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Human learning and intelligence work differently from the supervised pattern recognition approach adopted in most deep
learning architectures. Humans seem to learn rich representations by exploration and imitation, build causal models of the world,
and use both to flexibly solve new tasks. We suggest a simple but effective unsupervised model which develops such characteristics.
The agent learns to represent the dynamical physical properties of its environment by intrinsically motivated exploration and
performs inference on this representation to reach goals. For this, a set of self-organizing maps which represent state-action pairs
is combined with a causal model for sequence prediction. The proposed system is evaluated in the cartpole environment. After an
initial phase of playful exploration, the agent can execute kinematic simulations of the environment’s future and use those for
action planning. We demonstrate its performance on a set of several related, but different one-shot imitation tasks, which the

agent flexibly solves in an active inference style.

1. Introduction

During the last decade, rapid progress in the field of deep
learning has led to a number of remarkable achievements in
many fields of artificial intelligence (AI) [1]. However,
human learning and intelligence seem to work radically
differently from the supervised pattern recognition approach
adopted in most deep learning architectures. Among many
other things, humans, for example, playing infants, are able
to learn from exploration and imitation, learn from much
fewer examples, and create richer representations [2]. They
can flexibly reason over these representations and creatively
elicit novel state configurations never seen before.

Here we suggest a simple neural network architecture
which learns to represent the dynamic physical character-
istics of its environment in an unsupervised, exploratory
way. By inference on the basis of this representation, the
system can plan actions to reach externally given or in-
trinsically generated goals. In the following, we summarize
related work and outline the proposed model.

Impressive performance of deep learning approaches has
been demonstrated in some classical supervised tasks such as
object [3] or speech recognition [4, 5], but also in unsu-
pervised domains including representation learning and
learning generative models [6-8]. Recently, “deep rein-
forcement learning” [9] has been demonstrated to achieve
human- or superhuman-level performance on playing Atari
video games from raw pixel frames.

Despite of all these achievements, studying deep learning
might be less useful when it comes to understanding hu-
manlike intelligence with the goal to create artificial general
intelligence [2]. Major issues raised include the following:

(i) Deep learning approaches are in essence model-free
and require massive amounts of labelled exam-
ples—orders of magnitude more than humans—in
order to learn a complex task [2, 10].

(ii) In most deep learning approaches, the original
problem is being reformulated in a clever way as a
related, supervised task which can be tackled by
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deep multilayer perceptrons. Hence, the intelligent,
creative part is done by the human designer, not by
the algorithm.

(iii) Deep learning approaches work on associations and
cannot grasp cause and effect [11].

The first issue has been addressed in many ways with
approaches summarized as “few-shot learning” (for a recent
review, see [12]). Generally, a model is trained on a large
body of related tasks to learn an inductive bias or prior,
which is then exploited to solve the task at hand based on
only one or few examples. Impressive recent achievements
include one-shot imitation learning in robots [13] and meta-
reinforcement learning [14], the latter showing close rela-
tionships to biological reinforcement learning [15].

Yet, the systems trained are extremely complex in terms
of the amount of parameters, and consequently the amount
of data required, when summing over the different tasks, is
still very high.

Addressing the second and third issues seems to require
a qualitative change in the paradigm of an artificial intel-
ligent system, compared to deep learning.

Recently, Lake et al. [2] formulated cornerstones be-
lieved to be crucial ingredients of humanlike learning and
cognition, which is suggested to be more model-building-
like than pattern-recognition-like: (i) “building causal
models” of the world, (ii) “ground models on intuitive
theories of physics and psychology”, and (iii) “harness
compositionality and learning-to-learn.” The authors state
that in the approach of learning as model-building:

“Cognition is about using these models to understand
the world, to explain what we see, to imagine what could
have happened and did not, or what could be true and is not,
and then planning actions to make it so.” ([2], p. 2).

Lake et al. [16] have developed “probabilistic program
induction” as a model for few-shot visual concept learning,
which focusses on compositionality and learning-to-learn.

In our approach, which we outline in the next but one
section, we address the first issue by deliberately designing a
very simple (i.e., strongly constrained yet biologically
plausible) model. Despite being simple, the model allows
addressing the second and third issues by being able to
actively explore the causal structure of its environment, to
learn intuitive physics, and to plan actions in order to
achieve goals.

In this work, we suggest a very simple neural archi-
tecture, which learns in completely unsupervised fashion
and incorporates several of the mentioned principles: it
learns a model of the dynamics of its environment by playful
exploration (“intuitive physics”), can play virtual, predicted
episodes (“what could be true and is not”), and can plan
action sequences to bring the environment closer to a target
state that has been given extrinsically by a one-shot dem-
onstration (“planning actions to make it so”). Conceptually,
the same mechanism could be utilised, if the agent could
generate intrinsic goals.

The proposed system consists of sparse unsupervised
networks, which in this work are implemented as Kohonen-
type self-organizing maps (SOM) [17]: a perceptual or state
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network, which learns a representation of the environment’s
states, an action module which represents possible motor
commands, and a sensorimotor integrating state-action
network which learns and represents associations between
both (Figure 1(a)). During “playful exploration,” the agent
executes (e.g., randomly sampled) actions and observes
resulting state changes. Observing means that each active
state-action unit learns to predict the environment’s next
state given the currently active state-action pair it represents.
For this, a transition model is learned by updating state
transition matrices on top of the SOMs. This mechanism
discovers the effects caused by the agent’s own actions. For
convenience, we refer to this architecture as “state-action-
prediction self-organizing maps” (SapSom). When pro-
posing this architecture, the authors are well aware that mere
temporal order does not necessarily reflect a true cause-effect
relationship: the rooster crows before sunrise, but it does not
cause sunrise. Nevertheless, the rooster’s crow can be used to
predict sunrise with a decent hit-rate.

In the proposed setup, playing virtual episodes or “ki-
nematic mental simulation,” for which evidence has been
found in human reasoning [18], corresponds to repeated
prediction of state transitions starting from a virtual start
state under a virtual action sequence. Here, the term “vir-
tual” denotes intrinsically generated states, which are rep-
resented by active units without sensory stimulation and
without action to be executed. This process of playing virtual
episodes serves to transform a virtual action sequence into a
predicted sequence of states.

A goal is defined as a target state or group of states in
latent state space. Action planning corresponds to searching
in action sequence space in the style of active inference, such
that predicted resulting states approximate as good as
possible a desired region in latent space (i.e., reach that goal).

The active inference paradigm adopted here [19-21]
represents the action generation mechanism proposed in the
predictive processing (PP) paradigm of brain modelling
[22-24]. PP models view the cerebral cortex as a hierar-
chically organized prediction engine which constantly tries
to explain (i.e., predict) incoming sensory data as effect of
hidden causes. Successful prediction is suggested to cause
the subjective percept. Hence, sensor signals act as super-
visory signals, and the brain’s internal states (hypothesized
causes) play the role of generative signals or inputs, which
are adjusted such as to minimize prediction error. Active
inference refers to the process of acting on the environment
such as to make the own prediction come true.

The paper is organized as follows. An introductory
section on related work is followed by the Model section,
where we specify the model architecture including the
representation and prediction learning procedures and the
mechanism of inference and action planning. In the Method
and Results section thereafter, we provide a proof of concept
using the Open AT’s gym cartpole environment. The section
is subdivided into three parts: First, SapSom is trained by
playfully exploring the cartpole environment using random
action sequences. It is shown that the agent correctly learns
to represent the phase space structure of the cartpole system,
referred to as “intuitive physics.” In the second part, the
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FiGure 1: (a) Proposed network architecture. A sensorimotor self-organizing map learns to represent state-action combinations, each
represented by a state and action SOM, respectively. An activated state-action unit learns to predict the most likely next state, 5,,, (brown),
conditioned on the current state and action, s;, , it represents. (b) Reduced architecture actually implemented for the demonstrations in the
result section (for details, see text). 1D state and action representations are drawn for simplicity.

ability to perform kinematic simulation is examined by
comparing real and simulated dynamics of the environment
under three prespecified deterministic action sequences as
well as under many random action sequences. A quantitative
error measure is provided which demonstrates that pre-
dicted state sequences closely resemble the actual temporal
state sequences provided by the environment. In the third
part of the Method and Results section, we analyze the ability
of the agent to reach various goals, which are extrinsically
given as successful example state sequences. Three classes of
goals are considered—the balancing task, the controlled-tilt
task, and the tilted-balancing task—and individual runs for
visual inspection as well as a quantitative performance as-
sessment are given. It is shown that the agent flexibly and
most of the time successfully solves many instances of these
tasks after observing only one demonstration. We conclude
the paper by discussing how our model might be extended to
yield more powerful architectures and relating our model to
biological findings. A preprint of this work has been made
available under [25].

2. Related Work

In contrast to current trends in deep learning, human like
learning systems need to build causal models of their en-
vironments (causality), acquire an intuitive understanding
of the underlying physics (intuitive physics), and develop
learning-to-learn skills and combining constituents (com-
positionality) to generalize knowledge to new tasks and
events [2]. As such, learning intuitive physics has become a
major target of recent research activities in cognitive sciences
and artificial intelligence. Humans seem to have a basic
understanding of objects and their physical interactions
from infancy [26], which becomes refined during devel-
opment by self-curated experiments with their environ-
ments. This curiosity-driven learning of intuitive physics
[27] helps humans to mentally run physics simulations [28]
in order to plan and predict future actions and events.

Furthermore, a task-to-task transfer and generalization to
unseen events remains a big challenge to any artificial in-
telligence system.

The SapSom model presented below emphasizes sim-
plicity in the sense of strongly constrained and therefore
easy-to-train architecture. A set of SOMs is equipped with a
simple yet powerful additive, Hebb-trained prediction sys-
tem. In spirit, it shows close relationship to model-predictive
control. There are similar approaches which address intui-
tive physics learning on the basis of self-organizing maps.
For example, Toussaint [29] designed a sensorimotor SOM,
in which lateral connections of a sensory map are modified
by motor activations in a multiplicative, modulatory way.
Morasso et al. [30] address the targeting movement problem
in robotics by setting up one-joint SOM for sensory and
motor spaces. In contrast to these approaches, we use several
SOMs with action-conditioned transition models, which in
consequence can become much simpler to train than in the
mentioned approaches. Apart from this class of approaches
with limited complexity, a large number of intuitive physics
learning and planning systems have been proposed, which
show relationships to deep learning.

A common approach to learn intuitive physics is via
handcrafted simulation engines [28] or via physics engines
made adaptable through deep neural networks [31, 32].
More generally, dynamics of object interactions have been
learned either jointly with perception [33] or through de-
composition of visual scenes into structured representations
of objects and their dynamic states [34, 35]. Alternatively,
perception modules have been further developed to be able
to either imagine future states of objects [36] or to predict
them through a GAN-based approach or an encoder-de-
coder network [37]. With a similar goal, a graph-based
perception-prediction-network (PPN) has been proposed in
[38] to learn without human intervention latent object
properties from their interactions. During a gradient-based
training with samples of object dynamics, the perception
module generates representations of object properties, while



a prediction module uses the latter to simulate system dy-
namics. The PPN seamlessly generalizes to unseen scenarios,
and its learned representations can be translated into hu-
man-interpretable properties. As discussed in [39], struc-
tured representations through graph networks provide a
strong relational inductive bias to support reasoning and
combinatorial generalization. The perception-prediction
concept has also been harnessed by Wu et al. [40] to learn
intuitive physics. There, a perception module first learns a
representation of the physical environment, which is then
used by physics and graphics engines to learn interpreting
and reconstructing the visual stimulus sequences. Later, the
generative models are used for reasoning and prediction.
Inverting a physics engine is achieved by a convolutional
inversion network.

As sensor signals are often fraught with uncertainty,
models of the outside world need to integrate sensory
inputs with internal prior beliefs, in accordance with
Bayesian inference. Hence, probabilistic approaches are
able to deal with uncertainty and, combined with system
identification techniques like particle filters, achieve ro-
bust long-term predictions of object dynamics while si-
multaneously learning the underlying intuitive physics
[41, 42].

Several recent approaches refer to learning physics from
observations alone. Applying exploratory learning of causal
relationships was the intention of Kansky et al. [43] when
designing an object-oriented generative physics simulator. It
is based on a complex structured network architecture and
can learn the dynamics of an environment only from ob-
servations. By reasoning backward through causes, this
Schema Network can transfer intuitively learned physics to
unseen situations. An unsupervised learning of intuitive
physics purely from visual observations was reported in [44].
Unsupervised predictors of physical states were constructed
by tracking salient objects in dynamic stimulus sequences
based on causality and equivariance and using the learned
physical states to train visual predictors, which successfully
could incorporate the underlying environment. With a
similar goal, Ehrhardt et al. [45] implemented an unsu-
pervised meta-learning formulation to predict the dynamics
of moving objects in a complex environment and to gen-
eralize to a varying number of moving objects. The network
architecture comprises sequential autoencoders as well as a
U-net encoder-decoder to extract the relevant information.
Finally, an image sequence is predicted employing a stack
fully convolutional network, while the parameters of the
system are adapted by optimizing a proper loss function.
Meta-learning was also used to train neural networks
augmented with an autoencoder-based meta-recognition
model producing model code, which a subsequent meta-
generative model uses to construct parameters for task-
specific models. This meta-learning autoencoder (MeLA)
framework is able to build models for previously unseen
tasks, which closely match the true underlying models [46].
A simulator-augmented interaction networks (SAIN) model
was proposed in [47], which combines object-based net-
works, which learn residuals, with an object-based learnable
physics engine to search for actions in control problems.
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Rather than relying on physics engines, Nguyen et al.
[48] design a surprise and explain (SnE) framework, which
rests upon the basic premise that object dynamics is mostly
linear, and any nonlinear dynamics presents a surprise for
which an explanation cannot be inferred easily. The anomaly
detection framework comprises three modules: perception,
dynamics, and explanation. An interpretable intuitive
physics model has also been designed by Ye et al. [49]. The
bottleneck layers of the deep network architecture contain
specific dimensions, which correspond to different physical
properties. The model is trained with sequences of colliding
objects and generalizes well to scenarios with different
underlying physical properties.

3. Model

In this work, we actually implement a reduced version of
the model outlined in Figure 1(a). The resulting simplified
architecture is shown in Figure 1(b). Simplifications are as
follows: (i) no action map is explicitly learned, which would
maintain codebook vectors of motor commands. This re-
stricts the implementation to discrete finite action spaces,
which is, however, sufficient for the cases studied here. (ii)
Instead of a full sensorimotor map, a set of K action-
conditioned state-only maps is trained, where K is the
number of actions. All maps share the same perceptual
(state) representation, but on top of each map an indi-
vidual, action-conditioned state transition matrix is
learned. This prohibits dimensional control of the senso-
rimotor space but makes sure that all state-action pairs are
readily represented.

3.1. Representation Learning. We wish to learn a sparse
representation of the input space, because it is believed that
this will facilitate the learning of unimodal sharply peaked
state transition distributions. As discussed above, many
powerful techniques for representation learning and even
several possibilities for obtaining sparse representations are
around (e.g., [50]). Here we use self-organizing maps
(SOMs) [17], because in addition to sparsity they maintain
topographic order in map space, which may be useful in
terms of predictive processing.

SOMs have been successfully used both in bioinspired
hierarchical representation learning [51] and reinforcement
learning [52]. To briefly summarize, in a SOM, neurons are
geometrically arranged in a regular grid (here 2D rectan-
gular). Each unit at map location s € R* maintains a
codebook vector w(s) with the same dimension as the input
space. On presentation of an input vector or “environmental
state” u, the winning unit s* is found, defined by its
codebook vector being closest to the input

s* (u) = argminglu — w(s)|, (1)

where | - || denotes Euclidean norm, and the notation on the
left-hand side of (1) explicates the dependence of the winner
on u. The winning unit and its neighbours in map space
learn according to
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where h can be interpreted as a localized neural activation
pattern centered around the winning unit and o is defined in
(3). The strong localization of activation entails that only a
small fraction of units is active at every time step, resulting in
a sparse code. The learning rule (2) brings codebook vectors
of map neighbours both closer to regions of high data
density and to each other.

3.1.1. SOMs and Predictive Processing. There is an inter-
pretation of SOMs in terms of predictive processing: when
considering the codebook vector of an active unit s as
prediction of the input, Jlu—w(s)| is just the prediction
error in input space (the term “prediction” being used in the
sense of “predicting the presence”), often referred to as
quantization error. Finding s* (u) according to (1) thus
minimizes the input prediction error by inference, and the
learning step (2) further minimizes it by learning.

Similar to [51], we define a data-driven variable width o
of the activation pattern; namely,

min [lu - w(s)]|
S

(3)

=0y —
Omeansllu —w(s)|’

where o, has been empirically set to 25 percent of the map
diameter throughout this work. By this, for inputs that are well-
represented with small prediction error, only a small neigh-
bourhood learns, whereas a large prediction error (maybe due
to nonstationary statistics of the input) causes a large portion of
the map to rearrange to better represent this novel input.

The normalized activation pattern in map space can then
be interpreted as recognition density, where

B (w) (s)
Zs’ hs* (u) (S,)

According to (3), the recognition density is sharply
peaked for small prediction errors and more distributed for
larger representational uncertainty. In SOMs, the generative
distribution, which denotes the likelihood of inputs given a
map state, simply becomes p (uls) = § (u — w(s)),  denoting
Kronecker’s delta. For a comprehensive treatment of gen-
erative and recognition models, see, for example, [19-21].

Finally, due to topographic order, prediction error in
map space can be defined in geometrical terms, simply as
geometric distance between most likely true and predicted
states, respectively.

p(slu) = (4)

3.2. Prediction Learning. During learning, the system will
exploit the possibility to act on the environment and to
directly observe the consequences of these own actions on
environmental state changes. Hence, learning is situated at
the intervention level of Pearl’s Causal Hierarchy and can be
formulated in the framework of Do-calculus [53]. Due to its

similarity to how infants explore their environment by
testing the effects of their actions, we metaphorically refer to
this style of learning as “playful exploration.”

During playful exploration, the model learns to approx-
imate the action-conditioned Markov transition distribution
p(s'ls,do(a)), where s', s run over all state units and a runs
over all actions. The distribution denotes the probability of
finding map state s’ activated one time step after in state s
action a has been executed. For this, each action-conditioned
state network, labelled by a, updates an individual state
transition matrix T, with components T, (s',s) (for matrix
operations, indices s',s being appropriately reordered as
scalars), whenever a is executed. Let p, be the column vector
of probabilities p (s|u,), (4), assigned to map states at time ¢ in
response to input u,. On execution of action a,, the envi-
ronment changes to state u,,; leading to a new distribution
P;.1- The state distribution predicted by network a,, in con-
trast, is given by p,,; =T, - p,. We adopt a simple least
squares scheme and minimize [|p,,, - T, - p:|* with respect
to T, . Gradient descent leads to the learning rule

AT, = y(Prss — Pert)P; » (5)
where y is a learning step size variable and the superscript ()"
denotes the transpose of a vector or matrix. We prefer least
squares over minimization of the Kullback-Leibler diver-
gence between both distributions, which is often pursued,
because the latter is usually tractable only under severe
simplifications, which often lead to treatment of modes only.

3.3. Inference. After exploring the environment to a suffi-
cient extent, inference can be done on the so-far learned
representation using the state transition matrices. For ex-
ample, given a certain start map state s;, the system can
generate virtual action sequences by activating action nodes
due to some schedule, without actually executing the cor-
responding motor commands, and predict the sequence of
states that would result from executing that sequence.
Correlates of this in human cognition might be kinematic
mental simulation with the goal of planning actions.
Moreover, the start state might be virtually generated as well,
instead of perceptually caused, giving the possibility to
elaborate on virtual scenarios never seen before, which
might be considered a kind of artificial creativity. We do not
formulate an explicit neuronal model of how state and action
representations might be spontaneously generated, but there
are mechanisms and models of how this might occur
spontaneously or in response to stimulation [54]. In the
present context, sequence prediction is referred to as
“playing virtual episodes,” as this procedure accepts a start
state and an action sequence and returns a sequence of
predicted environmental states.

3.3.1. Sequence Prediction. One-step prediction given en-
vironmental state u, and action a, was done as “prediction
by mode”: given the currently winning unit, s* (u,), the most
likely next map state is calculated as §,,, = argmaxy
(T, (s',s* (u,)), resulting in G,,; = w(S,,;). In order to avoid



deadlocks, prediction of the currently winning state is
suppressed. A sequence of environmental states given a start
state u, and an action sequence is predicted by consecutively
applying one-step predictions on the basis of estimated
environmental states; that is, first state U, is predicted from
the start state u, and a,, and each next environmental state
u,,, on the basis of 4, and a,.

3.3.2. Goals and Action Planning. Sequence predictions can
be used to plan action sequences in order to reach a goal.
This requires the definition of what a goal is in the present
context. We suggest defining a goal as a target state or a
subset of target states in map space. Target states might be
provided by stimulation (e.g., by demonstrating a target
environmental state to the system) or might be intrinsically
generated as described in the previous paragraph. These
target states are then imprinted or memorized, while the
system tries to reach and maintain them by executing a
suitable sequence of actions. A biological correlate of target
state memorization might be persistent nondistractible
neural activity found in prefrontal cortex [55]. The described
procedure is closely related to the following concepts: (i)
one-shot imitation: imprinting the target state corresponds
to the single demonstration of the goal, reaching the goal is
then done by inference over the learned intuitive physical
model. (ii) Active inference: a system predicts a target state
and minimizes prediction error by driving the environment
towards the predicted (i.e., desired) state.

A large body of reinforcement learning literature exists
on how to find a policy p(a) = n(s), which specifies how
actions should be planned in order to maximize reward.
Here we suggest an action planning strategy which does not
rely on external reward signals but operates entirely on the
distances between target states and the current state. Ac-
tually, the drive to try and reach an imprinted goal repre-
sentation by active inference must in some respect be
generated by an intrinsic reward mechanism, which is,
however, not explicitly modelled here. Possible distance
measures include (here Euclidean) distance either between
environmental states, [[u®'8*" — u,||, which is the input pre-
diction error in active inference terminology, or—because of
topographic order—between map states, [s™8' —s,||, or
both. We found action plans on the basis of environmental
state distances to work better than map distance for the tasks
considered here; hence, the results in the Method and Re-
sults section are generated using this distance measure.

Many distance-based action planning schemes can be
imagined; here, we use simple 7 step greedy forward search
for action planning: on the basis of the true present state u,,
find the action sequence of length 7, the execution of which
minimizes the distance between the predicted state resulting
from that action sequence and the target state.

4. Method and Results

The system was implemented in Python, version 3.7.6 64 bit,
using PyTorch’s tensor library version 1.4.0, https://pytorch.
org/. All experiments have been carried out on a desktop PC
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equipped with an Intel® Xeon® E-2186G CPU (6 cores,
3.80 GHz) and an NVIDIA Quadro P1000 graphics board.
SapSom was tested on the Open AI gym cartpole envi-
ronment (for a screenshot of the rendered cartpole, see
Figure 1(b), inset), https://gym.openai.com/envs/CartPole-
v0/. Hence, no external data sets were used, the only data
were the variables returned by the gym environment in
response to the agent’s actions. The SapSom source code has
been open-sourced under https://github.com/martinstetter/
sapsom.

For the experiments shown, a 16 x 16 SOM was trained
and analyzed as specified below. The environment accepts
two actions: push the cart to the left (a,) or to the right (a,)
with a fixed force and emits four sensory signals, namely, the
cart location x, the pole’s angle with the vertical 0 and their
temporal changes (ie., u= (x,x,0,0)). The system was
originally designed as a testbed for reinforcement learning
systems with the goal to keep the pole vertical by balancing;
therefore, the environment also returns a reward for each
step and triggers a “done” signal; as soon as the pole hits +15
degrees, the cart hits the screen border, or 200 steps of
balancing are successfully executed. Throughout this work,
the reward signal was ignored, because SapSom operates in a
completely unsupervised way. A sequence of steps between
cartpole initialization and trigger of the done signal is re-
ferred to as an episode.

The system was trained as follows: in order to assure
correct unfolding of the map, the SOM representing the
input space was pretrained over 1000 episodes under ran-
dom action sequences using a standard learning scheme for
self-organizing maps with exponential decays for ¢ and 5
between start and end values (8,0.1) and (0.3,0.01), re-
spectively. Subsequently, both representation and prediction
parts were trained simultaneously over 3000 episodes with
0y =4, =7 =0.05 as follows: for a given state first the
SOMs were updated under adaptive neighbourhood, then an
action was selected and executed, the resulting next state was
observed, and the corresponding transition matrix was
updated as specified in the model section. Randomly selected
actions were used during “playful exploration.”

4.1. Intuitive Physics. Here we tested whether SapSom could
learn a representation of the environment’s Newtonian
dynamics, metaphorically referred to as “intuitive physics”
[2]. In technical terms, we tested whether, after training, the
system could approximate the real phase portrait of the
environment by its own predicted phase portrait. Results are
shown for the 6 — 6 phase plane because the pole’s behaviour
rather than the cart’s behaviour is usually considered in the
cartpole environment.

After training, the real and predicted dynamics of the
environment were analyzed by playing real episodes and
determining the real and predicted directions of motion
from one step to the next. For a given phase point u, and
next action a,, the real direction of motion was determined
by executing a, on the environment and calculating
u,,; — u,. The predicted direction of motion was calculated
by applying u, and determining p,, then predicting the next
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state§,,, and corresponding predicted input @,, ;, and finally
computing @,,; — u,.

The real (blue) and predicted (red) directions of motion
in the angle phase plane are shown in Figure 2(a) for five
complete random episodes. Note that this phase portrait is
not uniquely defined, because at each point directions are
conditioned on g, x, and x. Real and predicted directions of
motion agree very well with each other. However, there are
small deviations, although in principle the cartpole physics is
deterministic and should in principle be learnable to arbi-
trary accuracy. The existence of small deviations is due to the
state representation’s quantization error: similar, but dif-
ferent environmental state trajectories will be mapped to the
same map unit, but will have slightly different time evolu-
tions. These differences cannot be resolved by the system.
Where quantization errors become large (e.g., for novel
states), prediction errors can become large as well.

Figure 2(b) displays SapSom’s predicted directions of
motion when planning to execute a left push (blue) or a right
push (red), respectively, for the same five episodes. The
configuration reflects correct “comprehension” of the situ-
ation: a left push generally accelerates the pole to the right;
that is, angular velocity increases, which is correctly mir-
rored by the blue arrows pointing upwards towards in-
creasing 0. Under opposite sign, the same is true for right
push.

We conclude that SapSom can learn a reasonably ac-
curate representation of the cartpole dynamics only from
interventional exploration. Because this is achieved in a
completely unsupervised way and without making explicit
use of the equations of motion, this can be understood as a
way of capturing an intuition about the physics of the
environment.

In the next two sections, we present results about in-
ference on this model. In order to separate slow learning and
inference effects, learning was switched oft in the following
by setting =y = 0.

4.2. Playing Virtual Episodes. Next, we examined whether
the trained system could virtually play episodes on the basis
of its intuitive physics; that is, whether given an action
sequence and a start state, the corresponding future state
sequence could be predicted reasonably well.

Results for a number of different scenarios are sum-
marized in Figure 3. Figure 3(a) illustrates by a number of
screenshots how the cartpole evolves under its true dynamics
(top row) and under predicted dynamics for the same start
state and action sequence (bottom row). Actions were eight
left pushes. The bottom row images were generated by
manually setting the cartpole’s state to @,, rendering the
environment, and then capturing the screen. From visual
inspection, one may conclude that both sequences agree very
well.

A slightly more quantitative analysis of prediction
quality is given by plotting the time evolution of x (in ar-
bitrary units as provided by the gym environment) and 6
under true (dashed) and predicted (solid) dynamics.
Figures 3(b) and 3(c) show how x and 0 evolve over time,

where blue traces correspond to eight left pushes and red
traces to eight right pushes. Figure 3(d) displays the time
evolution of 6 under five different random action sequences
and initial conditions of the cartpole. Corresponding real
and simulated dynamics are plotted in the same colour.
Although the coincidence is not perfect, the general features
of the resulting motions (shifting and tilting to the correct
direction) are captured quite well. In order to quantify the
prediction quality, simulated and true dynamics were
generated repeatedly under 100 different random action
sequences and cartpole initializations, and the RMSE be-
tween real and predicted angle was computed per time step
of prediction horizon. The results are summarized in Table 1.
The values moderately increase from 0.028 rad to 0.0423 rad
as the number of time steps into the future increases, cor-
responding to a relative error of 15 to 20 percent when
comparing to the absolute range of 6 values.

Finally, in order to visualize the prediction performance
on a longer and more complicated sequence, the comparison
was run under an action sequence of length 39, which elicits
an oscillation (Figure 3(e)). The gym environment initializes
the cartpole’s start state with small random numbers,
resulting in a small positive initial value for 6 in this case. As
a consequence, in the true dynamics (dashed line), a slowly
accelerating tilt to the right, in the direction of increasing 0,
under gravity is superimposed with the faster oscillation
evoked by the action sequence.

The general behaviour (increasing 6 under oscillation) is
correctly predicted by the agent (solid line), even though the
difference between the absolute values of real and predicted
angles increases over time as indicated also in Table 1. This
increasing prediction error can be understood by keeping in
mind that, besides the action sequence, only the start state is
available to the system (i.e., no intermediate sync).

It may be concluded that, for the environment con-
sidered, SapSom can perform qualitatively and semiquan-
titatively correct multistep predictions of the environment’s
future under a given virtual action sequence (usually gen-
erated by the agent itself). This encourages us to test the
system’s action planning performance when performing a
task. Since in the present system controlling the environ-
ment in order to achieve a goal is an inferential rather than
slow learning process, we test SapSom on a set of one-shot
imitation tasks.

4.3. One-Shot Imitation. A task requires a goal to be for-
mulated, either implicitly (by reward structure) or explicitly,
by demonstrating one or a few success stories, i.e., examples
where the goal has been reached. Here we adopt the latter
approach, which has the advantage that no sometimes
complex reward structure needs to be formulated. For
SapSom, we define a goal as a target state or set of target
states in its state representation, which it has to reach and
maintain. This target state can be spontaneously generated
by the system (intrinsic or curiosity-driven goal) or can be
imprinted from outside (extrinsic goal).

One-shot imitation refers to the ability of a system “to
learn from very few demonstrations of any given task, and
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FI1GURE 2: Directions of motion in the 6 — éphase plane (arrows) for five complete random episodes. Arrows are located at the states (6, 9) to
which they apply. (a) Blue: real directions of motion in the next step as provided by the environment. Red: directions of motion predicted by
the network when provided with the same state and action. Predictions approximate real movements very well. (b) Prediction of motions in
phase space under virtual left push (blue) and virtual right push (red), respectively (for discussion see text).

instantly generalize to new situations of the same task,
without requiring task-specific engineering” [13]. Here we
formulate an extrinsic goal by presenting to the system a
single sequence of target states, which are imprinted into its
map. Imprinting means that the corresponding winning
units are memorized as part of the goal. For example, if the
goal is to balance the pole, a sequence of states
u, = (x,,%,,0,0),t =0, 1,...,T with upright stationary pole
under various cart positions and velocities is presented to
SapSom. Technically, instead of the true sequence of states,
we only present the vector of expected values, u9 = E, [u,],
and the vector of inverse variances or precisions, 19, to the
system (the superscript “g” stands for “goal”). For the pole
balancing example, the set of goal values for x and x will
both show a large variance with zero mean. In contrast, the
goal values of 0 and 0 are zero, resulting in zero mean and
zero variance for these two variables. As the precision is
defined as the inverse variance, in this example the preci-
sions of x and x will be very small, and the precisions of 0
and 0 will be very high. We approximate the low precision
values by zero and cap very high precision values to a
maximum of 1, resulting in a mean vector of u? = (0,0, 0, 0)
and a precision vector of 79 = (0,0,1,1) for this example.

Reaching the target state then means to search for a
sequence of actions, which drive the environment’s actual
state towards the target state(s) and keep it there. For
simplicity, we avoid explicitly determining the distance
between the actual state and all target states, but instead use
the precision-weighted distance between u and wu9:
d(w,u9) = ¥,77 (u; — uf)®. For action planning, one-step
greedy forward search is applied (ie., 7 =1).

In this section, we consider three different types of tasks,
namely, (i) the (pole) balancing task, (ii) the controlled-tilt
task, and (iii) the tilted-balancing task, which are explained

in the following. The balancing task consists of keeping the
pole upright as stationary and as long as possible. As pointed
out above, presenting the goal of a balanced pole results in
imprinting uf = (0,0,0,0), 77 = (0,0, 1, 1). The controlled-
tilt task consists of deliberately letting the pole tilt to a
specified side, until the maximum tilt of 67 = + 0.2 rad
tolerated by the gym environment is reached. The challenge
to the agent is to control the tilt process such that a specific
angular velocity 6° is achieved at the instant where the
border is hit. This task is assigned to the agent by imprinting
u’ = (0,0, 69,9g), 79 = (0,0,1,1). In the tilted-balancing
task, the goal is to keep the pole stationary, but in a tilted
position 69 # 0. This task, which is also not easy to achieve by
humans, involves letting the pole tilt a little bit at the be-
ginning, followed by a controlled acceleration of the cart to
the corresponding side in order to keep the tilt stationary
afterwards. This task is assigned to the agent by imprinting
uw? = (0,0,67,0), 79 = (0,0,1,1).

Figure 4 shows the time evolution of cartpole location x
(Figures 4(a) and 4(c)) and angle 0 (Figures 4(b) and 4(d))
for four specific goals given to the agent. The blue traces in
Figures 4(a) and 4(b) show 5 attempts of the agent to solve
the balancing task. The red traces were produced under a
controlled-tilt task with moderate goal angular velocity,
ud = (0,0,0.2,0.5). The green traces arose under another
controlled-tilt task with high negative goal angular velocity
w? = (0,0,-0.2,-5).

The final angular velocities were
(0.57,0.35,0.40,0.32,0.33) for the moderate tilt case and
(-2.57,-2.53,-2.46,-2.41, —2.58) for the rapid tilt case. The
latter angular velocities are about the maximum which can
be achieved when pushing to one side all the time, which was
correctly predicted by the agent: all but one action over the
five rapid tilt trials were “push right.”
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FIGURE 3: (a) Screenshots of cartpole with identical start state followed by eight left pushes. Top: real time evolution. Bottom: 8-step
prediction of time evolution. (b—e) Real (dashed) and predicted (solid) time evolutions of 6 and x starting from identical initial states. (b)
Time evolution of x and (c) time evolution of 6 for the same simulation run. Blue: 8 left pushes; red: 8 right pushes. (d) Time evolution of
for 5 different random action sequences and cartpole initializations. Traces with same colors correspond to the same simulation run. (e)
Time evolution of 6 for a longer sequence of length 39: oscillatory actions (3 left followed by alternating (6 x right) (6 x left) pushes). Major

features of motion are correctly captured in all cases.

TaBLE 1: RMSE of predicted angle over time steps into the future.

t 1 2 3 4 5 6 7
RMSE 0.0280 0.0293 0.0315 0.0337 0.0396 0.0414 0.0423

Figures 4(c) and 4(d) illustrate how the system acts in a
tilted-balancing task with goal angle 87 = 0.15 rad. To solve
this task, the agent had to constantly accelerate the cart into
the direction of the tilt in a controlled way such that the cart
leaves the regime previously explored and learned. The
traces indicate that the agent manages to keep the pole
steadily tilted over a considerable number of time steps,
although it does not quite reach the goal of 6/ = 0.15 rad but
instead stabilizes values around 0 = 0.08 rad. Also, when
approaching the screen boundaries, the agent fails to sta-
bilize any longer, because this configuration is far from what
it experienced during playful exploration with random ac-
tions only.

From visual inspection of these examples, we find that
the system is quite flexible in solving different related tasks
and generalizes satisfactorily to previously unseen regimes.
In the following, we quantitatively analyze the performance

and variability thereof for a larger number of specific goals
for these tasks.

4.3.1. Performance Analysis for the Balancing Task.
OpenAl defines “solving” the cartpole problem as being able
to balance the pole over an average of 195 time steps per
episode, taken over the last 100 episodes, where each episode
ends in case of failure or after 200 time steps otherwise. In
order to characterize the performance of the agent, we
analyzed 100 episodes under the balancing task (Figure 4(b),
blue). We found that 61 episodes reached the limit of 200
steps of balancing; the average number of time steps was 188
steps. Hence, SapSom does not quite reach the definition for
solving the task but comes quite close.

4.3.2. Performance Analysis for the Controlled-Tilt Task.
While keeping the goal angle constant at 67 = 0.2 rad, we
systematically increased the goal angular velocity 8 from 0 to
5 in steps of 0.25. For each goal, 20 simulations with ran-
domly initialized cartpoles were run and the mean and
standard deviation of the actual angular velocities at the
border (i.e., immediately after the done signal of the cartpole
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¢’ = 5. (c, d) 10 exemplary traces for the tilted-balancing task with 67 = 0.15 rad.

environment) were computed. First of all, we observed that
in every trial the correct angle was approximated; that is, the
agent always managed to tilt the pole to the right. The blue
trace in Figure 5(a) plots the mean actual angular velocities
and their standard deviations (vertical lines). In the range
between 0.25 and 1.5, the goal angular velocity could be
approximated very closely, whereas the performance
dropped for higher goal values. To further analyze this
situation, we plotted also the mean excess of the number of
left push actions versus right push actions (ie,
(Mg = Mrigne)/ (Miege + Myighy)) (Figure 5(a), red line), and the
mean number of time steps until the done signal was thrown
(Figure 5(a), green line, right axis). It can be seen that already
at goal values of 1 and higher, the number of time steps until
the border is reached is very small, namely, about 10, and

therefore there is only a limited number of possible counts of
left versus right actions. In fact, the steps in the actual final
angular velocities correspond to steps in the action excess
roughly at 0.4 (7 left vs. 3 right pushes), 0.6 (8 left vs. 2 right
pushes), and 0.8 (9 left vs. 1 right push). Finally, the goal of
zero angular velocity is slightly exceeded; however, from the
large number of steps survived, it can be seen that the agent
attempts to slowly approximate the border, and the negative
action excess reflects its attempt to decelerate the tilt.

4.3.3. Performance Analysis for the Tilted-Balancing Task.
While setting the goal angular velocity to zero, we sys-
tematically varied the goal angle from —0.2 to 0.2 in steps of
0.025 and ran the task 20 times for each goal. For each run,
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we computed the average tilt of the pole over time steps
50-100. This gave the agent some time to build up the tilt
initially and excluded the later phase where many trials
failed (cf also Figures 4(c) and 4(d)). Where the run sur-
vived less than 100 steps, the average was taken between 50
and the end of the run. The blue trace in Figure 5(b) plots
the means and standard deviations of the average tilts over
20 runs as a function of the goal tilt (pole angle). While the
absolute actual tilts systematically fall below the absolute
goal tilts, there is a clear positive trend: the agent clearly
attempts tilted balancing and on average succeeds in doing
so. The larger standard deviations compared to Figure 5(a)
reflect the higher difficulty of the tilted-balancing task as
compared to controlled-tilt tasks. The green line (right axis)
again displays the mean number of steps survived. For all,
even the strong tilts, the agent manages to balance the pole
for more than 100 steps on average. The highest survival
time is achieved for zero tilt, which corresponds to the
simple balancing task.

The results demonstrate that SapSom can perform
each of these tasks very well (although not perfectly) after
only one presentation of the goal state. This is possible,
because task solution is done via inference over the in-
tuitive physics learned, rather than via slow modification
of weights. Hence, in comparison with reinforcement
learning, the presented system provides two major ad-
vantages: (i) it does not need any extrinsic reward
structure (which has often to be engineered in a tedious
process), and (ii) it can flexibly solve various tasks, which
would require both a new reward structure and retraining
in reinforcement learning. The latter flexibility has also
been specified as an important feature of humanlike
learning and performance [2].

5. Discussion

The goal of this work was to suggest a minimal model that
shows important properties of artificial intelligence: learning
from experience, comprehension of its surroundings, rea-
soning, planning, and flexible solution of different tasks. It
does so by learning a representation of the dynamical
physical properties of its environment by exploration and by
performing inference on this representation to reach goals.
The philosophy behind this approach is related to the KISS
principle and Occam’s razor at the model level: we identified
minimal ingredients which seem both plausible and im-
portant for achieving the mentioned properties (there may
be completely different ways, though, to generate the same
behaviour). The key ingredients of SapSom are as follows:

(i) An adaptive and sparse sensorimotor representa-
tion, in particular the possibility to act on an en-
vironment rather than just observing, in order to
learn by exploration.

(ii) A temporal sequence learning and prediction
mechanism at the sensorimotor level.

(iii) A short-term memory mechanism to store target
states in state representation space.

(iv) A mechanism to intrinsically generate action and
state representations and to reason on their tem-
poral evolution on the basis of temporal sequence
prediction.

(v) A distance measure between states. If reasoning is to
be done at the representation level, a distance
measure between sparse state representations, such
as a topographic map, is required.
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In the following, we first compare our model to a
standard Q-learning setup for pole balancing, then discuss
possible extensions of our model, and relate its mechanisms
to biological findings.

5.1. Comparison to State-of-the-Art Methods. The proposed
agent learns to achieve various different goals on the basis of
a state-action and state-transition models that are learned in
a completely unsupervised manner. Goals are imprinted by
simple activation of states’ latent space, for example, as a
result of a single presentation of a target environmental state.
Hence, it is very easy to switch forth and back between
different goals on a per-episode basis for SapSom. In con-
trast, almost all state-of-the-art methods are related either to
explicit physical modelling or to reinforcement learning
(RL) in some sense (see Related Work section). While
physical simulation engines require the human expert to
design this engine, RL-methods, which might be most
closely related to our approach, heavily rely on adequate
reward signals provided by the environment, which have to
be manually designed by the human expert as well. More-
over, the characteristics of the reward signal provided by the
environment usually encode or encourage one specific goal
only. An RL agent can only learn a new, different task, if (a)
the experimenter handcrafts a new reward structure pro-
vided to the agent, and (b) the agent undergoes retraining in
order to learn to exploit the new reward structure. For that
reason, the high flexibility and generalization ability of
SapSom alone renders our approach superior to physical
engines and RL agents for the context addressed.
However, it is possible to compare the performance of
SapSom to that of an RL agent for a stationary task with
defined reward structure. Therefore, we reimplemented
standard tabular Q-learning [56] for the cartpole environ-
ment following frequently used parameter settings. To ap-
proximate the number of 16 x 16 = 256 states of the SapSom
agent, the continuous 4D state space (x,x,6,0) was dis-
cretized to 3 x 3 x 6 x 6 = 324 bins for the Q-table, giving
more emphasis to the important variables 0 and 0. A
learning rate of a = 0.1 and an e-greedy policy with €=
1 - log,,(n/25) constrained to e¢€ [0.1,1] for episode
number n>1 was used. As SapSom, the agent was trained
over 4000 episodes. Of the last 1000 episodes, 87 percent
reached the limit of 200 steps of balancing; the average
number of time steps was 186. When comparing this to 61
percent completed episodes and 188 average steps of Sap-
Som (see Method and Results section), we find that SapSom
reaches a performance comparable to Q-learning, but
without manual binning of the input space, without taking
any benefit of the reward signal, and while still being flexible
enough to immediately perform a different task from the
very next episode on. It can be concluded that our model is
clearly more effective and efficient than Q-learning and
probably related RL methods on the cartpole task.

5.2. Possible Extensions. A simple set of one-layer network
architectures was used (in the full model, Figure 1(a), a
three-layer architecture) to learn an embedding of the input

Computational Intelligence and Neuroscience

space. Both the brain and state-of-the art representation
techniques, in contrast, maintain hierarchical representa-
tions of modalities. In our model, single-layer state repre-
sentation learning can easily be replaced by hierarchical self-
organizing map structures [51], or by contemporary high-
performance approaches such as (vector-quantized) varia-
tional autoencoders [7, 8], generative adversarial networks
[6], or deep convolutional architectures in general (e.g., [3]),
which might be trained on raw frame sequences. A sparse
representation at the embedding level, which is considered
crucial for temporal sequence learning, can be either directly
provided by such systems [8], or can be achieved by using a
SOM or other competitive learning mechanism [50] on top
of their output or encoding layer.

SapSom’s temporal sequence learning mechanism is
simply 1st-order Markov, rendering it somewhat similar to
Hidden Markov Models [57]. Clearly, reasoning on envi-
ronments of natural complexity requires variable- (and
sometimes very high-) order Markov representations.
Hawkins et al. [58] developed a biologically plausible model
for variable order sequence memory, which is embedded in
their hierarchical temporal memory framework. It is based
on lateral cortical connections operating on a sparse rep-
resentation, where each state is represented by multiple
model neurons. Their approach could be most naturally
incorporated in our framework, but also other approaches
for variable-order sequence prediction can be considered
without changing the fundamental way the model works
[10, 59]. A different obvious possibility to include sensi-
tivity to variable-length history is to use recurrent con-
nectivity. Recurrent SOMs [51, 60] can be trained to
represent short sequences of input patterns instead of
individual states.

Besides being one-step forward only, action sequence
planning is done simply by minimizing the precision-
weighted Euclidean distances between current and goal
environmental states. For high-dimensional state spaces,
however, it is known that the Euclidean distance can lose
much of its meaning [61]. Consequently, for high-dimen-
sional spaces, it might be beneficial to either resort to other
distance measures, such as, for example, the cosine distance,
or to put more weight on distance measurement in the
topographically ordered latent space.

Another issue that is unresolved is how to stably es-
tablish a hierarchy of temporal timescales which is clearly
present in human reasoning. When related to biology, as-
suming a “temporal timestep” within the brain of a few tens
of milliseconds, all reasoning modelled here would operate
in the sub second range. Humans, in contrast, make hier-
archical action plans over a broad range from below seconds
to years and seem to compose longer-term plans by
abstracting from shorter ones [18]. Hierarchical arrange-
ments of RSOMs have the potential to model a temporal
hierarchy, however, for longer history the algorithm requires
some parameter finetuning and becomes subject to nu-
merical instability. Temporal hierarchy might instead be
more stably generated when interlacing RSOM layers with a
novelty-driven gating mechanism (Stetter, unpublished
results).
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In its minimal version, SapSom operates in completely
unsupervised mode. It does not evaluate any supervisory or
extrinsic reward signals. The feedback used is sensory in-
formation evoked by its own actions. Because there needs to
be some intrinsic motivation mechanism which drives the
system to explore its environment, to try and reach goals,
and eventually to intrinsically set goals, the present approach
shows similarities with curiosity-driven learning, where
intrinsic reward signals are generated based on prediction
errors [62]. Humans, in contrast, do use both extrinsic and
intrinsically generated reward signals (e.g., [63]).

Reinforcement learning mechanisms can be incorpo-
rated in a natural way on top of the sensorimotor repre-
sentation, as SapSom—up to the reward signal—considers
its environment as a Markov decision process which it learns
to approximate. The present approach therefore shows a
natural link with model-based RL [64]. Alternatively,
Q-learning could use its update rule to optimize a Q-value
that is assigned to each sa unit in the sensorimotor map
(Figure 1). The resulting policy would then replace the
greedy forward search algorithm established here. Generally,
however, finding efficient search strategies in action se-
quence space that approach human performance in being
creative and solving problems is an important ongoing
research issue.

5.3. Relation to Biology. Conceptually, our model is placed in
the middle of the spectrum ranging from approaches that
deliberately abstract from the way the brain works [65] to
computational neuroscience models which put their main
focus on how cognitive mechanisms are specifically
implemented in biological neural networks [66]. Our ap-
proach is to formulate computational models, which are
inspired by fundamental mechanisms of brain function and
are in principle compliance with what is known about bi-
ological information processing. Accordingly, a few parallels
can be drawn between SapSom’s present implementation
and the brain’s biological neural networks.

First of all, Kohonen’s self-organizing maps are bio-
logically motivated by retinotopy and smooth feature maps
found in the early visual pathway, by Mexican-hat like lateral
cortical connectivity and Hebbian learning. These aspects
seem more closely related to biology than an error back-
propagation mechanism, for which no biological correlate
could be found so far. Moreover, SOMs have been used very
successfully as models of self-organization in the early visual
pathway [67]. Given the observation that all areas in the
neocortex are laid out very uniformly and seem to perform
similar operations [68], hierarchical systems of SOMs appear
to be good candidates of neurally inspired models at least of
posterior neocortex.

The state transition matrices optimized during predic-
tion learning can be interpreted as lateral (Figure 1(b)) or
top-down (Figure 1(a)) cortico-cortical connections. When
doing so, the learning rule (5) just corresponds to spike-time
dependent plasticity (e.g., [69]). For this we recall that that
map state probabilities p(s) are derived from normalized
activations of state neurons (equation (4)). When T, (s', s) is
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interpreted as connection from state-action neuron with
index s, a to target neuron s', the learning rule reads
AT, (s',8) = (P41 (8") = Pray () - p, (s,a). The first term
says that T, will be increased, when s’ becomes active after
s,a (stronger than expected), and is decreased, if s’ is ex-
pected active but remains silent.

Moreover, there is evidence that prefrontal cortex is
capable of actively maintaining information by robust,
persistent neural activity, which, according to prominent
models, might be rapidly updatable by a striatum-driven
gating mechanism [70]. The system comprised of dorso-
lateral, anterior cingulate, and orbitofrontal cortices, which
interact with the striatum and thalamus, are considered
crucial for representing goals and context, generating action
plans, and evaluating expected rewards thereof (for a review
of data and detailed computational models, see [71]). Hence,
nondistractible sustained activation might be a neural
correlate of the model’s goal states, whereas their distractible
counterparts might underly working memory required
during mental execution of the search through action plans.

Learning more about the principles of this orchestration
process of cortical states, or, in SapSom terminology,
learning about how search and prediction should be ideally
designed given an implicit world model, might lead to a
better understanding of the principles of human thinking in
general—an exciting field for future research.
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