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Phosphorylation of OXPHOS Machinery 
Subunits: Functional Implications in Cell 
Biology and Disease
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The complexes of the electron transport chain and ATP synthase comprise the oxidative phosphorylation 
(OXPHOS†) system. The reactions of OXPHOS generate the mitochondrial membrane potential, drive 
the majority of ATP production in respiring cells, and contribute significantly to cellular reactive oxygen 
species (ROS). Regulation of OXPHOS is therefore critical to maintain cellular homeostasis. OXPHOS 
machinery subunits have been found to be highly phosphorylated, implicating this post-translational 
modification as a means whereby OXPHOS is regulated. Multiple lines of evidence now reveal the diverse 
mechanisms by which phosphorylation of OXPHOS machinery serve to regulate individual complex 
stability and activity as well as broader cellular functions. From these mechanistic studies of OXPHOS 
machinery phosphorylation, it is now clear that many aspects of human health and disease are potentially 
impacted by phosphorylation of OXPHOS complexes. This mini-review summarizes recent studies that 
provide robust mechanistic detail related to OXPHOS subunit phosphorylation.
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INTRODUCTION

Maintenance of bioenergetic homeostasis is a 
principle function of cellular metabolism as sufficient 
energy levels must be maintained for cells to thrive [1]. 
The complexes of the electron transport chain and ATP 
synthase comprise the OXPHOS system, through which 
the majority of cellular ATP is generated. It is clear that 

dysregulated bioenergetics play an important role in the 
etiology of many diseases, including diabetes, obesity, 
cardiovascular disease, aging and neurodegenerative 
diseases such as Alzheimer’s and Parkinson’s disease 
[1-4]. Additionally, several mitochondrial diseases di-
rectly result from deficient OXPHOS-dependent energy 
production [5-7]. Due to the critically important nature 
of OXPHOS, it is assumed that mechanisms exist that are 
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able to regulate OXPHOS both directly and indirectly. 
Post-translational modification of proteins is a common 
mechanism of regulatory control, and therefore it is un-
surprising that cells regulate OXPHOS through multiple 
means, including phosphorylation of the OXPHOS ma-
chinery itself [8]. Dozens of kinases and phosphatases 
localize to mitochondria [9] and heavy phosphorylation 
of OXPHOS complex subunits is evident from the results 
of numerous phosphoproteomic analyses [10-12].

In this mini-review, selected studies which provide 
robust mechanistic details relevant to OXPHOS subunit 
phosphorylation in cells are summarized (Figure 1). From 
these studies, the picture emerges that phosphorylation of 
OXPHOS machinery is a common mechanism regulating 
OXPHOS complex assembly and stability, fine-tuning of 
bioenergetic control, and response to cellular stimuli both 
positively and negatively affecting OXPHOS and OX-
PHOS-dependent functions (such as ROS generation). 
Important cellular events such as progression through 
the cell cycle and cell differentiation are also governed 
in party in this way. Finally, the relevance of OXPHOS 
machinery phosphorylation to human health and disease 
becomes evident from these studies too, as diseases from 
early onset Parkinson’s disease to Type 2 diabetes to can-
cer are associated with these events.

COMPLEX I

A large percentage of mitochondrial respiratory 
complex I subunits are phosphorylated (Figure 2), al-
though the functional significance of only a minority 
of these phosphorylation events have been described. A 
major driver of complex I phosphorylation appears to 
be cAMP and PKA [13]. Both NDUFA1 and NDUFB11 
contain putative PKA phosphorylation sites, and the 
functional significance of these sites were tested in cells 
harboring NDUFA1 and NDUFB11 knockouts which 
fail to both assemble functional complex I and respire 
[14]. While re-expression of wild type NDUFA1 and 
NDUFB11 rescues complex I assembly and respiration, 
the serine to alanine mutants exhibited both lower protein 
expression, complex I assembly, and respiration. This 
study also demonstrated a complete loss of complex I 
assembly upon expression of serine to aspartate or glu-
tamine mutants. The results of this study could either 
implicate phosphorylation of two complex I subunits 
to be necessary to maintain or even initiate complex I 
assembly or they could implicate phosphorylation of a 
mature complex I to be a signal for complex disassembly 
and turnover. Alternatively, the results of the serine to 
alanine mutants may be due to the serine coordinating 
stabilizing hydrogen bonds in an assembled complex I 
while the glutamine mutant results may be due to ste-

Figure 1. OXPHOS subunit phosphorylation. 1A) Schematic representation of the OXPHOS complexes with 
subunits described in this review highlighted in blue. 1B) An index of subunits described in this review along with their 
purported associated kinases and references.
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Figure 2. A sample of OXPHOS machinery subunits reported to be phosphorylated [49]. For each complex, the 
left column indicates specific subunits and the right column indicates reported phosphorylated residues. Highlighted 
subunits are described in this mini-review.



Castellanos and Lanning: Phosphorylation of OXPHOS machinery subunits526

phorylation of complex I and complex II subunits and 
cytochrome C. Under normal conditions, these proteins 
are proposed to be phosphorylated by Src and treatment 
of mitochondrial fractions with active Src ameliorated 
some sepsis-associated effects [24]. Additional studies 
investigating the Src inhibitor, PP2, demonstrate reduced 
respiration. These effects are correlated with Src-medi-
ated phosphorylation of NDUFV2 and SDHA (complex 
II) [25]. Cells harboring the tyrosine to phenylalanine 
phospho-defective mutants display decreased complex I 
activity, increased ROS generation, and decreased viabil-
ity in normal and cancer cells. Src may also contribute to 
the bioenergetic capabilities of cancer cells. Src localizes 
to mitochondria in osteosarcoma and prostate cancer cells 
and leads to tyrosine phosphorylation of mitochondrial 
proteins, including complex I protein NDUFB10, to en-
hance mitochondrial bioenergetics [26]. Src activity is 
further proposed to negatively regulate complex I through 
phosphorylation of complex I subunit NDUFV2. In re-
sponse to the adenosine receptor activator, 5’-(N-ethyl-
carboxamido), NDUFV2 phosphorylation Src activity 
and NDUFV2 phosphorylation correlated with reduced 
complex I activity, an effect that was reversed with an 
NDUFV2 tyrosine to phenylalanine mutant [27].

A particularly useful approach has recently provided 
a comprehensive analysis of complex I phosphorylation 
sites [28]. In this study, the authors utilized bioinformat-
ics to predict both complex I phosphorylation sites and 
the potential associated kinases. Molecular modeling 
was also used to display the potential effects of subunit 
phosphorylation, and phosphoproteomics analyses were 
performed to validate their bioinformatic predictions. 
This approach identified many of the functionally rele-
vant phosphorylation events described above.

COMPLEX II

SDHA is a known target of Fgr tyrosine kinase 
[29]. Studies of Fgr action on complex II demonstrate 
a ROS-dependent phosphorylation of SDHA at Y604 
resulting from Complex I deficiencies. This phosphory-
lation was able to remodel and rescue mitochondrial res-
piration by elevating complex II activity [30]. In this con-
text, compensatory complex II activity shifts cellular fuel 
sources from NADH to FADH2 thereby elevating ROS 
production – possibly providing a mechanism for ROS 
signal amplification. On the other hand, under complex 
III-absent conditions, complex II cannot rescue energetic 
efficiency despite SDHA subunit phosphorylation from 
ROS accumulation seen in complex I deficiencies [31].

CI-deficient humans also express elevated ROS 
production from increased CII activity after Tyr604 
phosphorylation, but Salvi et al. exclusively accredited 
decreased CI population for upregulated CII activity 

ric hindrances considerations, both independent of any 
phosphorylation effects. Therefore, further mechanistic 
investigations into these proposed models are warranted. 
PKA also phosphorylates human NDUFS4 [15] and pro-
motes accumulation of mature NDUFS4 in mitochondrial 
while alkaline phosphatase treatment inhibits the same 
[16,17]. Interestingly, NDUFS4, for which PKA-depen-
dent phosphorylation is also required for proper complex 
I assembly, is not regulated at the level of mitochondrial 
import. PKA, therefore, appears to regulate mitochondri-
al respiration via complex I subunit phosphorylation at 
multiple levels. Importantly, fatal human NDUFS4 muta-
tions inhibit cAMP-dependent NDUFS4 phosphorylation 
or destroy the cAMP/PKA-dependent phosphorylation 
site and prohibit complex I activation [18,19], under-
scoring the importance of this phosphorylatable residue 
to human health. Interestingly, evidence also exists for 
the ability of nucleoside analog reverse transcriptase 
inhibitors (NRTIs) to impair mitochondrial respiration. 
This effect has been linked to NRTI-mediated inhibition 
of cAMP-dependent phosphorylation of complex I and a 
resultant increase in superoxide production [20].

PINK1 is a kinase which regulates mitophagy in or-
der to maintain healthy cellular pools of mitochondria, 
and PINK1 mutations confer one form of early-onset 
Parkinson’s disease. In addition to its role in promoting 
mitophagy, PINK1 is hypothesized to regulate additional 
cellular functions not directly related to mitophagy [21], 
including mitochondrial respiration as some PINK1 mu-
tations appear to impair complex I activity. This particu-
lar effect of PINK1 mutation was found to result from a 
lack of NDUFA10 phosphorylation at serine 250, which 
was necessary for efficient electron transfer to ubiquinone 
[22]. Expression of the phosphomimetic S250D rescued 
complex I activity and ATP production in cells from 
PINK1 patients, implicating complex I phosphorylation 
in some cellular phenotypes associated with this neuro-
degenerative disease.

During cellular proliferation, progression through 
the G2/M transition also appears reliant on complex 
I phosphorylation. During mitosis, a cyclin B1/Cdk1 
complex localizes to the mitochondrial matrix and phos-
phorylates NDUFA12, NDUFB6, NDUFS6, NDUFV1, 
and NDUFV3 [23]. The respective alanine mutants 
in these proteins decrease complex I activity while the 
corresponding phosphomimetic glutamic acid mutations 
increase complex I activity. This cyclin B1/Cdk1-depen-
dent phosphorylation of complex I subunits appears to be 
required for cells to produce the amount of ATP requisite 
to progress through the G2/M transition.

Under conditions of sepsis, phosphorylation of OX-
PHOS machinery is also relevant. In cardiac tissue, sepsis 
induces elevated ROS levels, an effect which appears to 
be mediated by SHP2 phosphatase-dependent dephos-
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Cytc mobility between complex III and complex IV. 

COMPLEX IV

The majority of complex IV subunits are also phos-
phorylated (Figure 2). When cells are treated with TNFα, 
a cytokine that mediates many of the effects of systemic 
inflammation (such as sepsis), COX1 is tyrosine phos-
phorylated [37]. This phosphorylation correlates with 
reduced complex IV activity, a decrease in mitochondrial 
membrane potential, and reduced ATP generation, impli-
cating complex IV phosphorylation in the glycolytic shift 
accompanying acute inflammation. Additional COX1 
phosphorylation sites also appear to be functionally rele-
vant in mammalian cells [38]. Notably, COX1 is encoded 
by mitochondrial DNA and therefore, phosphorylation 
must take place in the mitochondrial matrix, highlighting 
the importance of mitochondrially-localized kinases (and 
presumably phosphatases).

A detailed study of COX4I1 found that PKA-depen-
dent phosphorylation of serine 58 does not profoundly 
alter complex IV conformation, yet this reversible phos-
phorylation site does affect that ability of ATP to nega-
tively regulate complex IV activity [39]. Phosphorylation 
of S58 improves the ability of cells to respire in media 
that must rely on OXPHOS for ATP generation. This 
study provides some of the most compelling evidence 
that reversible phosphorylation of OXPHOS machinery 
can be utilized to fine tune bioenergetics.

Additional evidence of complex IV subunits being 
under the control of phospho-mediated regulation comes 
from ischemia/reperfusion models. Animal models im-
plicate phosphorylation of multiple OXPHOS subunits to 
suppress OXPHOS following reperfusion [40]. In these 
models, reperfusion induces cAMP-independent, mito-
chondrially-localized, PKA to phosphorylate COX5B and 
suppress COX activity. PKA in this context is activated 
by ROS, and antioxidants and PKA inhibitors ameliorate 
this effect [41].

ATP SYNTHASE

Perhaps the clearest mechanistic studies related to 
ATP synthase phosphorylation focus on the effects of 
PKC isoforms. PKCα localizes to mitochondria in kid-
ney cells following treatment with a kidney-damaging 
environmental toxin, and leads to the phosphorylation 
of ATP5C1 [42]. In vitro, PKCα directly phosphorylated 
this subunit and decreased ATP synthase activity. PK-
Cα-dependent phosphorylation in this context diminishes 
the ability of renal cells to recover following injury with 
environmental toxins. However, later studies demonstrate 
that PKCα-dependent phosphorylation of ATP synthase 
improves mitochondrial function following cellular inju-

– where absence of CIII and CIV had no influence on 
Complex II activity [29]. Similarly, Ogura et al. proposed 
additional phosphorylation sites of SDHA at Y215 and by 
c-Scr, as necessary regulatory sites for respiratory elec-
tron transfer processes, cell survival, and redox homeo-
stasis in CII and CI, respectively [25]. In fact, perturbed 
phosphorylation of SDHA may affect efficient FADH2 
electron transfer, as Tyr215 is located at the FAD-binding 
domain intersecting SDHA and SDHB. Subsequently, 
phosphorylation-defective SDHA at Y215 was shown 
to induce a ROS-responsible regression in male mice B 
cell maturation, specifically inhibition of germinal center 
formation and proliferation and suppressed humoral im-
mune responses [32]. These investigations highlight the 
versatility in metabolic remodeling as a consequence of 
complex II phosphorylation, and highlight the impacts of 
dysregulated OXPHOS subunit phosphorylation.

COMPLEX III

The majority of complex III subunits have been re-
ported to be phosphorylated, with many phosphorylated 
at multiple residues (Figure 2). However, detailed, mech-
anistic studies describing the functional significance of 
these modifications have yet to be performed.

CYTOCHROME c

Cytochrome c (Cytc) oxidizes complex III and re-
duces complex IV in addition to promoting apoptosis 
upon mitochondrial outer membrane permeabilization. 
Therefore, phosphorylation of Cytc may impinge upon 
both or only one of these functions. One phosphorylation 
event that controls OXPHOS is Cytc phosphorylation 
at threonine 28 which appears to ensure that OXPHOS 
does not become overactive and thus generate harmful 
ROS [33]. Phosphorylation at this putative AMPK site 
results in decreased ability of Cytc to transfer electrons to 
complex IV and therefore acts as a throttle on OXPHOS. 
Cells expressing phosphomimetic Cytc display both re-
duced ROS and mitochondrial membrane potential, lend-
ing support to the idea that phosphorylation at this site 
maintains “controlled” respiration.

Cytc tyrosine phosphorylation at Y48 also im-
parts significant regulatory capacity of Cytc function. 
Expression of non-phosphorylatable tyrosine to phe-
nylalanine mutants decreases the redox potential of 
Cytc; however, tyrosine to glutamic acid mutations 
had a similar effect [34,35]. A subsequent study used 
the phosphomimetic p-carboxy-methyl-L-phenylal-
anine as a substitute for Y48 for structural studies and 
found that Cytc Y48 phosphorylation induces signif-
icant structural reorganization [36]. This study fur-
ther suggests that Y48 phosphorylation would impair 
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respiratory chain supercomplexes. Very closely related to 
these considerations are the contributions of specific ki-
nases and phosphatases to phosphorylated OXPHOS ma-
chinery. The studies above employ gene deletions in cells 
and animal models, chemical inhibitors, and expression 
of constitutively active or dominant negative kinases to 
address this question. While some studies have assessed 
general features of mitochondrial function by screening 
groups of known mitochondrially-localized kinases and 
phosphatases [46], more direct investigations into the 
responsible regulators of OXPHOS subunit phosphoryla-
tion will provide greater clarity to these questions.

Important to this field are the data summarized 
above which demonstrate the high relevance of subunit 
phosphorylation to human health. An inability to phos-
phorylate and thus incorporate mutant NDUFS4 into 
complex I appears to contribute to a lethal form of mito-
chondrial disease [18,19], an inability of mutant PINK1 
to phosphorylate NDUFA10 may contribute to early 
onset Parkinson’s disease [22], and PKC-mediated phos-
phorylation of ATP synthase subunits appears to affect 
the ability of some tissues to recover from an ischemic 
insult [42-44]. Consideration of OXPHOS subunit phos-
phorylation is also relevant in human health as applied to 
maintaining cellular homeostasis (for example, balancing 
ROS and bioenergetic needs [30]) or even when treating a 
disease with drugs that may impinge upon these regulator 
mechanisms [20]. Therefore, it is reasonable to predict 
that regulation of additional phosphorylation events will 
also be involved in maintaining homeostasis to promote 
health while dysregulation contributes to disease. Indeed, 
mitochondrial dysfunction across many parameters in-
cluding OXPHOS function is causally linked to many 
human diseases [47,48].
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