (0.72) (18).
Our model can increase the sensitivity to 0.95–0.99, which
outperforms this ML-based ECG autodiagnostic system.

4.3. Advantages of Our Model
In this study, we reported three DL models for detecting STEMI
based on 12-lead ECG. Deep learning-based classifiers presented
high sensitivity and specificity in distinguishing STEMI cases
with an AUC of 0.99. Convolutional neural network, LSTM,
and CNN-LSTM performed similarly in this stage. A previous
study established an ML-based method to detect myocardial
relaxation abnormalities using 12-lead ECG (16). Miquel Alfaras
used an ensemble of echo state networks (ESNs) as a classifier
method (19).In the case of ESNs, reservoirs are current neural
networks with random input and random connection weights
between neurons. Thanks to the recurrence of the network,
current reservoir responses depend on the previous state of
the reservoir, yielding ESNs capable of performing context-
dependent computations. The reservoir benefits from a high-
dimensional nonlinear mapping of the input so that the reservoir
response is easier to classify than the original input by means of
a simple linear regression technique. This method is conducive
to the diagnosis of arrhythmia, but there are still deficiencies
in the diagnosis of myocardial infarction. Pranav Rajpurkar
trained a 34-layer CNN to detect arrhythmia in arbitrary length
ECG time series (20). They used residual connections and batch
normalization to optimize the deep model. The depth increased
both the nonlinearity of the computation and the size of the
context window for each classification decision. The architecture
of the model included 33 layers of convolution followed by a
fully connected layer and a SoftMax layer. U Rajendra Acharya
used an 11-layer deep CNN model for congestive heart failure
diagnosis (21). The model consists of four convolutional, four
max-pooling, and three fully connected layers. These layers make
up the fundamental structure of CNNwhereby convolution picks
up distinctive features from the input ECG signal. The max-
pooling operation reduces the dimensions of feature maps and
simultaneously retains important and significant features of the
input ECG signal. We used LSTM to extract contextual features
without many CNN layers and fully connected layers. Jen Hong
Tan used a stacked LSTM network with CNN to classify normal
vs. coronary artery disease ECG signals (22). The algorithm first
slices a 5 s ECG segment (with 1,285 data points) into 211 short
segments. Each short segment consists of 24 data points. They

perform two rounds of 1D convolution-max-pooling to extract
the significant features in these segments. The resultant output
is a set of 50 short segments, with each segment comprising 32
data points. This process reduces the number of data points for
computation in LSTM (CNN formost of the time runs faster than
LSTM). These segments are then fed to three layers of LSTM and
a fully connected layer to perform the diagnosis. Our architecture
is similar to their research, but we can handle a larger number of
inputs (5,000 data points). Moreover, our LSTM layers are fewer
and faster.

In contrast, our model used a 12-lead ECG, which can handle
more comprehensive features. It is verified on the real-world
ECG data set of myocardial infarctions, which is closer to reality.
Our model uses LSTM+CNN, inputs original ECG data, and
automatically extracts ECG features. It can use LSTM to extract
the time dimension and CNN to extract spatial dimension
information, with richer features, and the model has more
classification capabilities.

4.4. Accurate Location of Culprit Vessels
We were the first to introduce DL models into culprit vessel
recognition, which provided clues for localizing criminal vessels
for CAG and PCI. Our CNN-LSTM model achieved an AUC of
0.95 in determining the location of LAD, which was slightly better
than those of different levels of doctors. Among the different
DL models, CNN-LSTM outperformed CNN and LSTM in
locating LAD. Inferior myocardial infarction is more challenging
to identify than anterior wall myocardial infarction by ECG.
Although a few ECG diagnosis flow charts were highly accurate,
they were challenging to remember, time-consuming, and not
user-friendly for doctors at various levels (23). According to the
CNN-LSTM architecture, the AUCs of the RCA and LCX were
0.81 and 0.63 in Tests 1 and 2, respectively. In other words, our
models accurately located the culprit vessels using ECG.

4.5. Limitation
This study had some limitations. Firstly, this is a retrospective
study. In order to verify the robust of the model, we applied
an external dataset. Prospective ECG data will be used for
AI research in the future. Secondly, 18-lead ECG should be
performed routinely in patients with chest pain, but our AImodel
only uses 12-lead ECG data. Thirdly, patients with multi-vessel
CAD were excluded because it was challenging to determine
culprit more than two vessels based on ECG. One half of
patients with STEMI have multivessel CAD. Compared with
single-vessel CAD, the presence of multivessel CAD of STEMI is
associated with poor prognosis, such as lower reperfusion success
and higher adverse risk. Recently, a meta-analysis revealed
multivessel PCI was associated with a low risk of reinfarction
compared culprit vessel–only PCI in patients with STEMI (24).
According to ECG, detecting STEMI and the location of vessel
lesion (proximal or distal) and vessel size in patient with
multivessel CAD required further analyses. Once patients with
multivessel CAD are found through CAG, culprit, and non-
culprit vessels will be intervened to minimize mortality and
adverse events. For inferior and posterior myocardial infarction,
the discrimination between LCX and RCAwas inferior to doctors
due to relatively small sample size of LCX (55 cases). Moreover,

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 March 2022 | Volume 9 | Article 797207

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Wu et al. Deep Learning Model Diagnosis STEMI

this AI-based ECG diagnosis algorithm should be validated
in various ethnicities. Furthermore, the interpretation of DL
algorithms required further investigation.

To our knowledge, this is the first DL approach to detect
STEMI and culprit vessels based on real-world ECG data.
The models are more sensitive and specific than doctors and
auto ECG readers. Moreover, our DL algorithms are based on
global cloud datasets and can provide a more accurate remote
auxiliary diagnosis function, which will have great potential
to be applied to clinical practice. In summary, this study
demonstrates how to improve STEMI diagnosis by leveraging
modern computing technology.
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