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A B S T R A C T

Bacterial biofilms are a major cause of delayed wound healing. Consequently, the study of wound biofilms,
particularly in host-relevant conditions, has gained importance. Most in vitro studies employ refined laboratory
media to study biofilms, representing conditions that are not relevant to the infection state. To mimic the wound
milieu, in vitro biofilm studies often incorporate serum or plasma in growth conditions, or employ clot or matrix-
based biofilm models. While incorporating serum or plasma alone is a minimalistic approach, the more complex in
vitro wound models are technically demanding, and poorly compatible with standard biofilm assays. Based on
previous reports of clinical wound fluid composition, we have developed an in vitro wound milieu (IVWM) that
includes, in addition to serum (to recapitulate wound fluid), matrix elements and biochemical factors. With Luria-
Bertani broth and Fetal Bovine Serum (FBS) for comparison, the IVWM was used to study planktonic growth,
biofilm features, and interspecies interactions, of common wound pathogens, Staphylococcus aureus and Pseudo-
monas aeruginosa. We demonstrate that the IVWM recapitulates widely reported in vivo biofilm features such as
biomass formation, metabolic activity, increased antibiotic tolerance, 3D structure, and interspecies interactions
for monospecies and mixed-species biofilms. Further, the IVWM is simple to formulate, uses laboratory-grade
components, and is compatible with standard biofilm assays. Given this, it holds potential as a tractable
approach to study wound biofilms under host-relevant conditions.
Introduction

Wound healing is mediated by several host factors, including in-
flammatory, immune and biochemical components [1,2]. Following
injury, a protein-rich fluid leaks into the wound, which along with
cellular and matrix elements, results in a characteristic wound milieu [3,
4]. Interplay across various factors is reflected in this milieu, which is
known to influence progression and outcome of the wound state [5–8].
Microbial infections are the single-most-important cause of delayed
wound healing [2,9]. In wounds, diverse bacterial species are known to
form biofilms, observed as microscopic bacterial aggregates enmeshed in
a self-produced matrix [10–12]. Previous work has reported that biofilm
aggregates of different bacterial species exist in close approximation with
each other, albeit occupying spatially-distinct niches in the wound bed
[13–16]. In the infected wound bed, these biofilm aggregates interface
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with host cellular and matrix elements [13,17–20], in the presence of the
composite wound milieu.

Hitherto, the study of biofilms in wounds has typically relied on in
vivo animal systems or in vitro laboratory studies [17,19]. In vivo systems
pose scientific, technical and ethical challenges, and are also limited by
availability and accessibility. On the other hand, the majority of in vitro
biofilm studies employ laboratory media [13,18] (such as refined protein
broths) to grow biofilms and analyze the effects of antimicrobial treat-
ments. However, the composition of laboratory media is not relevant in
the context of the wound infection state. Recognizing this, recent studies
have incorporated serum or plasma into in vitro growth conditions, to
more closely represent the host milieu [20–25]. This is relevant given
that wound fluid has been shown to resemble the biochemical and
nutrient profile of serum [20]. However, the wound milieu is more
complex and includes additional host factors and matrix elements [26].
m.
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Table 1
Composition of the in vitro wound milieu (IVWM) and rationale for inclusion of
components.

Components Final
concentration in
IVWM

Rationale References

FBS 70% Major component and base of
IVWM; at this concentration,
FBS accounts for several
components in wound fluid

[29,30,38,
40]

Lactic acid 11–12 mM Host biochemical factor
released in response to tissue
damage; based on levels
detected in wounds
immediately following injury

[41–43]

Lactoferrin 20–30 μg/mL Host biochemical factor
increased in the presence of
microbes

[44–52]

Fibrinogen 200–400 μg/mL Host matrix protein, notably
absent from serum, present in
the wound milieu

[54–56]

Fibronectin 30–60 μg/mL Host matrix protein, present in
lower concentrations in the
wound milieu

[55,57–62]

Collagen 10–12 μg/mL Host matrix protein, critical
component of the wound bed

[20,21,25,
28,63–66]
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To recapitulate this, clot and matrix-based in vitro wound biofilm models
have been developed that more closely mimic in vivo conditions [14,20,
25,27,28]. However, these models are technically demanding,
low-throughput, and poorly compatible with standard biofilm assays.

In this study, we have developed a simple in vitro wound milieu
(IVWM) that includes, in addition to serum (to recapitulate wound fluid),
matrix elements such as collagen, fibrinogen and fibronectin, and host
factors such as lactoferrin and lactic acid. The formulation of the milieu is
based on the composition of clinical wound fluid, as reported across
previous studies [29,30]. We employ this composite milieu to study
planktonic growth, biofilm features, and interspecies interactions of
Staphylococcus aureus and Pseudomonas aeruginosa, two of the most
common bacterial pathogens isolated from wound infections [31]. Using
laboratory media (Luria-Bertani broth) and fetal bovine serum (FBS) for
comparison, we demonstrate that the in vitro wound milieu recapitulates
key in vivo biofilm features such as biomass formation, metabolic activity,
antibiotic tolerance, three-dimensional structure, and interspecies in-
teractions. While expectedly different from laboratory media, we find
that these features are distinct from those observed with serum alone.
Notably, the impact of the IVWM onmixed-species biofilm growth differs
from that in serum, and similar to in vivo conditions appears to provide an
advantage to P. aeruginosa [17,19]. Further, the IVWM is easy to
formulate, high-throughput, and is compatible with standard biofilm
assays.

Materials and Methods

Bacterial strains and growth conditions

All experiments were carried out using fluorescently tagged strains of
Pseudomonas aeruginosa (PAO1-pUCP18, mCherry [32]) and Staphylo-
coccus aureus (Strain AH 133-pAH13, GFP [33]). These strains were a gift
from Dr. Kendra Rumbaugh (Texas Tech University Health Science
Center, Lubbock, TX). Selection for SA-GFP was done with 10 μg/mL
erythromycin (Himedia) and for PAO1-mCherry with 100 μg/mL ampi-
cillin (Himedia) on Luria-Bertani (LB) agar (Sigma-Aldrich, USA,
L2897-250G) plates and in overnight LB broth (Sigma-Aldrich, USA,
L3022-250G) cultures. Strains were streaked onto LB agar and incubated
overnight at 37 �C. For overnight cultures, isolated colonies were grown
in LB broth under shaking conditions at 37 �C unless otherwise stated.
Preparation of the in vitro wound milieu

An in vitro wound milieu (IVWM) was prepared with sterile fetal
bovine serum (FBS) (Thermofisher Scientific, Brazil, 10270106) as the
base component. Other components added included sterile rat tail
collagen (Sigma, USA, 122–20, 50 μg/mL), lactoferrin (Sigma, USA,
L4040, 2 mg/mL stock prepared by dissolving in 1X PBS (pH 7.4, Ther-
moFisher Scientific, USA, 20012027) and filter sterilized), fibronectin
(Sigma, USA, F4759, 1 mg/mL stock solution prepared using autoclaved
distilled water), fibrinogen (Sigma, USA, F3879, 0.9% NaCl (prewarmed
at 37 �C) was used to prepare a stock solution of 10 mg/mL and filter
sterilized) and lactic acid (Sigma, USA, W261114, 11.4 M stock con-
centration). As per manufacturers’ instructions, collagen and lactoferrin
were stored at 4 �C, FBS, fibronectin and fibrinogen were stored at �20
�C and lactic acid was stored at room temperature. Components were
either purchased sterile or filter sterilized using a 0.22 μm syringe filter
(Millex, Ireland, SLGV033RS). The components were combined in con-
centrations given in Table 1 to result in the final IVWM. The IVWM was
freshly prepared each time and was used immediately after use (not
stored). The pH of the IVWM was measured using a pH probe (Hanna
Instruments, Romania, HI2210) and pH strip (Qualigens). The specific
gravity of IVWM was calculated as the relative weight of IVWM
compared to the weight of an equal volume of distilled water in an
analytical balance (Mettler-Toledo, India, ME204) [34].
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Planktonic growth

For growth curves in LB
Overnight cultures of S. aureus and P. aeruginosa were grown in LB

broth under shaking conditions at 37 �C. The next day, cultures were
quantified by measuring optical density (O.D.) at 600 nm with a multi-
mode microplate reader (Tecan, Austria, Infinite M Plex), and this value
was converted to colony forming units (CFU)/mL. To set up growth
curves, overnight cultures were diluted in sterile LB broth (to result in
~106 cells/mL) and 100 μL of the diluted culture (consisting of ~105

cells) was added per well, in replicates of three, to a sterile, transparent,
round bottom, untreated 96-well polystyrene plate (Corning, USA,
3788). A similar protocol was used throughout this study to quantify
overnight cultures and use the appropriate seeding density in each
experiment. Uninoculated LB broth was used as a control. Plates were
incubated in the multimode microplate reader (Tecan, Austria, Infinite M
Plex) at 37 �C with shaking in orbital mode (2 mm amplitude), and O.D.
was measured at 600 nm every 30 min for 12–14 h.

For growth curves in FBS and IVWM
Growth curves in FBS and IVWM were done using overnight cultures

set up in FBS. Briefly, each bacterial colony was inoculated in FBS and
incubated overnight at 37 �C under shaking conditions. The next day,
cultures were quantified by measuring O.D. at 600 nm with a multimode
microplate reader (Tecan, Austria, Infinite M Plex). To set up growth
curves, each culture was diluted in sterile FBS or IVWM (to result in
~106 cells/mL) and 100 μL of this diluted culture (consisting of ~105

cells) was added per well, in replicates of three, to a sterile, transparent,
round bottom, untreated 96-well polystyrene plate (Corning, USA,
3788). Uninoculated FBS or IVWM were used as controls. The plate
reader was set to 37 �C with shaking in orbital mode (2 mm amplitude),
and absorbance was measured at 600 nm every 30 min for 12–14 h.

For all growth curves, O.D. versus time was plotted and growth rates
(doubling times) were calculated.
Colony forming units (CFUs) for viability of planktonic cultures

In order to quantify the proportion of living cells in the planktonic
cultures, in monospecies and mixed-species conditions, colony count
assays were carried out. Overnight cultures were set up as done for
planktonic growth curves (as described above). The next day, cultures
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were diluted to ~106 cells/mL in respective media. From these diluted
cultures, 100 μL (containing ~105 cells) was added to 100 μL of the
respective media (LB, FBS, IVWM) in a fresh tube (for monospecies cul-
tures). For mixed-species cultures, 100 μL of each of the diluted cultures
of S. aureus and P. aeruginosa (in LB, FBS, IVWM) were added together in
a single fresh tube. All conditions were set up in at least 3 replicates.
Cultures were incubated under shaking conditions at 37 �C for 7 h (till
stationary phase). Dilutions were plated on selective media such as
Pseudomonas isolation agar BioVeg (SRL Chemicals, India, 36124) and
Staphylococcus Medium 110 (SRL Chemicals, India, 39726). Plates were
incubated overnight for 24 h at 37 �C. Based on protocols using Staphy-
lococcusMedium 110, these plates required incubation for up to 36–48 h
to obtain visible colonies.

Biofilm formation

Overnight cultures of S. aureus and P. aeruginosa (in LB media) were
each diluted to ~106 cells/mL in LB, FBS and IVWM. This was done by
diluting 1 μL of overnight culture in 99 μL of respective media (or larger
volumes but in the same proportion), to make a 1:100 dilution. There-
fore, given the 1:100 dilution, there is minimal residual LB contami-
nating the FBS and IVWMmedia conditions. From these diluted cultures,
50 μL (containing ~105 cells) was added in multiple replicates (at least
three) to a transparent, round bottom, untreated 96-well polystyrene
plate. To these wells, 50 μL of the media in which biofilm formation was
to be tested was added, to maintain a constant volume of 100 μL. For
mixed-species biofilms, individual cultures of P. aeruginosa and S. aureus
were diluted to ~106 cells/mL (as above). From these diluted cultures,
50 μL of each strain (containing ~105 cells) was added to wells in at least
three replicates to make a total volume of 100 μL. Biofilms were allowed
to grow under static conditions at 37 �C for 24 h. These pre-formed
biofilms were used to measure metabolic activity (XTT assay, see
below), determine viable colony counts (CFU assay, see below) and to
visualize the biofilm (confocal microscopy, see below).

Colony forming units (CFUs) of biofilms

In order to quantify the proportion of living cells in the biofilms
grown under different conditions, overnight cultures of S. aureus and
P. aeruginosa were each diluted to ~106 cells/mL in LB, FBS and IVWM,
and biofilm growth was set up as described in the above section. Briefly,
for monospecies biofilms, 50 μL of the diluted cultures (containing ~105

cells) were added to 50 μL of the respective media and allowed to
incubate at 37 �C for 24 h under static conditions. For the mixed-species
biofilms, 50 μL (containing ~105 cells) of each of the diluted cultures (in
a 1:1 ratio) were added and allowed to incubate at 37 �C for 24 h under
static conditions. The next day, the supernatant in the wells was gently
removed, and wells were washed once with 150 μL of LB broth to remove
planktonic cells. Each biofilm (monospecies or mixed-species) was dis-
lodged by scraping with a sterile 200 μL pipette (50 times in circular
motion) in 100 μL of LB media, following which the suspended cells were
mixed 50 times with a 20–200 μL pipette set at 100 μL. From this sus-
pension of cells, ten-fold serial dilutions were made in LB media, and
dilutions were plated on Pseudomonas isolation agar BioVeg (SRL
Chemicals, India, 36124) and Staphylococcus Medium 110 (SRL Chem-
icals, India, 39726) to identify colony counts of each strain. The mixed-
species biofilms were plated on both sets of media. Plates were incu-
bated for 24 h at 37 �C. Based on protocols using StaphylococcusMedium
110, these plates required incubation for up to 36–48 h to obtain visible
colonies. The next day, colony forming units (CFUs) were counted, and
back calculations were done to obtain CFU/mL.

XTT assay for biofilm metabolic activity

Pre-formed biofilms of S. aureus and P. aeruginosawere grown for 24 h
in different media (as described above) under monospecies and mixed-
3

species conditions. The next day, biofilms were washed once with 150
μL of respective media (LB, FBS or IVWM), after removing suspended
media. Menadione (SRL, India, 61495) solution (7 mg/mL) was diluted
1:100 in sterile distilled water. A mixture of LB:XTT:Menadione in
79:20:1 ratio was freshly prepared [35] (XTT, Invitrogen, USA, X6493),
and 150 μL of this mixture was added to each well (including media only
controls). The plates were covered in aluminum foil and incubated for 4 h
at 37 �C under static conditions. From each well, 100 μL was transferred
to a new 96-well plate and absorbance was measured at 492 nm. For each
set of biofilm conditions, metabolic activity was normalized to log10
(CFU) of the biofilm, which was calculated from replicate biofilms that
had been set up simultaneously. For the mixed-species biofilms, meta-
bolic activity was normalized to the log10 (total CFU) of both species in
the biofilm.

Antibiotic susceptibility of pre-formed biofilms

Pre-formed biofilms of S. aureus and P. aeruginosa were grown as
monospecies biofilms for 24 h as previously described above (in the
section on biofilm formation). Briefly, overnight cultures S. aureus and
P. aeruginosa were each diluted to ~106 cells/mL in LB, FBS and IVWM.
From these diluted cultures, ~105 cells (100 μL) were added in replicates
of three, to a transparent, round bottom 96-well polystyrene plate and the
plate was incubated for 24 h at 37 �C. After 24 h, the suspended media
was gently removed and the biofilms were washed once with LB. Anti-
biotics were diluted to varying concentrations 0–64 μg/mL for tobra-
mycin (TCI, Japan, T2503) and 0–512 μg/mL for vancomycin (Himedia,
India, CMS217) in the respective media in which biofilm susceptibility
was to be tested (LB, FBS, IVWM) and 100 μL of the antibiotic-media
solution was added into the wells. Wells with untreated biofilms (no
antibiotic, only media added) were also included. Uninoculated media
was used as a control. Plates were incubated at 37 �C for 24 h. After 24 h,
the XTT assay was performed to quantify viability (as described above).
Antibiotic susceptibility was quantified as the Minimum Biofilm Eradi-
cation Concentration (MBEC). The concentration resulting in an 80%
reduction in biofilm metabolic activity (representing metabolically-
active cells), compared to the untreated biofilms, was considered as the
MBEC80 value for that particular antibiotic.

Biofilm visualization using confocal microscopy

To visualize in situ three-dimensional biofilm structure, 24-h old un-
disturbed biofilms were set up as previously described in LB, FBS or
IVWM (as monospecies and mixed-species). Briefly, LB overnight cul-
tures of P. aeruginosa and S. aureuswere diluted in the respective media in
which biofilm structure was to be observed (to obtain ~106 cells/mL in
LB, FBS and IVWM), and mixed in a 1:1 ratio for mixed-species biofilms
to obtain a total volume of 100 μL (50 μL (~105 cells) of the diluted
culture of each strain). For monospecies biofilms, 50 μL (~105 cells) of
the diluted culture was mixed with 50 μL of the respective media. After
incubation at 37 �C for 24 h (static conditions), the biofilms were directly
examined with confocal laser scanning microscopy (Leica, Germany,
LASX TCS SP8). To enable this direct visualization, biofilms were grown
in 96-well, black polystyrene tissue-culture treated flat-bottom plates
with a transparent bottom (Corning, USA, 3603). These plate specifica-
tions allow visualization of the biofilm structure in the well and mini-
mum interference of fluorescence signals from neighboring wells. The
tissue-culture treatment imparts an overall negative charge to the sur-
face and results in a hydrophilic surface, and this treatment is known to
reduce the attachment of bacteria. In doing so, this enables the study of
the role of the media conditions (host components in FBS and IVWM) in
biofilm formation.

It is important to note that the wells were not rinsed prior to imaging.
As seen in previous biofilm studies [36], rinsing or pipetting (even
gently) would disturb the structure of the biofilm. Given this, the biomass
imaged at the bottom of the well, would include biofilm, as well as
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attached or unattached single cells.
Wells were imaged using a 488 nm laser for excitation and a 496–551

nm emission filter for S. aureus-GFP, and a 561 nm laser for excitation and
a 590–625 nm emission filter for P. aeruginosa-mCherry. To visualize the
3D architecture of the biofilms across the entire well, an 8x8 tile scan
approach was used with an overlap of 30% and a Z-stack step size of 10
μm. The images were processed and reconstructed in the Leica Applica-
tion Suite (LAS) software. Mean intensity measurements were carried out
using the LAS software. Biofilm thickness was measured using ImageJ;
for the mixed-species biofilms, this was done by exporting and measuring
biofilms separately in each channel.

Statistical analysis

All analysis was performed using GraphPad Prism 8. A two-way
ANOVA with Tukey’s multiple comparisons test was performed and a
p-value of <0.05 was considered significant.

Results and discussion

Development of an in vitro wound milieu (IVWM) that mimics host
conditions

Following injury, the wound bed is bathed in protein-rich exudate,
which along with additional host elements, results in a characteristic
wound milieu [1,3,4,37]. The composition of wound fluid has been
widely reported to resemble that of serum [29,30,38], with several in
vitro wound studies using serum to mimic wound conditions [20,25,28,
39]. To develop the IVWM, we used FBS as the base component, to which
relevant host matrix and biochemical factors were added. Components
were chosen based on previous reports of biochemical analyses across
clinical wound fluids [29,30], as well as their identified roles in the
wound bed.

Based on analysis of wound fluid composition [29], we decided to use
70% FBS as the base component of the IVWM, since at this concentration
the levels of multiple components in serum fit into the range of values for
that component in wound fluid [29,40]. While the concentrations of
several biochemical factors in serum and wound fluid are similar [29],
the wound milieu is also characterized by the presence of additional
host-derived biochemical factors. In the initial inflammatory state of
wound repair, the wound milieu is characterized by increased levels of
lactate and lactoferrin. Lactate in the wound is a result of local tissue
damage, and increased concentrations are reflected in the local milieu
[41–43]. While the levels of lactoferrin in the plasma and serum of
healthy individuals are typically low [44–47], in the presence of micro-
bial infections [48], increased levels are reported in the wound milieu. In
addition to possessing antimicrobial properties [49–51], lactoferrin has
also been shown to be important for wound re-epithelialization [52].
Given this, lactate and lactoferrin were included in the IVWM at con-
centrations that mimicked host conditions (Table 1).

The IVWM composition also included relevant matrix components
such as fibrinogen, fibronectin and collagen [53]. While fibrinogen is
present in wound tissue [54,55] and plasma [56], it is notably absent
from serum. On the other hand, the matrix protein fibronectin is typically
present at high concentrations in serum or plasma [57], but undergoes
degradation under inflammatory wound conditions [58–60]. To mimic
this, fibronectin was added to the IVWM, to resemble lower concentra-
tions as relevant to the woundmilieu [55,60–62]. Given its critical role as
an extracellular matrix protein in the wound bed [20,21,25,28,63–66],
collagen was also included in the IVWM (Table 1). At the concentration
of collagen added, the IVWM was in liquid form (not a gel) resembling
the wound fluid milieu.

The pH of the freshly formulated IVWMwas determined to be 5.5–6.0
and specific gravity was 0.966, which is similar to that measured in
wound fluid [8,30,67]. However, following overnight growth of
P. aeruginosa and S. aureus biofilms, alone and together (with an initial
4

seeding density of 105 cells/mL), the pH of the IVWM was determined to
be 8.0–8.5 for P. aeruginosa, 6.5–7.0 for S. aureus and 8.0–8.5 for the
mixed-species biofilm. This represents an increase in pH following bio-
film growth for both pathogens, and a notable alkaline shift for
P. aeruginosa, an effect that could result from the production of alkaline
by-products of bacterial metabolism [68]. In chronic, non-healing
wounds, the wound pH is reported to be elevated, likely the conse-
quence of bacterial infections [69]. Previous studies have reported a
range of pH values (ranging from 5 to 9) for wound fluid, with increasing
pH correlating with infected wounds [67,70]. While in this study we
aimed to develop a wound milieu that recapitulated the pH of the basal
wound state (slightly acidic), this milieu can be further adapted to mimic
variations observed in pH, such as the alkaline shift observed in the
presence of bacterial infection and non-healing states. Given that the
individual components of the IVWM are recommended to be stored at
different temperatures, the IVWM was freshly prepared each time and
used immediately after use (not stored). This is an important point to
consider while replicating the milieu or using it with modifications.
Planktonic growth of P. aeruginosa and S. aureus in LB, FBS and IVWM

To determine the effects of the IVWM on the planktonic growth of
P. aeruginosa and S. aureus (monospecies), we performed growth curves
in the IVWM, and in LB medium and FBS for comparison (Fig. 1). LB
broth is widely-used to study planktonic and biofilm states under in vitro
conditions [18,35,71–73], however, its composition (refined yeast
extract and tryptone) poorly mimics the wound infection state. To
recapitulate factors relevant to the wound milieu, several media incor-
porate FBS, in varying concentrations, into growth conditions [20,24,74,
75]. Given that the concentrations of FBS employed across different
planktonic and biofilm wound pathogen studies range widely, we
decided to use the maximum possible FBS concentration (100% FBS) for
comparison, as opposed to 70% used in the IVWM [76–80]. Further,
developing 70% FBS would require the addition of a diluent (to make up
the 30%), which would itself influence bacterial dynamics in the media.
This dilution would also have to be maintained in the IVWM (to maintain
consistency across both host-relevant conditions) which would alter the
composition and dilute the concentrations of relevant host and matrix
factors in the IVWM. Finally, while this does not allow the parsing of the
individual roles of the additional host components in the IVWM, this
study is focused on developing and evaluating a composite milieu which
represents host-relevant conditions.

When examined in LB medium, P. aeruginosa and S. aureus showed
typical growth curves, with doubling times of 30� 1 min and 28� 1 min
respectively, in accordance with previous reports [81,82]. In 100% FBS,
P. aeruginosa was observed to grow slower as compared to growth in LB
medium, with a doubling time of 56� 7min. On the other hand, S. aureus
showed markedly impaired growth in FBS. In the IVWM, consisting of
70% FBS with additional matrix and host components, P. aeruginosa was
observed to double every 43 � 7 min, which is faster than that seen in
FBS alone, and cultures were also observed to enter exponential phase
earlier. Similar to that observed in FBS, S. aureus demonstrated impaired
growth in the IVWM.

Taken together, as compared with LB media, the planktonic growth of
P. aeruginosa and S. aureus is notably different under growth conditions
that incorporate host factors. In the presence of FBS, both pathogens
displayed markedly slower growth; components in serum are known to
impair the growth of S. aureus [80,83,84]. However, when grown in
IVWM,which contains serum at a concentration that recapitulates wound
fluid (70% FBS), and additional matrix and biochemical factors, a greater
difference in growth across the two species was observed. The IVWMwas
observed to better support the growth of P. aeruginosa (as compared with
FBS alone), while S. aureus showed significantly impaired growth. This
indicates that in the IVWM, P. aeruginosa has a distinct growth advantage
in planktonic state, as compared with its co-pathogen S. aureus.



Fig. 1. IVWM supports the planktonic growth of P. aeruginosa, but not of S. aureus. Planktonic growth curves of Pseudomonas aeruginosa (PAO1) and Staphy-
lococcus aureus (AH133) were performed in Luria-Bertani broth (LB), Fetal Bovine Serum (FBS) and the in vitro wound milieu (IVWM). Optical density (OD600) was
measured at intervals of 30 min for 12 h. Error bars represent SEM, n ¼ 3 (biological replicates).
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Interspecies interactions between planktonic P. aeruginosa and S. aureus
under different conditions

To understand the effects of the IVWM, in comparison with LB and
FBS, on interspecies interactions between the two co-pathogens under
planktonic conditions, P. aeruginosa and S. aureuswere co-cultured in LB,
FBS and IVWM (with a starting ratio of 1:1, with ~105 CFU of each
strain), and after 7 h were plated on selective media to obtain viable
counts of each bacterial species. In LB media, S. aureus showed a signif-
icant decrease in viable cells under mixed-species conditions (Fig. 2A and
B); the percentage of viable cells recovered for S. aureus was ~3% of
viable cells obtained when S. aureus was grown alone (Fig. 2B). This is in
accordance with previously published reports of P. aeruginosa actively
killing and outcompeting S. aureus under planktonic conditions in LB
medium [13,14,18,76].

In FBS and IVWM, S. aureus demonstrated the same trend, with
reduced recovery of viable cells under mixed-species conditions (Fig. 2A
and B). Notably, under mixed-species conditions in the IVWM, viable
S. aureus cells recovered from planktonic co-cultures were very few,
representing ~0.2% of the total viable cells (of both species). On the
other hand, the IVWM supported the growth and recovery of
Fig. 2. In the IVWM, interspecies interactions between planktonic P. aeruginosa
Viable counts of planktonic P. aeruginosa and S. aureus grown under mixed-species c
Units (CFU). (A) CFUs of planktonic monospecies and mixed-species cultures of Pseu
CFU/mL of the colony counts in monospecies to that in mixed-species planktonic cult
Error bars represent SEM, n ¼ 4 (biological replicates). A p-value of <0.05 was con
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P. aeruginosa under mixed-species conditions, comparable to that
observed under monospecies conditions. It is important to note that this
effect observed in the IVWM is similar to that seen under in vivo condi-
tions, where in spite of co-existence between the two common wound
pathogens, P. aeruginosa outcompetes S. aureus in wound infections [14,
17,76,85–87].

Biofilm formation, metabolic activity and coexistence of P. aeruginosa and
S. aureus biofilms under different conditions

To understand the effects of the IVWM on biofilm formation, meta-
bolic activity and interspecies interactions, P. aeruginosa and S. aureus
biofilms were grown in microtiter plates under monospecies and mixed-
species conditions, and assayed for metabolic activity (by the XTT assay)
and viable cells (CFUs). For comparison, monospecies and mixed-species
biofilms were grown in LB and FBS, and assayed in a similar manner. For
each set of biofilm conditions, metabolic activity was normalized to log10
(CFU) of the biofilm.

As previously reported across several studies [18,71], in LB broth,
P. aeruginosa and S. aureus formed biofilms that displayed the presence of
metabolic activity (Fig. 3A). Notably, in FBS and IVWM, P. aeruginosa and
and S. aureus result in P. aeruginosa significantly outcompeting S. aureus.
onditions in LB, FBS and IVWM were quantified by measuring Colony Forming
domonas aeruginosa and Staphylococcus aureus in LB, FBS and IVWM (B) Ratio of
ures of Pseudomonas aeruginosa and Staphylococcus aureus in LB, FBS and IVWM.
sidered significant (*).



Fig. 3. IVWM supports the formation of metabolically-active biofilms of P. aeruginosa and S. aureus, and indicates the coexistence of both species under
mixed-species conditions. Pre-formed 24-h biofilms of Pseudomonas aeruginosa and Staphylococcus aureus were quantified for metabolic activity by the XTT assay and
for viability using the CFU technique. Assays were performed under monospecies and mixed-species conditions in LB, FBS and IVWM. (A) Metabolic activity
normalized to log10 (CFU) of the biofilm for P. aeruginosa and S. aureus biofilms under monospecies and mixed-species states (B) Log10 (CFU) of viable biofilm cells of
P. aeruginosa and S. aureus biofilms under monospecies and mixed-species states in LB, FBS and IVWM. Error bars represent SEM, n ¼ 3 (biological replicates). A p-
value of <0.05 was considered significant (*).

Table 2
Minimum Biofilm Eradication Concentration (MBEC)* for P. aeruginosa and
S. aureus under different conditions (*The concentration resulting in 80%
reduction in biofilm metabolic activity (by the XTT assay) was considered as the
MBEC80 value for that particular antibiotic).

LB FBS IVWM

P. aeruginosa (PAO1)
Tobramycin

1 μg/mL 8 μg/mL 8 μg/mL

S. aureus (AH 133)
Vancomycin

>512 μg/mL 16 μg/mL >512 μg/mL
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S. aureus biofilms displayed increased metabolic activity as compared to
that in LB medium (Fig. 3A). Several host components, including serum,
plasma, and matrix factors such as collagen, fibrinogen, fibronectin, have
been shown to support the formation of P. aeruginosa [88–90] and
S. aureus biofilms [78,91–98].

To examine the formation and metabolic activity of mixed-species
biofilms, P. aeruginosa and S. aureus were grown together under
different media conditions, and metabolic activity (measured by XTT)
was normalized to the log10 (CFU) of the total living cells of both species
in the biofilm. Mixed-species biofilms in FBS and IVWM demonstrated
robust metabolic activity normalized to total viable cells, significantly
increased as compared to LB media. Host components, including matrix
and chemical factors, are well-known to influence the coexistence of
P. aeruginosa and S. aureus biofilms [13,17,18,31,99–101]. To explore
possible interspecies interactions, we compared colony-forming units
(CFUs) of P. aeruginosa and S. aureus, across monospecies and
mixed-species biofilms, under different media conditions (Fig. 3B). In LB
medium, S. aureus demonstrated a notable decrease in viable cell counts
under mixed-species conditions in LB; recovery of viable S. aureus cells
was 40% less in mixed-species conditions as compared to monospecies
biofilms. This points to the presence of interspecies interactions, an effect
possibly mediated by the widely-reported killing of S. aureus by
P. aeruginosa [13,14,18,76]. While biofilms grown in FBS also demon-
strated a decrease in viable S. aureus counts in mixed-species conditions,
the recovery was better than that in LB medium, with the S. aureus viable
counts in mixed-species being only 20% less than that in monospecies.
On the other hand, the IVWM was seen to support both, the viability of
P. aeruginosa biofilms, and nearly complete recovery of S. aureus viable
cells under mixed-species conditions (Fig. 3B). This indicates that the
IVWM enables the co-existence of S. aureus and P. aeruginosa biofilms.
This is in accordance with previous work that reports that the presence of
host components support the concomitant growth of P. aeruginosa and
S. aureus, and ‘rescue’ of S. aureus from P. aeruginosa killing [14,76].
Notably, in the IVWM, despite this ‘rescue’ of S. aureus, based on viable
cell counts, P. aeruginosa is seen to outnumber S. aureus in the
mixed-species biofilm (Fig. 3B).

It is important to note that the XTT assay was performed with the
widely-described LB:XTT:Menadione solution in the ratio of 79:20:1 (see
Materials and Methods) for all three biofilm conditions (LB, FBS, IVWM).
This means that biofilms grown in LB were provided fresh nutrients for
an additional 4-h growth period (duration of exposure to the
LB:XTT:Menadione mix), whereas for biofilms in FBS and IVWM this
involved a change of growth media. Given that growth is necessary for
the metabolic activity readout, this could result in a shorter lag phase for
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biofilms grown in LB, as compared to those in FBS and IVWM. As seen in
Fig. 1, for planktonic conditions, given the lag phase for P. aeruginosa
and S. aureus in LB media is around 3 h, this could lead to 3–4 doublings
in the 4-h time-point for the XTT assay. For biofilm conditions as well,
this 4-h period of growth could potentially affect biofilm metabolic ac-
tivity and viable cell counts [102]. Based on results seen in Fig. 3A and B,
biofilms in LB display lower metabolic activity and similar CFU counts as
compared with biofilms in FBS and IVWM. Nevertheless, for future work
it would be relevant to consider performing the XTT:Menadione assay in
the original growth conditions (FBS, IVWM). However, given that serum
albumin is known to affect XTT readings [103], and so could other
components of the IVWM, these factors would need to be optimized.

Overall, our results indicate that the IVWM supports the biofilm
formation and metabolic activity of P. aeruginosa and S. aureus biofilms.
Further, under mixed-species conditions, the IVWM supports the co-
existence of both pathogens, with P. aeruginosa observed in larger
numbers.

Antibiotic susceptibility of P. aeruginosa and S. aureus biofilms in the in
vitro wound milieu (IVWM)

To study the effects of the IVWM on the antibiotic tolerance of
P. aeruginosa and S. aureus biofilms, pre-formed biofilms were grown for
24 h (also in LB and FBS) and exposed to varying concentrations of
tobramycin and vancomycin respectively, following which they were
assayed for antibiotic susceptibility (Table 2). The Minimum Biofilm
Eradication Concentration (MBEC) was considered to be the concentra-
tion resulting in 80% of biofilm eradication (MBEC80).

For biofilms grown in LB media, the MBEC80 of P. aeruginosa for
tobramycin was similar to the previously reported value of 1 μg/mL [35].
On the other hand, the MBEC80 of pre-formed P. aeruginosa biofilms
grown in FBS and IVWM was determined to be 8 μg/mL, an 8-fold in-
crease compared to LB. The presence of serum is known to increase
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antimicrobial tolerance [104–106], owing to the serum-binding proper-
ties of certain antibiotics, including binding of tobramycin and serum
albumin [107]. However, this increased tolerance could also be due to
the inherent biofilm properties under these conditions, including
nutrient distribution and variations in microbial metabolism [108]. The
similarity of MBEC80 in FBS and IVWM (which contains 70% FBS) could
possibly indicate the dominant role of serum in influencing the antibiotic
tolerance of P. aeruginosa biofilms.

When grown in LB media, pre-formed S. aureus biofilms displayed
increased tolerance, even at higher concentrations of vancomycin
(MBEC80>512 μg/mL). This is in accordance with previously reported
values, across different laboratory media conditions [73,104,109,110].
Interestingly, we find that biofilms grown in FBS demonstrate increased
susceptibility to vancomycin, with a 32-fold reduction in the MBEC80 (16
μg/mL) in FBS, as compared with LB. As stated previously, S. aureus
biofilms in FBS were observed as thin layers on the round-bottom surface
of the microtiter wells (data not shown), albeit demonstrating the pres-
ence of robust metabolic activity. We speculate that inhibitory effects of
serum on S. aureus [80], along with the formation of thin biofilms, that
could increase antibiotic exposure, could lead to this increased
susceptibility.

When grown in IVWM, 24-h old S. aureus biofilms showed increased
tolerance to vancomycin, with an MBEC80>512 μg/mL. This value is 32-
fold higher than that observed for biofilms grown in FBS alone, which is
important to note given that the IVWM comprises 70% FBS, along with
additional matrix and host factors. Host factors and matrix components
have been shown to influence the susceptibility of S. aureus to vanco-
mycin. Notably, upregulation of fibrinogen-and fibronectin-binding
proteins [92], or pretreatment with fibronectin [111], has been shown to
reduce the susceptibility of S. aureus biofilms. It is important to note that
these matrix factors are constituents of the IVWM, and are either absent
Fig. 4. 3D biofilm structure of P. aeruginosa and S. aureus single-species biofilm
showing 3D structure and thickness of (A) P. aeruginosa (PAO1-mCherry) and (B) S. a
attachment, and better explore the role of the different media conditions, biofilms we
P. aeruginosa in LB, is likely due to the reduced surface attachment to the tissue-cultu
images, given that the wells were not rinsed prior to imaging, the observed biomass r
within, and on top of, the dense bacterial mats (visible in the side view images). The
represent SEM, n ¼ 3 (biological replicates). A p-value of <0.05 was considered sig
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or present in low levels in FBS. On the other hand, while host components
such as lactoferrin are known to have antimicrobial properties against
S. aureus [112–116], the cumulative effect of such components in a
complex wound milieu such as in the IVWM is not known.

Under in vivo conditions, wound biofilms are known to display
increased tolerance to antimicrobial treatments [86,117,118], and our
results show that the IVWM recapitulates the increased antibiotic toler-
ance of both P. aeruginosa and S. aureus biofilms.

3D biofilm structure of P. aeruginosa and S. aureus biofilms under different
conditions

In order to visualize the 3D structure of the biofilms under different
conditions, undisturbed 24-h old biofilms of P. aeruginosa (PAO1-
mCherry) and S. aureus (AH133-GFP) were imaged (as monospecies and
mixed-species) using confocal microscopy via the tile scan approach. The
tile scan approach uses an 8x8 grid set to scan the entire well, and thereby
enables visualization of the 3D structure across the entire biomass. To
reduce the role of surface attachment [119], given that polystyrene is not
a biotic surface, and to better understand the role of the media condi-
tions, biofilms were grown in tissue-culture treated 96 well plates.

When grown alone in LB medium, S. aureus showed the presence of
dense biomass after 24 h, with an average thickness of 92 � 3 μm
(Fig. 4A). This biomass likely represents biofilm, as well as attached and
unattached planktonic cells (as seen on the surface). In FBS, S. aureus
biomass was observed to be thinner as compared with LB, with an
average thickness of 63� 4 μm (Fig. 4A). Notably, in the IVWM, S. aureus
formed biofilms that were significantly thinner than those seen in both
FBS and LB, with an average thickness of 40 � 3 μm (Fig. 4A). This in-
dicates that refined protein-based media, such as LB broth, likely over-
estimate biofilm thickness in comparison to that observed in host-
s in IVWM are distinct from that in LB and FBS. Tile-scan confocal microscopy
ureus (AH133-GFP) biofilms in LB, FBS and IVWM. To reduce the role of surface
re grown in tissue-culture treated microtiter plates. The poor biomass formed by
re treated surfaces, and absence of host and matrix proteins in the media. For all
epresents not only biofilm, but also attached or unattached single bacterial cells
grids are a result from stitching of the tiles in the tile-scan processing. Error bars
nificant (*).
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relevant media conditions (such as FBS and IVWM).
Notably, we find that while biofilms in LB appear to be visually thick

and dense, when examined for metabolic activity normalized for biomass
(Fig. 3A), they displayed lower activity. On the other hand, S. aureus
biofilms in FBS displayed significantly high metabolic activity normal-
ized to the living biofilm mass (Fig. 3A), but when observed visually,
these biofilms were seen as thin layers on the bottom and sides of the
microtiter well (data not shown). This could possibly be the reason that
certain previous studies using biomass staining protocols (and not
metabolic activity) [21,80,97], report reduced or absent S. aureus biofilm
formation in the presence of FBS or plasma. Further, studies that have
specifically explored the relationship between biomass and metabolic
activity, have found an inverse relationship [120] (could be an effect of
mature biofilms having cellular niches with low metabolic activity), or a
poor correlation between the two biofilm features [121–123].

When grown in LB media, P. aeruginosa displayed deficient biomass
growth or minimal biofilm formation after 24 h (Fig. 4B) seen as clumps
of bacteria in the center of the well. We can speculate that this is possibly
due to the tissue-culture treatment of the wells, which is known to reduce
the surface attachment of bacteria. This is notably in contrast to that seen
in Fig. 3B, where in the presence of non-treated wells, P. aeruginosa forms
robust biofilms that demonstrate metabolic activity and recovery of
viable cells. On the other hand, in the presence of host factors such as in
FBS and IVWM, P. aeruginosa showed the presence of dense biomass, and
biofilms were observed as mat-like structures, with an average thickness
of 41 � 2 μm in FBS and 39 � 1 μm in the IVWM (Fig. 4B). Given the
absence of surface attachment, this highlights the role of host compo-
nents (as in FBS and in the IVWM) in P. aeruginosa biofilm formation.

While S. aureus biofilms are thinner in the IVWM as compared to that
in FBS (Fig. 4A), they display comparable metabolic activity (Fig. 3A) and
high MBEC80 in the IVWM (>512 μg/mL) (Table 2). On the other hand,
S. aureus biofilms in FBS display thicker biomass and high metabolic
activity (Figs. 3A and 4A), and are yet observed to have an MBEC80 of 16
μg/mL. Previous studies have correlated the thickness of biofilms to
antibiotic tolerance, and have reported that thicker biofilms are typically
observed to display increased antibiotic tolerance, possibly due to
reduced antibiotic penetration [124,125]. However, the presence of
nutrient conditions, metabolic gradients, and host components have also
been observed to influence antibiotic tolerance in P. aeruginosa and
S. aureus biofilms [21,125–129]. It is also important to note that the assay
formats are distinct (tissue-culture treatments, biofilm washes), which
impact biofilm formation and features under these conditions, and
thereby limit a comparative analysis.

3D biofilm structure of P. aeruginosa and S. aureus mixed-species biofilms

To examine mixed-species biofilms, P. aeruginosa (PAO1-mCherry)
and S. aureus (AH133-GFP) were inoculated in a 1:1 ratio, followed by in
situ visualization of 24-h biomass (Fig. 5). In LB media, under mixed-
species conditions, P. aeruginosa displayed minimal biomass after 24 h,
similar to that observed in the monospecies state (Fig. 5A and B).
Notably, under mixed-species conditions, S. aureus was also seen to form
sparse biofilms. Based on known interspecies interactions between the
two pathogens, it is likely that under mixed-species conditions in LB
media, inoculated P. aeruginosa results in killing of S. aureus, and thereby
impairs the formation of S. aureus biofilms [87,130]. It is important to
note that the reduced surface attachment (resulting from the
tissue-culture treated wells) could contribute to the existence of
P. aeruginosa in the planktonic state, which is known to mediate this
killing effect.

In FBS, the two pathogens were observed to form a robust mixed-
species biofilm (Fig. 5A and B), consisting of a thick mat of S. aureus
(thickness 20 � 2 μm) and P. aeruginosa (thickness 27 � 1 μm). This
supports observations in Fig. 3 that demonstrate the presence of high
metabolic activity and coexistence of both pathogens in FBS in themixed-
species biofilm state.
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On the other hand, in the IVWM, the mixed-species biofilm showed a
distinct predominance of P. aeruginosa (average thickness 29 � 3 μm),
with the presence of S. aureus observed to be sparsely scattered in the
P. aeruginosa biomass (Fig. 5A and B). The IVWM contains additional host
factors (as compared with FBS) that could possibly counter the protective
effect of P. aeruginosa killing of S. aureus, or the effect could be mediated
by the presence of factors such as lactoferrin known to exhibit antimi-
crobial activity against S. aureus biofilms [49,116,131–133]. These ob-
servations correspond to that seen in Fig. 3B, where P. aeruginosa is seen
to outnumber S. aureus in the mixed-species biofilm formed in the IVWM.

It is important to note that the wells were not rinsed prior to imaging,
that the observed biomass (Figs. 4 and 5) represents not only biofilm, but
also attached or unattached single bacterial cells within, and on top of,
the dense bacterial mats. This is evident in the lateral (side) views in
Figs. 4 and 5, where fluorescence signal scattered across the surface of the
biofilm structure likely depicts unattached cells. Further, in the inset
images in Fig. 5, the red and green pixels represent likely both single cells
and clusters of cells, depending on the biofilm density.

Overall, our results indicate that the IVWM supports the formation of
dense, mat-like biofilms of P. aeruginosa and S. aureuswhen grown alone,
and under mixed-species conditions, the biofilm shows a distinct pre-
dominance of P. aeruginosa. This is similar to in vivo conditions where in
spite of the well-established co-existence of the two pathogens,
P. aeruginosa appears to outcompete S. aureus [17,19].

Conclusions

Based on previous reports of clinical wound fluid composition, we
have developed an in vitro wound milieu (IVWM), consisting of fetal
bovine serum, and additional host matrix and biochemical factors. Our
results indicate that the IVWM recapitulates key in vivo biofilm features
such as biomass formation, metabolic activity, interspecies coexistence
and interactions, antibiotic tolerance and three-dimensional structure.
Notably, under both planktonic and biofilm states, the IVWM supports a
distinct predominance of P. aeruginosa under mixed-species conditions.
This is important to explore further, particularly under clinical and in vivo
conditions, given that P. aeruginosa-S. aureus interactions have been
largely studied in in vitro systems [13,18,130,131]. Notably, we find that
this is distinct from that observed in serum alone, underscoring the
importance of developing and studying biofilms in composite wound-like
media conditions.

While S. aureus and P. aeruginosa are two of the most important
bacterial pathogens implicated in wound biofilms, an important next step
to this work would be to leverage the IVWM to evaluate the structure,
function and interspecies interactions of biofilms formed by a diverse
range of wound pathogens. In the wound bed, bacterial species such as
Enterococcus, Proteus, Streptococcus, Citrobacter, Morganella, Propioni-
bacterium and Corynebacterium, as well as fungal species such as Candida
albicans, Candida parapsilosis, Malasezzia restricta and Curvularia lunata
are also known to contribute to the infected wound state [134]. In
addition to different pathogenic microbial species, the impact of IVWM
on biofilm features and interactions across clinical isolates and
commensal microbes could also be explored.

Further, while the IVWM developed in this study recapitulates key
factors in the wound state, it is certainly not representative of all aspects
of the wound milieu. However, its ease of formulation, use of widely-
available components, and compatibility with standard biofilm assays
lends itself well for further adaptations and modifications, such as the
inclusion of additional factors such as glucose and matrix-
metalloproteinases [135–139]. Finally, given the chemical composition
of the milieu, examining biofilm formation, features, structure and sus-
ceptibility under wound-relevant microaerophilic or anaerobic condi-
tions, would provide interesting insights.

Taken together, the IVWM holds potential as a tractable approach to
study wound biofilms under host-relevant conditions, particularly for
high-throughput applications such as screening of novel and combination



Fig. 5. 3D visualization of biofilm structure of mixed-species P. aeruginosa and S. aureus biofilms in IVWM shows distinct predominance of P. aeruginosa.
(A) Tile scan confocal microscopy of P. aeruginosa (PAO1-mCherry) and S. aureus (AH133-GFP) mixed-species biofilms in LB, FBS and IVWM grown in tissue-culture
treated microtiter plates. (B) Mean intensity of fluorescence (representing PAO1-mCherry and SA-GFP) across the Z-height of the biofilm (with the bottom as Z ¼ 0).
Mean intensities were calculated using the LAS software as the average fluorescence intensity of each channel in each Z-plane and plotted as the mean intensity versus
Z-position. This was averaged across 3 biological replicates, and therefore represents variation seen across biological replicates, as well as variation across the Z-plane.
Given that the wells were not rinsed prior to imaging, the observed biomass represents not only biofilm, but also attached or unattached single bacterial cells within,
and on top of, the dense bacterial mats (visible in the side view images). The inset images are zoomed in ~8 times. The grids are a result from stitching of the tiles in
the tile-scan processing. Error bars represent SEM, n ¼ 3 (biological replicates).
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antimicrobial treatments. In doing so, it could bridge the gap between
reductionist in vitro systems and complex in vivo models, and provide
host-relevant insights in laboratory biofilm studies.
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