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Abstract
Given noisy, partial observations of a time-homogeneous, finite-statespace Markov
chain, conceptually simple, direct statistical inference is available, in theory, via its
rate matrix, or infinitesimal generator, Q, since exp(Qt) is the transition matrix over
time t . However, perhaps because of inadequate tools for matrix exponentiation in
programming languages commonly used amongst statisticians or a belief that the
necessary calculations are prohibitively expensive, statistical inference for continuous-
timeMarkov chainswith a large but finite state space is typically conducted via particle
MCMC or other relatively complex inference schemes.When, as in many applications
Q arises from a reaction network, it is usually sparse.We describe variations on known
algorithms which allow fast, robust and accurate evaluation of the product of a non-
negative vector with the exponential of a large, sparse rate matrix. Our implementation
uses relatively recently developed, efficient, linear algebra tools that take advantage
of such sparsity. We demonstrate the straightforward statistical application of the
key algorithm on a model for the mixing of two alleles in a population and on the
Susceptible-Infectious-Removed epidemic model.

Keywords Markov jump process · Likelihood inference · Bayesian inference ·
Matrix exponential

1 Introduction

A reaction network is a stochastic model for the joint evolution of one or more popula-
tions of species. These species may be chemical or biological species (e.g. Wilkinson
2012), animal species (e.g. Drovandi and McCutchan 2016), interacting groups of
individuals at various stages of a disease (e.g.Andersson and Britton 2000), or counts
of sub-populations of alleles (e.g. Moran 1958), for example. The state of the system
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is encapsulated by the number of each species that is present, and the system evolves
via a set of reactions: Poisson processes whose rates depend on the current state.

Typically, partial and/or noisy observations of the state are available at a set of time
points, and statistical interest lies in inference on the unknown rate parameters, the
filtering estimate of the state of the system after the latest observation or prediction of
the future evolution of the system. The usual method of choice for exact inference on
discretely observed Markov jump processes (MJPs) on a finite or countably infinite
state space is Bayesian inference via particle Markov chain Monte Carlo (particle
MCMC, Andrieu et al. (2010)) using a bootstrap particle filter (e.g. Andrieu et al.
(2009); Golightly and Wilkinson (2011); Wilkinson (2012); McKinley et al. (2014);
Owen et al. (2015); Koblents and Miguez (2015)). Other MCMC and SMC-based
techniques are available e.g. Kypraios et al. (2017), and, a further latent-variable-
based MCMC method when the statespace is finite Rao and Teh (2013).

Particle MCMC and SMC, however, are relatively complex algorithms, even more
sowhen a bootstrap particle filter (simulation from the process itself) is not suitable and
a bridge simulator is necessary, such as when observation noise is small or when there
is considerable variability in the state from one observation to the next; see Golightly
and Wilkinson (2015), Golightly and Sherlock (2019), Black (2019). In cases where
the number of states, d, is finite, direct exact likelihood-based inference is available
via the exponential of the infinitesimal generator for the continuous-time Markov
chain, or rate matrix, Q. Whilst such inference is conceptually straightforward, it has
often been avoided in practice for general MJPs, except in cases where the number of
states is very small e.g. Amoros et al. (2019). The computational cost of each iteration
of particle MCMC is proportional to the number of particles used and, for efficient
estimation; see Doucet et al. (2015),Sherlock et al. (2015) this is approximately linear
in the size of the statespace, d. In contrast, Matrix exponentiation has a computational
cost of O(d3), which, together with a lack of suitable tools in R, could explain the
lack of uptake of this method. However, conceptually simple statistical inference via
the matrix exponential is entirely practical in many cases even when the number of
states is in the thousands or higher, and it has been used successfully in a subclass of
these situations ( e.g. Jenkinson and Goutsias (2012), see Sect. 2.2). There are three
main reasons why this is possible:

1. Matrix exponentials themselves are never needed; only the product of a vector and
a matrix exponential is ever required.

2. The matrices to be exponentiated are infinitesimal generators and, as such, have a
special structure; furthermore, the vector that pre-multiplies thematrix exponential
is non-negative.

3. The matrices to be exponentiated are usually sparse; tools for basic operations with
large, sparsematrices inC++ and interfacing the resulting codewithR have recently
become widely available; see Eddelbuettel and Sanderson (2014), Sanderson and
Curtin (2018).

The sparsity of Q arises because the number of possible ‘next’ states given the
current state is bounded by the number of reactions, which is typically small. This
article describes matrix exponential algorithms suitable for statistical application in
many cases, and demonstrates their use for inference, filtering and prediction. Associ-
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ated code provides easy-to-use R interfaces to C++ implementations of the algorithms,
which are typically simpler and often faster than more generally applicable algorithms
for matrix exponentiation.

Section 1.1 describes the Susceptible-Infectious-Removed (SIR)model for the evo-
lution of an infectious disease and the Moran model for the mixing of two alleles in
a population, then briefly mentions many more such models where the statespace is
finite, and a few where it is countably infinite. The two main examples will be used to
benchmark and illustrate the techniques in this article. As well as being directly of use
for models with finite state spaces, exponentials of finite rate matrices can also be used
to perform inference on Markov jump processes with a countably infinite statespace;
see Georgoulas et al. (2017) and Sherlock and Golightly (2019). The latter uses the
uniformisation and scaling and squaring algorithms as described in this article, while
the former uses the less efficient but more general algorithm of Al-Mohy and Higham
(2011) (see Sect. 3).

Section 2 of this article presents the likelihood for discretely and partially observed
data on a finite-statespace continuous-time Markov chain and presents two ‘tricks’
specific to epidemic models, that allow for a massive reduction in the size of the
generators that are needed comparedwith the size of the statespace. Section 3 describes
theMatrix exponential algorithms and Sect. 4 benchmarks some of the algorithms and
demonstrates their use for inference, filtering and prediction. The article concludes in
Sect. 5 with a discussion.

1.1 Examples andmotivation

Both byway ofmotivation and becausewe shall use them later to illustrate ourmethod,
we now present two examples of continuous-time Markov processes, where a finite,
sparse rate matrix contains all of the information about the dynamics.

For each Markov process, the set of possible states can be placed in one-to-one
correspondancewith a subset of the non-negative integers {1, . . . , d}. The off-diagonal
elements of the rate matrix, Q, are all non-negative, and the i th diagonal element is
Qi i = −∑d

j=1, j �=i Qi, j . A chain that is currently in state i leaves this state upon the
first event of a Poisson process with a rate of −Qi,i ; the state to which it transitions is
j with a probability of Qi, j/(−Qi,i ). Whilst the rate matrix,Q, is a natural description
of the process, the likelihood for typical observation regimes involves the transition
matrix, exp(Qt), the (i, j)th element of which is exactly P (Xt = j |X0 = i).

Both examples take the form of a reaction network, where from the current state
Xt , the next state change will occur according to one of the specified reactions. The
state can be thought of as an integer vector, where each element of the vector indicates
the numbers of a particular species that are currently present in the system. When, as
here, the maximum number of each species is finite, the set of possible states can be
placed in one-to-one correspondence with the natural numbers as required to define
Q. Each reaction occurs according to a Poisson process with a rate, λ(Xt ), and when
it occurs species combine according to the reaction formula. For example, the first
reaction in the SIR model, below occurs with a rate of βSI , and when it occurs the
state (S, I ) changes to (S − 1, I + 1).
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Example 1 The SIR model for epidemics. The SIR model for a disease epidemic
has 3 species: those who are susceptible to the epidemic, S, those both infected and
infectious, I, and those who have recovered from the epidemic and play no further
part in the dynamics, R. The non-negative counts of each species are denoted by S,
I , and R. For relatively short epidemics the population, n pop, is assumed to be fixed,
and so the state of the Markov chain, represented by (S, I ), is subject to the additional
constraint of S + I ≤ n pop, with R = n pop − S − I . The two possible reactions and
their associated rates are:

S + I
βSI−→ 2I, and I

γ I−→ R.

Example 2 The Moran model for allele frequency descibes the time evolution of
the frequency of two alleles, A1 and A2 in a population with a fixed size of n pop.
Individuals with allele A1 reproduce at a rate of α, and those with A2 reproduce at a
rate of β. When an individual dies it is replaced by the offspring of a parent chosen
uniformly at random from the whole population (including the individual that dies).
The allele that the parent passes to the offspring usually matches its own, however as
it is passed down an allele may mutate; allele A1 switching to A2 with a probability of
u and A2 switching to A1 with a probability of v. Let A1 and A2 represent individuals
with alleles A1 and A2 respectively and let N be the number of individuals with allele
A1. The two reactions are

A1
λN−→ A2 and A2

μN−→ A1.

Setting fN = N/n pop, the corresponding infinitesimal rates are

λN = (1 − fN ) [α fN (1 − u) + β(1 − fN )v] and

μN = fN [β(1 − fN )(1 − v) + α fN u] ,

where the unit of time is the expectation of the exponentially distributed time for an
individual to die and be replaced. ��

Themany other examples of interest include the SIS andSEIRmodels for epidemics
(e.g. Andersson and Britton 2000), dimerisation and the Michaelis-Menten reaction
kinetics (e.g.Wilkinson 2012). Further examples butwith an infinite statespace include
the Schlögel model (e.g. Vellela and Qian 2009), the Lotka-Volterra predator-prey
model (e.g. Wilkinson 2012, Drovandi and McCutchan 2016) and models for the
autoregulation of the production of a protein (e.g. Wilkinson 2012), all of which are
tackled using matrix exponentials in Sherlock and Golightly (2019).

2 Data and likelihood calculations

Denote the statespace of the Markov chain {Xt }t≥0 by X = {x (k)}dk=1. Let the prior
mass function across states be ν(x |θ) and define ν(θ) := (ν(x (1)|θ), . . . , ν(x (d)|θ)).
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Let the infinitesimal generator beQ(θ), and suppose there are observations y0, y1, . . . ,
yn at times t0, t1, . . . , tn , where Yi |(Xi = xi ) has a mass function of p(yi |xi , θ),
i = 0, . . . , n.

2.1 Likelihood for noisy and partially observed data

For any continuous-time Markov chain {Xt }t≥0 with an infinitesimal generator, or
rate matrix of Q, the (x, x ′)th element of exp(Qt) gives the transition probability (e.g.
Norris (1997)):

P
(
Xt = x ′ | X0 = x

) = [
exp(Qt)

]
x,x ′ ,

where here and elsewhere we abuse notation by identifying the state x (i) ∈ X with
the corresponding index i ∈ {1, . . . , d}.

Defining the diagonal likelihood matrix to be L j (θ) = diag(p(y j |x (1), θ), . . . ,

p(y j |x (d), θ)) and � j = t j − t j−1, j = 1, . . . , n, the likelihood for the observations
is then

P (y0, . . . , yn | θ) =
∑

(x0,...,xn)∈X n+1

P (X0 = x0)P (Y0 = y0|X0 = x0)

n∏

j=1

P
(
X j = x j |X j−1 = x j−1

)
P
(
Y j = y j |X j = x j

)

= ν(θ)
L0(θ)

⎡

⎣
n∏

j=1

exp(Q(θ)� j )L j (θ)

⎤

⎦ 1, (1)

where 1 is the d-vector of ones. Similarly, the filtering distribution after observation
ym is

P
(
Xtm = x | y0, . . . , ym

) =
ν(θ)
L0(θ)

[∏m
j=1 exp(Q(θ)� j )L j (θ)

]

ν(θ)
L0(θ)
[∏m

j=1 exp(Q(θ)� j )L j (θ)
]
1
. (2)

Consider the required multiplication from left to right: since the likelihood vectors
L j (θ) are diagonal, pre-multiplication by a d-vector is an O(d) operation. Pre-
multiplication of the exponential of a sparsematrix by a d-vector via the uniformisation
algorithm is also O(d) (see Sect. 3.1), so the entire likelihood calculation is O(d). In
the case of certain epidemic models d itself can be much smaller than might naively
be assumed.

2.2 Statespace reduction for epidemic models

An alternative formulation of the statespace of the Markov chain for an SIR epi-
demic model (or more general models such as the SEIR), in terms of the degree of
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advancement (DA), was first pointed out in Jenkinson and Goutsias (2012). Instead of
representing the state in terms of the number of susceptibles and the number of infect-
eds, given a known initial condition it is represented by the number of new infections
and the number of new removals, BI and BR , neither of which can be negative and
both of which are non-decreasing. Given the initial condition, the map from (S, I )
to (BI , BR) is one-to-one; however the rate matrix with the DA formulation is lower
triangular, a key ingredient in the implicit Euler integration scheme used in Jenkinson
and Goutsias (2012) to integrate the master equation.

When performing Bayesian inference for the SIR model using noisy, partial obser-
vations, Ho et al. (2018) points out that augmenting the state space of the MCMC
Markov chain to include not just the model parameters but also the true values of
S and I at each observation time can massively reduce the sizes of the statespaces
that need to be considered when evolving the SIR process from one observation
time to the next provided the DA formulation is used. Consider the case of exact
observations and suppose, for example, that in a population of size n pop = 500,
xa = (Sa, Ia, Ra) = (485, 2, 13) and for some t > 0, xa+t = (470, 3, 27). Then
bR = Ra+t − Ra = 14 and bI = Sa − Sa+t = 15. The size of the statespace for
evolution between time a and time a+ t ,X a+t

a , is then reduced from the size of the full
statespace, (n pop + 1)(n pop + 2)/2 = 125751 to (bI + 1)(bR + 1) = 240. The expo-
nential of the rate matrix is not used in Ho et al. (2018); instead, a recursive formula
for the Laplace transform of the transition probability to a given new state in terms of
transition probabilities for old states then permits estimation of the transition vector
from a known initial starting point in O(d) operations, where d is the dimension of
the statespace actually required. Inference is then performed for the SIR model using
data from the Ebola outbreak in regions of Guinea.

We may use the DA formulation with data augmentation, provided we include an
additional coffin state, C, with QC,x = 0 for all x ∈ X a+t

a ∪ C. Any births that would
leave the statespace (and hence contradict the observation at time a + t) instead go
to C. The aforementioned implementation, a square grid of possible states, includes
“impossible” states to which the rate of entry is zero: the current number of infections
can never be negative, so, throughout the time interval [a, a + t], bR ≤ Ia + bI .
Removing these states altogether allows us to make a further reduction in the size of
the statespace, by a factor of up to one half. In the example above, this reduces the
statespace size still further, from 240 to 162.

3 Matrix exponentiation

The exponential of a d × d square matrix, M is defined via its infinite series:
eM = ∑∞

i=0
1
i !M

i . As might be anticipated from the definition, for a d × d matrix,
algorithms for evaluating exp (M) take O(d3) operations (see Moler and Van Loan
(2003), for a review of many such methods). However, for a d-vector, v, the product
exp (Mt) v is the solution to the initial value problem w(0) = v, dw/dt = Mw, and
is the key component of the solution to more complex differential equations such as
dw/dt = Mw + Bu(t). For this reason the numerical evaluation of the action of a
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matrix exponential on a vector has received considerable attention of itself, e.g. Gal-
lopoulos and Saad (1992), Saad (1992), Sidje (1998), Al-Mohy and Higham (2011).

When M is dense,

exp(M) v =
∞∑

i=0

1

i !M
iv (3)

can be evaluated inO(d2) operations if the series is truncated at an appropriate point.
However, motivated by the examples in Sect. 1.1 our interest lies in large sparse
matrices, and the number of operations can then be reduced to O(rd), where r is the
average number of entries in each row of M.

With double-precision arithmetic, real numbers are stored to an accuracy of approx-
imately 10−16. Thus, evaluation of the exponential of a large negative number via its
Taylor series is prone to potentially enormous round-off errors due to the almost can-
cellation of successive large positive and negative terms; a similar problem can affect
the exponentiation of a matrix. Such issues are typically circumvented via the identity

exp(M)v =
[

K∏

k=1

exp(M/K )

]

v, (4)

applied for a sufficiently large integer K , and evaluated via K successive evaluations
of product of exp(M/k) and a vector. The calculation on the right of (4) typically
involves many more numerical operations than the direct calculation on the right
of (3), so K should be the smallest integer that leads to the required precision by
mitigating sufficiently against the cancellation of large positive and negative terms.
This minimises both the accumulation of rounding errors and the total compute time
given the required accuracy.

One common technique for such multiplication, exemplified in the popular
Expokit FORTRAN routines of Sidje (1998), estimates eM/K v via its projection
on to the Krylov subspace of Span{v,Mv, . . . ,Mn−1v}, where n << d. A second
method is provided in Al-Mohy and Higham (2011), where the key contributions lie
in the method for choosing K and for choosing a suitable truncation point for the
infinite series, as well as a means of truncating each series early depending on the
behaviour of recent terms. These and other algorithms are compared, specifically for
the case of the SIR model (which has a special structure; see Sect. 2.2) in Kinyanjui
et al. (2018).

Both Krylov methods and that of Al-Mohy and Higham (2011) use the fact that M
is sparse and that only the action of exp(M) on a vector is required, but neither uses the
structure of interest to us: we require ν
 exp(Qt)whereQ is a rate matrix for a general
MJP and ν is a non-negative vector. Since Qt is also a rate matrix, we henceforth set
t = 1 without loss of generality. Let

ρ := max
i=1,...,d

|Qi i | and P = (1/ρ)Q + I . (5)
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P is a Markov transition matrix, and the key observation is that

expQ = exp(ρP − ρI) = exp(−ρ) exp(ρP) =
∞∑

i=0

exp(−ρ)
ρi

i ! P
i . (6)

Firstly, P has no negative entries so cancellation of terms with alternating signs is no
longer a concern. Secondly, expQ can be interpreted as a mixture over a Poisson(ρ)

random variable I , of I transitions of the discrete-time Markov chain with a transition
matrix of P.

The next two subsections detail variations on two existing algorithms that utilise
this special structure: the uniformisation algorithm and a variation on the scaling and
squaring algorithm. For sparse rate matrices, the uniformisation algorithm has a cost
ofO(ρd), whereas the scaling and squaring algorithm has a cost ofO(d3 log ρ). Thus,
the uniformisation algorithm is preferred when ρ is small, and scaling and squaring
when ρ is large but d is relatively small. We now describe the two algorithms in detail.

3.1 The uniformisation algorithm

In many statistical applications, the most appropriate algorithm for calculating μ
 :=
ν
 expQ is the uniformisation algorithm, e.g. Reibman and Trivedi (1988), Sidje and
Stewart (1999). This estimates μ
 by truncating a single series none of whose terms
can be negative, rather than truncating multiple series where terms may change sign
as in Al-Mohy and Higham (2011). Given an ε > 0, the algorithm calculates an
approximation, μ̂, to μ by picking a truncation point for the infinite series, such that,
if ν were a probability vector, the (guaranteed to be non-negative) amount of true
missing probability over all of the d dimensions is controlled:

0 < 1 − ||μ̂∗||1
||ν||1 < ε,

where μ̂∗ is the probability vector that would be calculated if there were no rounding
errors, and the only errors were due to the truncation of the infinite series. Typically we
aim for ε to be similar to the machine’s precision. We control the absolute truncation
error and note that with any truncation of the power series, it is impossible to obtain
general control of the relative error in a given component ofμ, |μ̂i/μi −1|. Consider,
for example, a Moran process (Example 2), where Q is tridiagonal. Then Qk is also
banded, with a band width of 2k + 1. For any given mmax , and ν = (1, 0, 0, . . . ), set
d > mmax + 1. The truncated approximation to eQ gives a transition probability of 0
for all states above mmax + 1, yet, in truth there is a non-zero probability of such a
transition. However, the combined probability of all transitions which have not been
accounted for is, by design, at most ε.

From (6),

μ
 = ν
eQ = e−ρν

∞∑

i=0

ρi

i ! P
i ≈ e−ρ

m∑

i=0

ρi

i ! ν
Pi =: μ̂∗
.
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Now,

d∑

i=1

μ̂∗
i = μ̂∗
1 = e−ρ

m∑

i=0

ρi

i ! ν
Pi1 = ||ν||1e−ρ
m∑

i=0

ρi

i ! .

So the absolute relative error, or (when ν is a probability vector) missing probability
mass, due to truncation is

rm(ρ) := e−ρ
∞∑

i=m+1

ρi

i ! ,

the tail probability of a Poisson(ρ) random variable. Of direct interest to us is

mε(ρ) := inf{m ∈ N : rm(ρ) ≤ ε},

the smallest m required to achieve an error of at most ε, or, essentially, the quantile
function for a Poisson(ρ) random variable, evaluated at 1−ε. Chebyshev’s inequality
applied to X/ρ, where X ∼ Poisson(ρ) givesP

(|X/ρ − 1| ≥ 1/
√

ερ
) ≤ ε, implying

the m = O(ρ) computational cost given earlier in this section.
In many programming languages, standard functions are available to evaluate

mε(ρ). However, for example, in R we find
> rho=100; eps=1e-16
> qpois(eps,rho,lower.tail=FALSE)
[1] Inf
> ppois(193,rho,lower.tail=FALSE) # 193 is correct answer, not infinity
[1] 5.713551e-17
> eps=1e-15
> qpois(eps,rho,lower.tail=FALSE)
[1] 185
> ppois(185,rho,lower.tail=FALSE)
[1] 1.035777e-14
> ppois(189,rho,lower.tail=FALSE) # 189 is correct answer, not 185
[1] 8.017165e-16

i.e., an inability to calculate mε(ρ) correctly given the small ε values that we
require; the underlying functions are also callable from C++ and lead to the same
error. In Appendix A we provide sharp bounds onmε(ρ), and this leads to an accurate
methodology for its exact calculation, producing the same (correct) answers as the
C++ boost library (which we have not been able to use with Rcpp) and up to twice
as quickly.

The uniformisation algorithm is presented as Algorithm 3.1. For large values of ρ,
although there is no problem with large positive and negative terms cancelling, it is

possible that the partial sum
∑k

i=0
ρi

i ! might exceed the largest floating point number
storable on the machine. We circumvent this problem by occasionally renormalising
the vector partial sum when the most recent contribution is large, and compensating
for this at the end; see lines 5, 12 and 14.
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Algorithm 1 Uniformisation algorithm for ν
eQ with a missing mass of at most ε.

1: ρ ← maxdi=1 |Qi,i |; M ← Q + ρId ; BIG ← 10100.
2: Find mε(ρ).
3: b ← ||ν||1; c ← 0.
4: if b > BIG then
5: ν ← ν/b; c ← c + log b; b ← 1.

6: vpro ← vsum ← ν.
7: f ← 1.
8: for j from 1 to m do
9: v


pro ← v

proM/ f ; b ← bρ/ f .

10: vsum ← vsum + vpro.
11: if b > BIG then
12: vpro ← vpro/b; vsum ← vsum/b; c ← c + log b; b ← 1.

13: f ← f + 1.
14: return ec−ρ × vsum .

3.2 Scaling and squaring

One of the simplest, yet most robust methods for exponentiating any square matrix is
the scaling and squaring algorithm, e.g. Moler and Van Loan (2003). When the square
matrix is an infinitesimal generator, this method can be made even more robust using
the reformulation in (6). Furthermore, when not expQ but ν
 expQ is required, some
further computational savings can be obtained.

The basic scaling and squaring algorithm takes advantage of the identity

exp(M) = [
exp(M/2s)

]2s
,

where for any integer s, a square matrix is raised to the power of 2s by squaring it
s times. We set M = Q + ρI = ρP from (5). And define Msmall = M/2s . First,
exp(Msmall) is approximated via the uniformisation algorithm applied to a matrix,
e.g. Ross (1996):

∑m
i=0 M

i
small/i !. This quantity is then squared s times. The optimal

value of s is chosen according to an algorithm described in Appendix B.
When evaluating ν
 exp(Q) = exp(−ρ)ν
 exp(M) via scaling and squaring with

s > 0 it is never most efficient to first evaluate exp(M). Let s1 and s2 be two integers
such that s1 + s2 = s. Then

ν
 exp(M) = ν
[exp(Msmall)]2s1 [exp(Msmall)]2s1 . . . [exp(Msmall)]2s1 ,

with 2s2 matrix vector products. The cost of s1 matrix squares and 2s2 vector-matrix
products (where the matrix is dense) is s1d3 + 2s2d2. We round the minimiser down
to the nearest integer for simplicity, setting

s2 = min (s, �(log d − log log 2)/ log 2�) (7)

Even with d = 2 this gives s2 = min(s, 1).
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Algorithm 2 Scaling and squaring algorithm for ν
eQ with a missing mass of at most
ε.
1: ρ ← maxdi=1 |Qi,i |.
2: Find s via linear search; ρsmall ← ρ/2s ; find mε(ρsmall ); find (s1, s2) via (7).
3: Msmall ← (Q + ρI)/2s .
4: νpro ← ν.
5: Apro ← Msmall ; Asum ← I + Msmall
6: f ← 2.
7: for j from 2 to m do
8: Apro ← AproMsmall/ f .
9: Asum ← Asum + Apro.
10: f ← f + 1.
11: Asum ← e−ρsmallAsum
12: for j from 1 to s1 do
13: Asum ← Asum × Asum .
14: for j from 1 to 2s2 do
15: ν


pro ← ν

proAsum .

16: return ν

pro.

3.3 Improvements

We now describe two optional extensions: renormalisation, which improves the accu-
racy of any matrix exponentiation algorithm used on a rate matrix, and two-tailed
truncation, which is unique to the uniformisation algorithm and allows a small com-
putational saving.

Since a := ∑d
i=1 μi = ∑d

i=1 νi there is no need to keep track of the logarith-
mic offset (c in Algorithm 3.1). Instead the final vector (vsum in Algorithm 3.1) is
renormalised at the end so that its components sum to a.

Two-tailed truncation, e.g. Reibman and Trivedi (1988) permits a small reduction
in the computational cost of the uniformisation algorithm with no loss of accuracy.
When ρ is moderate or large, the total mass of probability from the initial value of
vsum and the early values accumulated into vsum (Steps 6 and 10 of Algorithm 3.1)
is negligible (has a relative value smaller than ε/2, say) compared with the sum of
the later values. In such cases vsum may be initialised to 0 and step 10 omitted for
values of j beneath some mlo. Proposition 1 below shows that if m is chosen such
that P (Po(ρ) > m) ≤ ε/2 then setting mlo := max(0, 2�ρ − 0.5� − m) ensures that
the missing probability mass is no more than ε. For large ρ, m − mlo = O(

√
ρ), so

with two-tailed truncation the cumulative cost of Step 10 dwindles compared with the
other O(d) costs, which are repeated O(ρ) times.

Proposition 1 Given ρ > 0, let pn = e−ρρn/n! = P (Poisson(ρ)) = n, and let
c = �ρ − 1/2�. Then for a ≤ c − 1,

c−a−1∑

j=0

p j <

∞∑

j=c+a+1

p j .
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Proof For any integer b, and 1 ≤ i ≤ b,

pb−i

pb+i

= ρ−2i b(b + 1)(b − 1)(b + 2) . . . (b − i + 1)(b + i)

= ρ−2i
[

b2∗ − 1

22

]

· · ·
[

b2∗ − (2i − 1)2

22

]

where b∗ = b + 1/2. Hence, if b∗ ≤ ρ, pb−1/pb+i < 1, and so

�b∗�−a−1∑

j=0

pi =
�b∗�∑

i=a+1

pb−i <

�b∗�∑

i=a+1

pb+i <

∞∑

i=a+1

pb+i .

��

3.4 Implementation

Our C++ implementation uses the recent basic sparse matrix functionality in the
C++ Armadillo library; see Sanderson and Curtin (2016), Sanderson and Curtin
(2018) to calculate ν
 expQ, where ν is non-negative and Q is a large, sparse rate
matrix. Direct function calls from the R programming language are enabled through
RcppArmadillo; see Eddelbuettel and Sanderson (2014). For completeness, the
functions can also be called with dense rate matrices. The functions are collected into
the expQ package which is downloadable from https://github.com/ChrisGSherlock/
expQ and are briefly outlined in Appendix C.

The speed of a vector multiplication by a sparse-matrix depends on the implementa-
tion of the sparsematrix algorithm. In R(RCore Team 2018) and in C++Armadillo,
sparse matrices are stored in column-major order. Hence pre-multiplication of the
sparse matrix by a vector, ν
Q, is much quicker than post multiplication, Qν. In
other languages, such as Matlab, sparse matrices are stored in row-major order and
post-multiplication is the quicker operation, so Q
 should be stored and used, rather
than Q.

4 Numerical comparisons and demonstrations

In Al-Mohy and Higham (2011) their new algorithm (henceforth referred to as AMH)
is compared across many examples against state-of-the-art competitors, including,
in particular, the expokit function expv of Sidje (1998). In most of the experi-
ments AMH is found to give comparable or superior accuracy together with superior
computational speed. Given these existing comparisons and that the superiority of
the uniformisation algorithm over the algorithm of Al-Mohy and Higham (2011) (for
rate matrices) is not the main thrust of this paper, we perform a short comparison of
accuracy and speed for two different likelihood calculations for an SIR model fitted
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to data from the Eyam plague. We compare our implementation of the uniformisation
algorithm, the algorithm of AMH, the expAtv function which is from the R package
expm and uses the method of Sidje (1998), and the bespoke algorithm for epidemic
processes in Ho et al. (2018). Since it would be unfair to compare the clock-speeds
for the Matlab code for AMH directly with those of our RcppArmadillo imple-
mentation, we compare the number of sparse vector-matrix multiplications that are
required.

When performing maximum-likelihood estimation, each iteration of the optimisa-
tion algorithm tries a new parameter value, and when performing Bayesian inference,
each iteration of the algorithm proposes a new parameter value. In each case, given
the parameter value, the pertinent rate matrices are created and then the matrix expo-
nentiation function is called in turn for each of the matrices as required by (1). If the
generic exponentiation function is called then the decision on whether to use Algo-
rithm 1 or Algorithm 2 is based upon the dimension, d and the maximum absolute
value on the diagonal, ρ. Whether Algorithm 1 or 2 is called directly or via the generic
exponentiation function, the first task it performs is the evaluation of ρ. The cost of
this is neglibible compared with that of the exponentiation itself, so it is essentially
immaterial thatρ is evaluated twicewhen the generic exponentiation function is called.

The highest accuracy available in C++ using sparse matrices and the armadillo
linear algebra library is double precision, which we used throughout in our imple-
mentation of both of our algorithms. For the uniformisation and scaling and squaring
algorithms we used ε = 10−15, and for AMH we used the double-precision option.
For expAtv and for Ho et al. (2018) we use the default package setting.

4.1 Comparison with other matrix exponentiation algorithms

To examine the speed and accuracy of the algorithmwe consider the collection (see the
first three rows of Table 1) of (S, I ) (susceptible and infected) values, which originated
in Raggett (1982) and were used in Ho et al. (2018), for the Eyam plague. We set
the parameters to their maximum-likelihood estimates, (β, γ ) = (0.0196, 3.204) and
consider the likelihood for the data in Table 1. In addition, tomimic the size of potential
changes between observation times and the size of the elements of the rate matrix from
a larger population, we also evaluated the likelihood for the jump directly from the data
at time 0 to the data at time 4. The final three rows of Table 1 refer to the rate matrix for
the transition between consecutive observations and provide the dimension the matrix
first using the reformulation of Ho et al. (2018) and then applying the improvement
described in Sect. 2.2; the final row is the absolute value of the largest entry of Q,
ρ. The rate matrix for the single jump between times 0 and 4 had dHCS = 30789,
d = 16082 and ρ ≈ 3439.5. The full statespace has a size of 34453. Thus, for large
changes, the main reduction in size arises from the improvement in Section 2.2, but
for small jumps this provides a smaller relative reduction compared with that in Ho
et al. (2018).

For the uniformisation and scaling and squaring algorithm, with ε = 10−15, the
algorithm of Ho et al. (2018) and the expAtv function from the R package expm
which uses the technique of Sidje (1998) we found the CPU time for 1000 estimations
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Table 1 Time (in units of 31 days), and numbers of susceptibles and infecteds, originally from Raggett
(1982). The final rows indicates, for each pair of consecutive observations, the size of the statespace for
evaluating the transition probability and the ρ value for the associated rate matrix

Time 0 0.5 1.0 1.5 2.0 2.5 3.0 4.0

S 254 235 201 153 121 110 97 83

I 7 14 22 29 20 8 8 0

dHCS - 261 946 2059 1387 289 197 346

d - 245 867 1868 1308 282 181 240

ρ - 101.5 171.4 217.1 170.1 83.1 53.6 106.3

Table 2 Timings for estimating the full log-likelihood (1000 repeats) and the log-likelihood for the jump
from the initial to the final observation (20 repeats) for the Eyam data set, number of sparse vector-matrix
multiplications for one repeat, and the accuracies of the estimates. Results are given for the method of Ho
et al. (2018) (HCS), the expAtv function in the expm package, which uses the Krylov subspace techniques
of Sidje (1998), the method of Al-Mohy and Higham (2011) (AMH), the uniformisation algorithm (Unif)
and the scaling and squaring algorithm (SS). 1 The timing for SS on the jump likelihood was estimated
from a single repeat

Algorithm Full likelihood Jump likelihood

Time (secs) Mult Accuracy Time (secs) Mult Accuracy

HCS 45.3 – 5.7 × 10−8 9.7 – 4.3 × 10−9

expAtv 558.5 – 1.6 × 10−10 323.2 – 8.2 × 10−11

AMH – 3701 < 1 × 10−15 - 14300 < 4 × 10−14

Unif 18.72 1596 < 1 × 10−15 15.2 3921 < 6 × 10−14

SS 1678 – 1.1 × 10−13 89401 - < 6 × 10−14

of the likelihood (20 estimates for the likelihood for the jump from t = 0 to t = 4).We
also recorded the error in the evaluation of the log likelihood. Since for uniformisation,
using renormalisation and two-tailed truncation together produced the fastest and
most accurate evaluations, we only considered this combination. Given that the true
likelihood is not known, the error using uniformisation, from scaling and squaring and
from Al-Mohy and Higham (2011) were approximately bounded by examining their
discrepancy from each other. The results are presented in Table 2.

Scaling and squaring is extremely slow in these high-dimensional scenarios; how-
ever, Sherlock and Golightly (2019) provides a bistable example, the Schlögel model,
where d ≈ 100−200 butρ > 105, and the scaling and squaring algorithmoutperforms
uniformisation by orders of magnitude.

Since m = O(ρ) the choice of tolerance, ε, typically has only a small effect on the
speed of the uniformisation algorithm. For the full likelihood evaluation, uniformisa-
tion is over twice as fast as the algorithm of Ho et al. (2018) and approximately thirty
times as fast as expAtv, and is more accurate than either; it is also over twice as fast
as the algorithm of Al-Mohy and Higham (2011), although both are very accurate.

For the single large jump between observations, we see the same pattern in terms
of accuracy. There is a gain in efficiency by using two-tailed-truncation because ρ is
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Fig. 1 Moran model (left): true values (o), observations (x), filtering/prediction mean (solid lines) and 95%
quantiles (dashed and dotted lines) for a further time of 5000 from data up to T = 5000 and data up to
T = 10000. Swansea measles SIR model (right): posterior median (solid line, with o to show the positions)
and posterior 95% quantiles for the number of infected people at each real or latent observation time (top)
and the cumulative number recovered by that time (bottom)

larger (mlo = 3081 and m = 3797), but despite this, the method of Ho et al. (2018)
is now more efficient than uniformisation, although considerably less accurate than
it. Again, expAtv is over twenty times slower than uniformisation and less accurate,
and AMH is over three times slower than uniformisation.

4.2 Maximum likelihood inference, filtering and prediction

We now consider the Moran model, which has four unknown parameters: (α, β, u, v)

and n pop = 1000. Setting (α, β, u, v) = (1, 0.3, 0.2, 0.1), we simulate a path of
the process for T = 10000 time units. We then sample 51 observations at times
0, 200, 400, . . . , 10000, by taking the value of the process at each of these times and
adding independent noise with a distribution of Bin(800, 0.5) − 400.

We then perform inference on θ = (logα, logβ, log[u/(1 − u)], log[v/(1 − v)])
by maximising the likelihood based on all the data and, separately, based on the data
up to T = 5000. In each of these two data scenarios we find the filtering distribution,
P
(
XT |y0:T , θ̂

)
, at time T via (2); finally we predict forward from T in steps of 200

for a further time of Tpred = 5000 by repeatedly multiplying the current distribution
vector by exp(200Q(θ̂)). The true values, observations and filtering and prediction
distributions are shown in Fig. 1. The whole process of inference and prediction took
less than two minutes on a single i7-3770 CPU running at 3.40GHz. Further, after
defining Q, only 10 lines of R code are required to calculate the log-likelihood, and
fewer than this to produce the filtering distribution (see Appendix E).

4.3 Bayesian inference for the Swanseameasles epidemic of 2013

The largest measles outbreak in the United Kingdom between 2011 and 2019 centred
around Swansea, Wales and occurred between November 2012 and July 2013. Of the
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Table 3 Number of measles notifications in the Swansea Local Authority area by month (from http://www.
wales.nhs.uk/sitesplus/888/page/66389, February 10th 2020)

Month 2012 2013

Oct Nov Dec Jan Feb Mar Apr May Jun Jul

Day number 0 30 61 92 120 151 181 212 242 273

Notifications 0 10 27 34 59 183 278 56 17 0

1219 cases inmid- andwest-Wales, 664 occurred in the Swansea Local Authority (LA)
area, 243 in the nearby Neath and Port Talbot LA and fewer than 80 occurred in any
of the other individual LA areas in West or South Wales (http://www.wales.nhs.uk/
sitesplus/888/page/66389, accessed February 10th 2020). A reduction in uptake of the
MMR (Measles, Mumps, Rubella) vaccine has been blamed e.g. Jakab and Salisbury
(2013) for this, with particularly low rates reported in Swansea (https://en.wikipedia.
org/wiki/2013_Swansea_measles_epidemic, accessed February 10th 2020).

The basic reproduction number, R0, is the expected number of secondary infections
in a susceptible population that arise directly from the primary infection of a single
individual. For the SIR model described in Section 1.1, R0 = β/γ . For measles, R0
is often reported as between 14 and 18 (e.g. Anderson and May (1982)), which fits
with the World Health Organisation (WHO) recommendation of vaccination level of
at least 93 − 95% WHO (2009).

We fit the SIRmodel to the notification data for the Swansea LA provided in Table 3
so as to estimate the overall R0 for the partially vaccinated population in Swansea and
to demonstrate inference on the unknown number of infectious individuals at each
observation time. In fitting the model we are making several assumptions and simpli-
fications, including the following. Firstly, we are ignoring infections from Swansea to
other LAs and from these LAs to Swansea; since most of the infections occurred in
Swansea the former will outnumber the latter and so we will underestimate the ‘true’
R0, and provide a ‘local’ R0 at the epicentre of the infection. Secondly it is known that
the lowest level of vaccination, and the highest level of infection was amongst 10-18
year olds, seeWise (2013); a more accurate model would, therefore, partition the pop-
ulation into age groups. Age-stratified, continuous-timeMarkov chain SIRmodels are
difficult to fit in general, however, and often a deterministic version of the model is
used (e.g. Broadfoot and Keeling (2015)). Finally, we treat a notification as equivalent
to a removal: this is not unreasonable as once an individual has been diagnosed by a
GP with suspected measles they will be asked to isolate themselves.

As described in Section 2.2 we add as latent variables the number of infections at
each of the reporting times, Days 30, 61, 92, ..., 212. The number of infections at times
242 and 273 must both be zero.

To understand the evolution near the peak of the epidemic and speed up inference
still further, we add latent observation times during the peak of the infection, at Days
125, 130, 135, 140, 145, 155, 160, 165, 170 and 175. This leads to 10 further latent
observations of the number of infected individuals and (because of constraints) 10
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further latent observations of the number removed during each reduced time period,
leading to a total of 27 integer

latent variables.
We use a N(log 5, 2/3) prior for log R0 = log(β/γ ), a N(log(1/15), 1) prior for

log γ and, because it is very poorly identified, we set the prior for the effective popu-
lation size to p(Npop = n) ∝ exp(−n/500)1{n≥1000}.

We perform inference via aMetropolis-within-Gibbs algorithm: θ = (logβ, log γ )

is updated via a random walk proposal with a jump of N(0, λ2I2), n pop via an integer-
valued random walk proposal, and xlatent , the latent observations via integer random
walks, with physical constraints (such as the sum of all the Rs not being able to exceed
n pop) checked for automatically; see Appendix D for more details.

The basic reproduction number, R0, is estimated as 1.15, with a 95% credible
interval of (1.01, 1.31). Thisfitswith other informationknown:firstly,upuntil 2013, R0
only changed gradually over time (due to year-on-year variations in infant vaccination
rates) and it cannot have reached much higher than 1 in late 2012 as otherwise there
would have been an outbreak in a previous year; secondly an R0 of 1.15 if the true R0
is 16, corresponds to a vaccination level of 93%, and R0 = 1.3 corresponds to a 92%
level, and as argued earlier, we expect to slightly underestimate R0. As of December
2012, the estimated coverage of one dose of MMR vaccine among 16 year-olds in
Wales was 91%; see Public Health Wales (2013).

The right-hand panels of Fig. 1 show the posterior median and 95% credible inter-
vals for the number of infections at each of the monthly observation times and at the 10
additional latent times, and similar intervals for the cumulative number of infections.
In any infectious disease, at any current time point, it is vital to understand the current,
unknown, number of infections in order to be able to predict the future course of an
epidemic.

5 Discussion

We have shown that inference, prediction and filtering for continuous-time Markov
chainswith a large but finite statespace, especially those arising from reaction networks
is not just conceptually straightforward when the matrix exponential is used, but it is
also often practical. We have provided and demonstrated the use of robust tools for
this purpose in R, which opens up the direct use of and inference for reaction-network
models to a wider audience. Straightforward inference for epidemic models, such as
the SIR and SEIRmodels is particularly apposite at the time of submission, as it might
have enabled an analysis of early COVID-19 infection data by people not expert in
the more complex MCMC methodology typically used.

We emphasise thatwe are not suggesting that the toolswe provide should replace the
particleMCMC,ABCand SMCmethods currently employed. In our experience, infer-
ence for epidemic models coded in a fast, compiled language is often more efficient
in terms of effective samples per second, for example, than the approach using matrix
exponentiation. However, the matrix exponential approach is much more straightfor-
ward, and the code that uses it can be written in the simpler, interpreted language
R.
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As the size of the statespace increases, the efficiency of the matrix exponentiation
approach decreases; however, once the statespace becomes sufficiently large, the evo-
lution of the process is often approximated by a stochastic differential equation (e.g.
Golightly andWilkinson 2005, Fearnhead et al. 2014) or, when the behaviour is effec-
tively deterministic, by ordinary differential equations (e.g. Broadfoot and Keeling
2015).

For the scaling and squaring approach, in particular, the cost of the exponentiation
of Q/K can be nearly halved by using a Padé approximant (e.g. Moler and Van Loan
(2003)), but this then requires a matrix inversion, and so, for reasons of robustness,
was not pursued here.
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A Evaluatingm�(�)

Our fast, robust and accurate method for evaluating mε(ρ), as defined in Sect. 3.1
relies on the following new result.

Theorem 1 If ρ ≤ ε, mε(ρ) = 0, and if ρ ≤ ε1/2, 0 ≤ mε(ρ) ≤ 1. More generally:
mε(ρ) ≤ �m+�, where

m+ := ρ − 1

3
log ε

{

1 +
(

1 − 18ρ

log ε

)1/2
}

− 1. (8)

Furthermore,

�m−� ≤ mε(ρ) ≤ �m++�,

where both inequalities require ε < 0.04 and the latter also requires ε < 1 − e−ρ

and B > log ε, where

m− := ρ + {2ρ}1/2
{

− log(ε
√
2π) − 3

2
log A + log(A − 1)

}1/2

, (9)

m++ := ρ + B − log ε

3

{

1 +
(

1 + 18ρ

B − log ε

)1/2
}

,
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Fig. 2 Left panel: mε(ρ) together with its upper and lower bounds from Theorem 1, plotted against ρ for
ε = 10−16. Right panel bound(ρ) − mε(ρ) against log10 ρ for ε = 10−16

A := 2ρh

(
m+ + 1

ρ

)

and B := −1

2
log 4πρh

(
m−
ρ

)

, (10)

and h(x) = x − 1 + x log x.

The bound (8) arises from a standard argument, whereas those in (9) and (10) are
derived fromextremely sharp but intractable bounds on rm(ρ) := P (Poisson(ρ) > m)

in Short (2013); our bounds use only elementary functions and so are much quicker to
compute than the quantile upper bound in Short (2013), yet from Fig. 2 they are still
very sharp. The bounds in (9) and (10) together with the alternative form in (11)

rm(ρ) = 1

�(m + 1)

∫ ρ

0
xme−xdx, (11)

which follows from the equivalence between at leastm+1 events of a Poisson process
with a unit rate occuring by time ρ and the time until the m + 1th event being at most
ρ, permit a simple but fast binary search for mε(ρ).

A.1 Implementation details

Our binary search algorithm homes in on the required m using the upper and lower
bounds of Theorem 1 together with the identity (11), the right hand side of which can
be evaluated quickly and accurately using the standard C++ toolbox, boost. This
is quicker than the standard implementation of the Poisson quantile function (e.g. as
implemented in boost), which uses the Cornish-Fisher expansion to approximate the
quantile (hence needing an expensive evaluation of 
−1) and then conducts a local
search.
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A.2 Proof of Theorem 1

The simple bounds for small ρ arise because e−ρ > 1−ρ. Hence r0(ρ) = 1−e−ρ < ρ

and if ρ ≤ ε, mε(ρ) = 0. Furthermore, r1(ρ) = 1 − e−ρ(1 + ρ) < ρ2, so if ρ ≤ √
ε

then r1(ρ) ≤ ε, so mε(ρ) ≤ 1.
The other bounds all use aspects of the following result.

Lemma 1 Let h(x) := 1 − x + x log x, then for x ≥ 1,

3

6 + 2(x − 1)
(x − 1)2 ≤ h(x) ≤ 1

2
(x − 1)2.

Proof The left hand inequality holds for x ≥ 0 and is from Boucheron et al. (2013)
page 36. For the right hand inequality, set g(x) = (x − 1)2/2 and notice that 0 =
h(1) = g(1) = h′(1) = g′(1), and h′′(x) = 1/x ≤ 1 = g′′(x) for x ≥ 1. ��

The first upper bound on mε(ρ), (8), arises from a standard Chernoff argument
(e.g. Boucheron et al. (2013)) to the right tail of a Poisson(ρ) random variable, X .
The moment generating function is MX (t) = E

[
eXt

] = exp[ρ(et − 1)], and by
Markov’s inequality:

P (X ≥ m) = P

(
eXt ≥ emt

)
≤ e−mt MX (t) = e−mt+ρ(et−1).

The inequality holds for all t and the right-hand side is minimised at t = log(m/ρ),
giving

P (X ≥ m) ≤ exp[−ρh(m/ρ)] ≤ exp

[

−ρ
3(m/ρ − 1)2

6 + 2(m/ρ − 1)

]

by Lemma 1. Setting ε = P (X ≥ m + 1) and y = (m + 1)/ρ − 1 gives 3ρy2(6 +
2y) log ε ≥ 0, from which y ≥ − log ε × √

1 − 18ρ/ log ε/(3ρ), and (8) follows on
substituting for y.

The much tighter bounds in (9) and (10) use Theorem 2 of Short (2013), which can
be rewritten to state that



(
−√

2ρh(m′/ρ)
)

< P (X > m) < 

(
−√

2ρh(m/ρ)
)

, (12)

where m′ := m + 1 and where the left hand side holds provided m′ > ρ and the right
hand side holds provided m > ρ. We first show that these conditions are satisfied.
Firstly, when ρ < 1, clearly m′ > ρ, moreover r0(ρ) = 1 − e−ρ , so provided
1 − e−ρ > ε, we require m ≥ 1 > ρ. When ρ ≥ 1, we use the easily verified facts
that rm(m) is an increasing function of m and rm(ρ) is an increasing function of ρ;
thus for ρ ≥ m ≥ 1, rm(ρ) ≥ rm(m) ≥ r1(1) = 1 − 2e−1 > 0.04, and the tolerance
condition is not satisfied. We, therefore need m > ρ (which also gives m′ > ρ).

Neither 
−1 nor h−1 is tractable (functions that perform 
−1(p) solve 
(x) = p
iteratively), and even with the bounds on h from Lemma 1 and standard bounds on 
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in terms of φ, tractable inversion is still not possible. We use the bound (8) to create
(9), and then (9) to create (10).

To prove (9), since ε ≤ 0.04, from the left inequality in (12),

0.04 ≥ P (X ≥ m) ⇒ √
2ρh(m′/ρ) ≥ −
−1(ε) ≈ 1.75 >

√
3.

Firstly, sincem+ +1 ≥ m+1, this ensures A > 1, so log(A−1) is real. More impor-
tantly, it ensures that [2ρh(m′/ρ)]−1/2 − [2ρh(m′/ρ)]−3/2 is a decreasing function
of [2ρh(m′/ρ)]1/2 and, since h′(x) > 0 for x > 1, it is also a decreasing function of
m′. The m′ that we desire satisfies m′ ≤ m+ + 1 =: m′+, and hence

[2ρh(m′/ρ)]−1/2 − [2ρh(m′/ρ)]−3/2 ≥ [2ρh(m′+/ρ)]−1/2 − [2ρh(m′+/ρ)]−3/2.

Since, for y > 0, 
(−y) > (1/y − 1/y3)φ(y),



(
−√

2ρh(m′/ρ)
)

≥
{
[2ρh(m′+/ρ)]−1/2 − [2ρh(m′+/ρ)]−3/2

}
φ
(√

2ρh(m′/ρ)
)

.

Combining the left inequality in (12) with the right-hand inequality in Lemma 1 gives

ε ≥ 1√
2π

{
[2ρh(m′+/ρ)]−1/2 − [2ρh(m′+/ρ)]−3/2

}
exp

[

− (m′ − ρ)2

2ρ

]

.

Equation (9) follows on rearrangement.
To show (10) we apply the right hand inequality in (12) and the bound 
(−x) <

φ(x)/x , then the fact that m ≥ m−, and finally Lemma 1 to find:

P (X > m) <
1

{4πρh(m/ρ)}1/2 exp
[−ρh(m/ρ)

]

≤ 1

{4πρh(m−/ρ)}1/2 exp
[−ρh(m/ρ)

]

≤ 1

{4πρh(m−/ρ)}1/2 exp

[

−3ρ
(x − 1)2

6 + 2(x − 1)

]

,

where x = m/ρ. We must, therefore, ensure that the final bound is no more than ε.
Rearranging this gives 3ρ(x − 1)2 − 2(B − log ε)(x − 1) − 6(B − log ε) ≤ 0, so that
when B − log ε > 0, x − 1 ≤ (B − log ε)(1 + √

1 + 18ρ/(B − ε))/(3ρ).

B Scaling and squaring: choosing s

Recall that the scaling and squaring algorithm evaluates exp(M) via the equality

exp(M) = [
exp(M/2s)

]2s . Calculation of exp(M/2s) takes mε(ρ/2s) matrix-matrix
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multiplications; repeatedly squaring this quantity s times takes s matrix-matrix mul-
tiplications, leading to a total cost of

c(s) = mε(ρ/2s) + s.

Asymptotically in large ρ, Pois(ρ)/ρ ∼ 1, so mε(ρ) ≈ ρ. With mε(ρ/2s) = ρ/2s ,
c(s) is minimised at

ŝ1 = log ρ + log log 2

log 2
.

Since mε(ρ) is an upper quantile, we also have that mε(ρ) > ρ, and, for low ρ, we
find mε(ρ) � ρ. Indeed, mε(ρ/2s) does not, in fact, decrease as quickly as ρ/2s , so

c′(s) = d

ds
mε(ρ/2s) + 1 ≥ d

ds

ρ

2s
+ 1.

Since the gradients both become less negative as s increases (indeed, they asymptote
to 0), ŝ1 is a strict lower bound on the true minimum ŝ. For a range of ε values from
0.1 to 10−16, and a range of ρ values from 0.1 to 106, we have found that the true
optimum s always lies in the range between ŝ1 and ŝ1 + 6. When the scaling and
squaring algorithm is required, ŝ chosen as the integer argument within this range that
minimises c(s).

WhenM is dense, the above algorithm finds the optimal choice of s; however, when
M is sparse, thematrixmultiplications required to evaluate exp(M/2s) are cheaper than
those involved in the subsequent squaring. Hence, the cost is minimised at a slightly
lower s, which depends on the sparsity of M (as well as ρ and ε). For simplicity, we
set ŝ ← ŝ − min(2, ŝ).

C Functions in the expQ package

The functions in the expQ package are provided below. Each function requires a rate
matrix, Q, which can be sparse or dense, and a precision, ε. Unif_v_exp_Q takes a
horizontal vector, v, and calculates v expQ via uniformisation. SS_v_exp_Q takes
a horizontal vector, v, and calculates v expQ via scaling and squaring. v_exp_Q
takes a horizontal vector, v, and calculates v expQ via whichever is likely (based
on empirical results on an i7-3770 CPU) to be the more efficient of uniformisation or

scaling and squaring.vT_exp_Q takes a vertical vector, v, and calculates
(
v
 expQ

)


via whichever is likely (based on empirical results on an i7-3770 CPU) to be the more
efficient of uniformisation or scaling and squaring. SS_exp_Q calculates expQ using
scaling and squaring.
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D Latent-variable updates for the SIRmodel

Our particular reduced-statespace implementation of the SIRmodel fit for the Swansea
Measles epidemic uses 10 additional latent observation times, 5 between days 120 and
151 (at days 125, 130, 135, 140 and 145) and five between days 151 and 212 (at days
155, 160, 165, 170 and 175). This leads to 27 latent variables: 17 unknown number of
infecteds at the (true and latent) observation times and 10 (not 12 because two sums
are known) unknown numbers of recovered for the time period since the previous
(true or latent) observation time. We emphasise that the R latent variables are not the
cumulative number of recovered individuals since the epidemic began.

When a new latent vector is proposed, we first check whether it can possibly fit with
the current n pop and the known data. If it does not fit, then the proposal may be rejected
without any matrix exponentiation. At the j th (true or latent) time point, denote the
current number of infecteds by I j and the number removed since the previous time
point by R j . Let J be the total number of (true and latent) time points. Note that

S j = n pop − I0 − I j − ∑ j
i=1 Ri . The following checks are performed:

1. For each j = 1, . . . , J : I j ≥ 0, R j ≥ 0 and S j ≥ 0.
2. For each j = 1, . . . , J : S j ≤ S j−1.
3. For each j = 1, . . . , J − 1: I j ≤ ∑J

i= j+1 Ri .

The third constraint arises because there are no active infections at the end of the
epidemic. These constraints can hinder the mixing of the integer-valued random walk
algorithm on the latent variables, so we split the latent variables into four groups,
grouped by observation time. This grouping has the additional advantage that only a
subset of matrix exponentiation calculations need be performed for each of the four
individual proposals.

E Log-likelihood R code for theMoranmodel

To demonstrate the simplicity of inference via thematrix exponential, we provide code
to evaluate the log-likelihood for the Moran model. Code for the filtering distribution
is very similar but there is no need to track the re-normalisation constant (in ll).
## Log likelihood for Moran model
## thetaunk=(log alpha, log beta, logit u, logit v)
## npop=known population size
## obstim=vector of observation times
## yobs=vector of observations
## errn=parameter for Binom(2*errn,0.5)-errn error distribution
## nu=t(rep(1/d,d)); ## uniform prior over statespace
getll<-function(thetaunk,npop,obstim,yobs,errn,nu) {

thetas=c(exp(thetaunk[1:2]),exp(thetaunk[3:4])/(1+exp(thetaunk[3:4])),npop)
nobs=length(obstim)
d=npop+1 ## size of statespace; states are 0, ..., npop

Q=MoranGetQ(thetas) ## same Q every time as whole statespace
ll=0
nu=nu*dbinom(yobs[1]+errn-(0:npop),2*errn,0.5)
for (i in 2:(nobs-1)) {

currtot=sum(nu)
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if ((currtot<1e-6)||(currtot>1e6)) { ## avert possible over/underflow
nu=nu/currtot
ll=ll+log(currtot)

}
nu=Unif_v_exp_Q(nu,Q*(obstim[i+1]-obstim[i]),1e-15)
nu=t(as.vector(nu)*dbinom(yobs[i+1]+errn-(0:npop),2*errn,0.5))

}
ll=ll+log(sum(nu))

return(ll)
}
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