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Cancer stem cells (CSCs) are a small population of tumor cells 
characterized by self-renewal and differentiation capacity. 
CSCs are currently postulated as the driving force that 
induces intra-tumor heterogeneity leading to tumor initiation, 
metastasis, and eventually tumor relapse. Notably, CSCs are 
inherently resistant to environmental stress, chemotherapy, 
and radiotherapy due to high levels of antioxidant systems and 
drug efflux transporters. In this context, a therapeutic strategy 
targeting the CSC-specific pathway holds a promising cure 
for cancer. NRF2 (nuclear factor erythroid 2-like 2; NFE2L2) is 
a master transcription factor that regulates an array of genes 
involved in the detoxification of reactive oxygen species/
electrophiles. Accumulating evidence suggests that persistent 
NRF2 activation, observed in multiple types of cancer, supports 
tumor growth, aggressive malignancy, and therapy resistance. 
Herein, we describe the core properties of CSCs, focusing 
on treatment resistance, and review the evidence that 
demonstrates the roles of NRF2 signaling in conferring unique 
properties of CSCs and the associated signaling pathways.

Keywords: antioxidant system, cancer plasticity, cancer stem 
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INTRODUCTION

Despite the increase in the success rate of treatment, cancer 

remains a disease with high recurrence and mortality rates. 

The main cause of failure of cancer treatment is attributed 

to the heterogeneous cell population within the tumor mass 

that induces differential sensitivity of individual cancer cells 

to chemotherapy (Prasetyanti and Medema, 2017; Yung 

et al., 1982). Along with genetic mutations and epigenetic 

alterations, intratumoral heterogeneity is ascribed to cancer 

stem cells (CSCs), a small population of quiescent self-renew-

ing cells within tumors (Lapidot et al., 1994; Prasetyanti and 

Medema, 2017). CSCs drive metastasis, chemotherapy resis-

tance, and radiation resistance in cancers, which eventually 

leads to cancer relapse after successful initial treatment (Bat-

lle and Clevers, 2017; Lytle et al., 2018). Currently, extensive 

efforts are being made to develop novel treatment strategies 

to target CSCs by identifying key factors and signaling path-

ways involved in the survival and maintenance of CSCs.

	 NRF2 (nuclear factor erythroid 2-like 2; NFE2L2) is a mas-

ter regulator of the expression of genes involved in reactive 

oxygen species (ROS)/electrophile detoxification, glutathione 

(GSH) production/regeneration, heme/iron metabolism, 

NAD(P)H generation, cell metabolism, and drug efflux (Itoh 

et al., 1997; Tebay et al., 2015; Tonelli et al., 2018). NRF2 

activity is primarily regulated by Kelch-like ECH-associated 

protein 1 (KEAP1). Under normal conditions, two molecules 

of the KEAP1 protein interact with an NRF2 protein, which 

leads to continuous degradation of NRF2 through the Cullin 

3-dependent ubiquitin ligase and proteasome system (Baird 

and Yamamoto, 2020; Itoh et al., 1999). Additionally, NRF2 

levels are regulated not only by KEAP, but also by KEAP-inde-
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pendent mechanisms such as, such as the negative regulation 

by β transducin repeats-containing protein (β-TrCP)/glycogen 

synthase kinase-3 (GSK3) and positive regulation by compet-

ing protein p62 (Tebay et al., 2015). Although NRF2 plays 

a critical role in cytoprotection against carcinogenesis and 

chemicals/oxidant-induced tissue injuries, a deleterious role 

of NRF2 in cancer growth and progression has been observed 

in numerous types of cancer (Choi et al., 2021; Kitamura 

and Motohashi, 2018; Lee et al., 2022; Rojo de la Vega et 

al., 2018). Furthermore, since the expression of antioxidant 

genes and drug efflux transporters, which are under the con-

trol of NRF2, is frequently increased in CSCs, the potential im-

plication of NRF2 signaling in CSCs physiology has been raised 

(Kahroba et al., 2019; Rojo de la Vega et al., 2018; Ryoo et 

al., 2016b). Herein, we review current evidence of the role of 

NRF2 in CSC maintenance, survival, and therapy resistance.

CSC CONCEPT

CSCs were initially described as a cancer cell subpopulation 

that can increase the tumor CSC pool and differentiate into 

progenitor cancer cells (Bjerkvig et al., 2005). When asym-

metric and symmetric division of CSCs is balanced, tumors 

are composed of CSCs and most cancer cells; however, when 

there is a shift to symmetric division, the proportion of CSCs 

increases and cancer transforms to a more aggressive and 

undifferentiated high-grade state (Batlle and Clevers, 2017; 

Lytle et al., 2018). Other terms for CSCs include tumor-ini-

tiating cells, tumor-progenitor cells, and cancer stem-like 

cells (Nguyen et al., 2012). CSCs are currently postulated to 

be key drivers in initiating tumorigenesis and causing cancer 

metastasis and recurrence (Lytle et al., 2018). The CSC con-

cept was first tested in acute myeloid leukemia. To identify 

leukemic-initiating cells, leukemic cells were transplanted 

into SCID (severe combined immune-deficient) mice, and 

CD34+CD38- fraction of cells was found to be tumor-initiat-

ing cells (Lapidot et al., 1994). Subsequently, it was shown 

that CD34+CD38- leukemic cells have the capacity for differ-

entiation, proliferation, and self-renewal (Bonnet and Dick, 

1997). Since these studies, surface marker-based cell purifi-

cation and subsequent transplantation in immunodeficient 

mice have confirmed functional CSCs in various solid tumors, 

such as glioma, breast, and colon cancers (Medema, 2013).

	 The surface markers for CSCs isolated from solid tumors 

include CD29, CD24, CD44, CD133, leucine-rich repeat-con-

taining G-protein coupled receptor 5 (LGR5), and epithelial 

cell adhesion molecule (EpCAM) (Yang et al., 2020). CSC 

marker expression differs for each type of cancer and var-

ies between patient tumors. CD133 was identified as a 

marker for glioblastoma CSCs (Singh et al., 2004), whereas 

CD44+CD24- cell populations were identified as breast CSCs 

(Ponti et al., 2005). CD44+CD49f+CD133+ cells showed 

higher tumorigenic capacity than CD44+CD24- cells in estro-

gen receptor-negative breast tumors (Meyer et al., 2010). 

In addition, the side population (SP) cancer cells, which do 

not accumulate Hoechst 33343 dye due to high expression 

of ATP-binding cassette (ABC) transporter ABCG2, possess 

self-renewal and differentiation capacities (Zhou et al., 2001). 

Cancer cells with high expression of aldehyde dehydrogenase 

1 (ALDH1), a cytosolic enzyme oxidizing aldehyde, correlates 

with high tumorigenic and metastatic characteristics (Ricardo 

et al., 2011). The sphere-forming assay has also been used 

to enrich CSCs; tumor sphere-forming ependymoma cells are 

multipotent and initiate tumors in mice (Taylor et al., 2005).

	 Signaling pathways contributing to the survival, mainte-

nance, self-renewal, and differentiation of CSCs are complex; 

however, some transcription factors and signaling pathways 

are shared between normal stem cells and CSCs (Table 1). 

These signaling pathways include the Wnt/β-catenin, neu-

rogenic locus notch homolog protein (NOTCH), and Sonic 

Hedgehog pathways, which are involved in the self-renewal 

of CSCs (Yang et al., 2020). Wnt signaling is aberrantly acti-

vated in many cancers, such as colorectal cancer and invasive 

ductal breast cancer, and its activation induces the conversion 

of dormant CSCs to active CSCs through β-catenin-mediated 

cell cycle progression and MYC elevation (Giancotti, 2013). 

Overactivation of NOTCH4 signaling was found in breast 

CSCs, and NOTCH4 inhibition completely blocked the tu-

mor-initiating ability of CSCs (Harrison et al., 2010). Major 

transcription factors for pluripotent stem cell conversion, 

including octamer-binding transcription factor 4 (OCT4), 

homeobox protein NANOG (NANOG), Krüppel-like factor 4 

(KLF4), MYC, and transcription factor SOX-2 (SOX2), are also 

utilized in CSCs (Yang et al., 2020). The expression of OCT4, 

a master regulator of cell pluripotency, is high in hepatocel-

lular carcinoma (HCC) CSCs and breast CSCs, and high OCT4 

levels are associated with self-renewal, tumorigenicity, and 

chemoresistance of these CSCs (Murakami et al., 2015; Ponti 

et al., 2005).

CSC AND CANCER PLASTICITY

Earlier studies assumed that the intra-tumor hierarchy was 

Table 1. Signaling pathways implicated in CSC property

Signaling  

pathways
Property References

NOTCH Self-renewal,  

stemness

(Takebe et al., 2015)

Wnt/ 

β-catenin

Self-renewal,  

stemness

(Vermeulen et al., 2010)

Hedgehog Self-renewal,  

stemness

(Justilien and Fields, 2015)

BMI-1 Self-renewal,  

stemness

(Kreso et al., 2014)

TWIST EMT, stemness (Beck et al., 2015)

ZEB1 EMT (Caramel et al., 2013)

TGF-β EMT, stemness (Mani et al., 2008)

TAZ Stemness, EMT (Cordenonsi et al., 2011)

Nestin Self-renewal (Neradil and Veselska, 2015)

p62 Self-renewal (Li et al., 2021;  

Umemura et al., 2016)

CSC, cancer stem cell; NOTCH, neurogenic locus notch homolog 

protein; TGF-β, transforming growth factor β; EMT, epitheli-

al-to-mesenchymal transition.
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rigid and unidirectional, with CSCs being viewed as the ex-

clusive source of self-renewal and pluripotency (Chaffer et 

al., 2011). However, recent studies have suggested that both 

CSCs and non-CSCs possess plasticity. Isolated stem cell-, 

basal-, and luminal-like cells from breast cancer cell lines gen-

erate two other types of cells and can recompose the original 

phenotypic equilibrium through stochastic transition (Gupta 

et al., 2011). Among the three phenotypic cell types, only 

cells with a stem-like phenotype acquired tumorigenic capac-

ity, which enabled to predict de novo CSC generation from 

non-CSCs. Selective deletion of LGR5+ CSCs in colorectal 

organoids could initially restrict tumor growth; however, the 

organoids regained tumorigenicity due to the re-emergence 

of LGR5+ CSCs (Shimokawa et al., 2017). LGR5- cancer cells 

have been shown to continuously replenish the LGR5+ CSCs 

pool, which is critical for liver metastasis from colorectal can-

cers (de Sousa e Melo et al., 2017).

	 Epithelial-to-mesenchymal transition (EMT), a phenotypic 

conversion of epithelial cancer cells to gain mesenchymal 

properties, such as migration and invasion (Batlle et al., 2000), 

has garnered substantial attention due to its association with 

CSCs. The forced EMT phenotype can exacerbate CSC traits, 

such as tumor-initiating capacity, and CSC-like populations 

show an increased EMT phenotype in many types of cancer 

(Batlle and Clevers, 2017). In breast cancer, an increase in 

the EMT-related transcription factors SNAIL and TWIST not 

only accelerates the EMT, but also increases the CD44+/CD24- 

population and mammosphere forming capacity (Mani et al., 

2008). In particular, the observations of reversible transition 

between epithelial and mesenchymal cells and the hybrid 

EMT phenotype led to the idea that CSC plasticity is attribut-

ed to EMT (Gupta et al., 2019; Nieto et al., 2016). The EMT 

activator zinc finger E-box-binding homeobox 1 (ZEB1) drives 

the conversion of non-CSCs of basal breast cancers to CSCs, 

and this phenotypic plasticity is mediated by the change in 

chromatin configuration of the ZEB1 promoter (Chaffer et al., 

2013). In addition to experimental observations, a recent sim-

ulation study with mechanism-based mathematical modeling 

showed that the hybrid epithelial/mesenchymal (hybrid E/M) 

phenotype appears to have more stemness traits than pure 

mesenchymal cells (Pasani et al., 2020).

CSC AND THERAPY RESISTANCE

The biggest challenge in cancer treatment is differential 

sensitivity of intra-tumor cells to anticancer drugs, and the 

chemotherapy-resistant cells that drive tumor recurrence 

after the initial treatment are considered CSCs (Fig. 1). This 

notion is supported by several characteristics of CSCs, includ-

ing dormancy, upregulation of drug efflux transporters, and 

enhanced capacity for ROS protection (Nassar and Blanpain, 

2016).

Upregulation of ABC transporters
Drug efflux transporters, including ABCB1 (P-glycoprotein; 

P-gp) and ABCG2 (breast cancer resistance protein; BCRP), 

are highly expressed in CSCs to maintain a high efflux capac-

ity for anticancer drugs (Dean et al., 2005). Tumor cells with 

high ABCG2 and ABCA3 levels, isolated from neuroblastoma 

patients, showed sustained expansion ex vivo and higher 

survival after cytotoxic drug treatment (Hirschmann-Jax et al., 

2004). The lung cancer SP population, which expresses high 

levels of ABCG2, is highly tumorigenic and resistant to mul-

tiple cancer drugs (Ho et al., 2007). Based on these results, 

ABCB1 and ABCG2 are often used to isolate CSC-enriched 

cell populations from tumor tissues (Hadnagy et al., 2006; Ho 

et al., 2007).

Enhanced protection against ROS
Many conventional chemotherapeutic drugs have been re-

ported to increase ROS and electrophile levels lethally, and 

CSCs cope with these treatments by upregulating the antiox-

idant system (Nassar and Blanpain, 2016). The relationship 

between ROS and stem cell quiescence has been demon-

strated in normal stem cells. ROS levels were lower in murine 

embryonic stem cells (ESC) when compared with those in dif-

ferentiated cells due to high expression of GSH biosynthesis 

enzymes and thioredoxin (Saretzki et al., 2004). Knockout of 

Foxo1/Foxo3a/Foxo4 in mice resulted in the depletion of he-

matopoietic stem cells (HSC) due to ROS elevation (Tothova 

et al., 2007).

	 Considerable evidence has shown that ROS is also involved 

in CSCs physiology. Breast CSCs retain lower levels of ROS 

than non-tumorigenic cells due to high levels of GSH syn-

thesis enzymes, and the radiation resistance of CSCs was 

attributed to low ROS levels (Diehn et al., 2009). Treatment 

with a BCL-2 inhibitor ablated leukemic stem cells by increas-

ing ROS levels through mitochondrial dysfunction (Lagadinou 

et al., 2013). FOXO3 activation contributes to low ROS levels 

in leukemic stem cells; therefore, deletion of FOXO3 blocked 

the leukemia-initiating capacity of leukemic stem cells (Naka 

et al., 2010). The mammosphere-derived CD44+/CD24- sub-

population maintained lower levels of ROS following radia-

tion, and thus showed higher viability (Phillips et al., 2006). 

These results indicate that an enhanced ROS coping system 

could be a critical determinant of CSCs survival upon radia-

tion therapy and chemotherapy.

Therapy-induced CSC expansion
Cancer cells that survive chemotherapy and radiation therapy 

are the primary cause of tumor relapse, and CSCs are found 

to be enriched in residual tumors after treatment. The levels 

of CD133+ glioma CSCs are highly increased following radia-

tion in vitro and in human glioma xenografts, and activation 

of the radiation-induced DNA damage checkpoint pathway 

was found to be a mechanism of CD133+ CSCs enrichment 

(Bao et al., 2006). Carboplatin treatment induced CSC-like 

properties in normal HCC, and silencing OCT3/4 and SOX2 

blocked this change (Hu et al., 2012). Cancer plasticity and 

conversion to CSCs following radiation and chemotherapy 

have been demonstrated. Patient-derived non-breast CSCs 

can be converted to CSCs following radiation exposure, with 

concomitant increases in OCT4 and NANOG expression 

(Lagadec et al., 2012). During EMT in squamous cell carcino-

ma CSCs, chemoresistance is acquired through conversion to 

a slow proliferative state (Oshimori et al., 2015). Breast CSCs 

became more abundant in residual tumor tissue after che-

motherapy or endocrine therapy, and an increase in mesen-
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chymal gene expression was accompanied (Creighton et al., 

2009).

NRF2 SIGNALING AND CANCER

In normal and healthy cells, NRF2 is accepted as a central 

cytoprotective factor that counteracts ROS/electrophile stress 

by promoting the removal of deleterious cytotoxic challenges 

(Baird and Yamamoto, 2020; Cho and Kleeberger, 2020; 

Taguchi and Kensler, 2020; Tsushima et al., 2020). Extensive 

efforts have been made to develop therapeutic interven-

tions that increase NRF2 activity to prevent or treat multiple 

chronic diseases, such as respiratory, cardiovascular, and neu-

rodegenerative diseases, as well as cancer (Cuadrado et al., 

2019; Taguchi and Yamamoto, 2020). On the contrary, NRF2 

is often overactivated in cancer cells and associated with 

tumor growth, cancer progression, development of therapy 

resistance, and poor patient prognosis (Murakami and Mo-

tohashi, 2015; Rojo de la Vega et al., 2018). Aberrant NRF2 

activation in cancers results from multiple molecular events: 

(i) somatic mutations and genomic alterations in NRF2 or 

KEAP1 (Goldstein et al., 2016; Kitamura and Motohashi, 

2018; Wang et al., 2008), (ii) oncogene (K-RAS, B-RAS, MY-

C)-directed upregulation of NRF2 (DeNicola et al., 2011), (iii) 

phosphoinositide 3-kinases (PI3K)/AKT activation-induced 

NRF2 stabilization (Best et al., 2018), and (iv) elevation of 

p62/SQSTM1 and competition with NRF2 for KEAP1 binding 

(Ichimura et al., 2013).

	 The notion that cancer cells hijack NRF2 signaling to en-

hance their survival and growth under a stress-rich tumor 

microenvironment has been consistently supported by 

numerous reports that show NRF2 inhibition via pharma-

cological or genetic methods could suppress tumor growth 

and progression and improve therapy resistance (Zhu et al., 

2016). The beneficial effects of persistent activation of NRF2 

on cancer cells can be explained in several ways. NRF2-driven 

cancer survival is attributed to the increased ROS counter-

acting system (Singh et al., 2010), increased tumor growth 

as a result of a metabolic shift to facilitate cell proliferation 

(Mitsuishi et al., 2012; Romero et al., 2017), and inhibition of 

Fig. 1. Core properties of cancer stem cells (CSCs). The increase of CSCs in tumor mass changes the low grades tumors into aggressive 

and undifferentiated tumors. Several surface markers, including CD34+/CD38- in leukemic cancer, CD44+/CD24- in breast cancer, CD133+ 

in glioblastoma, LGR5+, and EpCAM+ have been used to isolate CSC-enriched population from tumors. Signaling pathways involved in 

Wnt/β-catenin, NOTCH, and Sonic Hedgehog play roles in cell cycle progression, stemness, and pluripotency of CSCs. CSCs-associated 

transcription factors include OCT4, NANOG, KLF4, MYC, and SOX2. Therapy resistance is one of core properties of CSCs. The increase 

of drug efflux transporters, protection against ROS by antioxidant genes upregulation, and DNA checkpoint elevation lead to survival 

and maintenance of CSCs. EMT, epithelial-to-mesenchymal transition; E/M, epithelial/mesenchymal; EpCAM, epithelial cell adhesion 

molecule; LGR5, leucine-rich repeat-containing G-protein coupled receptor 5; NOTCH, neurogenic locus notch homolog protein; OCT4, 

octamer-binding transcription factor 4; NANOG, homeobox protein NANOG; KLF4, Krüppel-like factor 4; ABC, ATP-binding cassette; 

ROS, reactive oxygen species; GSH, glutathione; TXN, thioredoxin.
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mRNA translational regulating factors (Chio et al., 2016). In 

addition, resistance in NRF2-activated cancers is mediated by 

the elevated levels of multiple detoxifying enzymes and ABC 

transporters (Maher et al., 2007) (Fig. 2).

NRF2 SIGNALING IN CSC

NRF2 signaling in normal stem cells
Evidence indicates an association between NRF2 and stem-

like traits in normal stem cells. NRF2 was shown to maintain 

the balance of quiescence and self-renewal of HSCs, and 

Nrf2 knockout showed an expanded HSCs pool and pro-

genitor cells in mouse bone marrow (Tsai et al., 2013). NRF2 

expression was higher in human ESCs than in non-stem cells, 

and NRF2 levels decreased in the differentiated state (Jang 

et al., 2014). Knockdown of NRF2 in hESCs has shown that 

constitutive NRF2 activity is necessary for the self-renewal and 

pluripotency of ESCs.

	 In line with these findings, a link between NRF2 and 

stem cell-related NOTCH signaling has been demonstrated. 

NOTCH1 expression was reduced in Nrf2-null cells, and the 

functional antioxidant response element, an enhancer recog-

nized by the NRF2/sMAF complex, was identified in the mu-

rine Notch1 gene. This correlation was further strengthened 

by an animal study showing delayed liver regeneration in 

partially hepatectomized Nrf2-knockout mice and the rescue 

phenotype by NOTCH expression (Wakabayashi et al., 2010). 

Administration of the NRF2 activator led to NOTCH signal-

ing activation and HPSC reconstitution in irradiated NOTCH 

reporter mice (Kim et al., 2014). Squamous epithelial cells 

from the tongue tissues of Keap1-knockout mice showed 

increased NOTCH and hyperproliferative signaling, confirm-

ing a positive correlation between NRF2 and NOTCH (Fan 

et al., 2017). Interestingly, reciprocal relationship between 

NRF2 and NOTCH was also observed. Overexpression of the 

NOTCH intracellular domain (NICD) in mice increases NRF2 

expression in enlarged livers, which can be reversed by Nrf2 

disruption. NOTCH-mediated NRF2 elevation was found to 

be a direct effect of NICD on the Nrf2 promoter (Wakaba-

yashi et al., 2014). ROS flux promotes NRF2-mediated self-re-

Fig. 2. Role of NRF2 in cancer. Aberrant NRF2 activation in cancer is often resulted from NRF2/KEAP1 somatic mutation and binding 

competition by p62 that results in liberation of NRF2 from KEAP1-mediated degradation system. As KEAP1-independent regulation, NRF2 

stabilization is achieved by oncogenes-directed upregulation and persistent activation of PI3K/AKT signaling pathway. NRF2 overactivation 

increases its target genes expression to counteract ROS imbalance, enhance anticancer drug efflux, and re-direct metabolism to increase 

survival and proliferation, thus supports tumor growth, progression, and therapy resistance. ROS, reactive oxygen species; ABC, ATP-

binding cassette; KEAP1, Kelch-like ECH-associated protein 1; DLG, DLG motif; ETGE, ETGE motif; sMAFs, small MAF proteins; ARE, 

antioxidant response element; GSH, glutathione; TCA, tricarboxylic acid; PI3K, phosphoinositide 3-kinases; GSK-3, glycogen synthase 

kinase-3.
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newal and proliferation of airway basal stem cells (ABSCs), 

and NOTCH signaling was a downstream mediator of NRF2 

in ABSCs self-renewal regulation (Paul et al., 2014).

NRF2 activation in CSC
Recent accumulating evidence has shown that NRF2 is acti-

vated in CSCs, and this increase is crucial for maintaining CSC 

phenotype. In glioma CSCs, NRF2 expression was negatively 

correlated with the differentiation state, and the knockdown 

of NRF2 suppressed tumor growth by differentiating glioma 

CSCs (Zhu et al., 2014). NRF2 was upregulated in de-differ-

entiated breast epithelial cells, which were established by 

TWIST overexpression, and the protein kinase R-like endo-

plasmic reticulum kinase (PERK)-mediated NRF2 activation 

was responsible for chemotherapy resistance of these cells 

(Del Vecchio et al., 2014). NRF2 levels were highly upregulat-

ed in breast cancer spheres, and treatment with brusatol, a 

chemical inhibitor of NRF2, sensitized breast cancer spheres 

to taxol treatment (Wu et al., 2015). Similarly, NRF2/ABCG2 

expression was increased in mammospheres and colono-

spheres, and silencing NRF2 gene suppressed sphere growth 

and enhanced doxorubicin cytotoxicity (Ryoo et al., 2015; 

2016a). Activated NRF2 in ROSlow head and neck CSCs pro-

motes a metabolic shift to glycolysis and maintains CSC stem-

ness by maintaining low ROS levels (Chang et al., 2018).

	 Flow cytometry-based CSC isolation also suggests a cor-

relation between CSC and NRF2 activation. Proteome analysis 

showed that HCC CSCs with CD44 variant 9 (CD44v9) ex-

press high levels of NRF2 compared to CD44v9- HCC (Kake-

hashi et al., 2016). The levels of NRF2 and its target genes are 

high in the CD44+/CD24- breast CSCs population, and NRF2 

activation is necessary for CSCs survival and therapy resistance 

(Ryoo et al., 2018). Colorectal CSCs with CD133+ showed 

high levels of NRF2-driven ABCB1 and ABCG2 expression 

resulting in drug resistance (Goto et al., 2020; Park et al., 

2022). Ovarian CSCs populations with high ALDH expres-

sion showed NRF2 signaling activation, and NRF2 silencing 

blocked CSC traits, such as anchorage-independent growth, 

migration, sphere formation, therapy resistance, and tumor 

growth (Kim et al., 2018a). The ALDH+ breast CSCs are re-

sistance to radiotherapy and NRF2-mediated ALDH elevation 

has been reported to contribute to this resistance (Kamble et 

al., 2021). The EpCAMhigh cell population is enriched in cis-

platin-resistant head and neck squamous cell carcinoma, and 

high levels of NRF2, mediated by IL-6 elevation and p62 ac-

cumulation, are responsible for treatment resistance (Noman 

et al., 2020). These results indicate that the NRF2 pathway is 

upregulated in multiple CSC models and plays a crucial role in 

survival, maintenance, and therapy-resistant CSCs.

Association of NRF2 with CSC signaling
The molecular events that define the role of NRF2 in CSCs 

signaling have been identified (Fig. 3). In particular, the ex-

pression levels of key stemness molecule NOTCH have been 

linked to NRF2 in multiple types of cancer. Loss of KEAP1, 

which results in persistent NRF2 activation, increases the 

self-renewal capacity of head and neck CSCs through NRF2 

elevation and subsequently NOTCH signaling activation (Islam 

et al., 2022). Radiation-induced lung cancer migration de-

pends on NOTCH1 signaling, and NRF2 inhibition suppresses 

metastasis with concomitant NOTCH1 level reduction (Zhao 

et al., 2017). In breast cancer cells, carbon monoxide (CO), 

derived from NRF2/heme oxygenase-1 elevation, stimulates 

mammosphere formation through upregulation of NOTCH1 

expression (Kim et al., 2018b). Constitutive NRF2 activation in 

KEAP1-mutated lung cancer cells induced unique remodeling 

of the enhancer of NOTCH3 gene, and the cooperation be-

tween CCAAT/enhancer-binding protein β (CEBPB) and NRF2 

promoted NOTCH3 elevation, which resulted in enhanced 

tumor-initiating capacity (Okazaki et al., 2020a). In a subse-

quent study, NRF2 was found to increase CEBPB expression 

directly, and NRF2-CEBPB cooperation regulated additional 

gene sets involved in chemoresistance in NRF2-active lung 

cancers (Okazaki et al., 2022).

	 In addition to NOTCH, NRF2 has been reported to contrib-

ute to the regulation of other stemness-related molecules in 

cancers. Activated NRF2 signaling in breast CSCs upregulates 

forkhead box protein O3 (FOXO3) and downstream BMI-

1 expression via reductive stress, resulting in an enhanced 

self-renewal capacity (Kim et al., 2020). NRF2/FOXM1-medi-

ated upregulation of sulfiredoxin-peroxiredoxin contributes 

to the stemness and survival of colon CSCs (Escoll et al., 

2020; Song et al., 2021). β-Catenin expression was directly 

enhanced by NRF2; therefore, persistent activation of NRF2/

β-catenin promotes hepatic stem cell proliferation and subse-

quently initiates tumorigenesis (Fragoulis et al., 2022). NRF2, 

which is activated in liver tumor-initiating cells, can directly 

upregulate sonic hedgehog homolog to activate the sonic 

hedgehog pathway for tumorigenesis (Leung et al., 2020). 

Nestin, a type IV intermediate filament protein highly ex-

pressed in stem cells and cancer cells, competitively interacts 

with the Kelch domain of the KEAP1 protein, thus, stabilizing 

the NRF2 protein and leading to oxidative stress resistance 

and malignancy initiation in non-small cell lung cancer (Wang 

et al., 2019). High NRF2 levels in glioblastoma CSCs induce 

tumorigenesis by directly elevating the expression of TAZ, a 

Hippo pathway effector participating in cancer migration, 

invasion, and stemness.

	 p62 (encoded by SQSTM1 gene), an autophagy adaptor 

protein involved in selective autophagy, has been suggest-

ed to act as an oncoprotein (Ichimura et al., 2013; Li et al., 

2013). Recent evidence indicates the role of p62 in CSCs: 

selective p62 inhibition attenuated the cancer-initiating ca-

pacity of acute myeloid leukemia cells (Li et al., 2021). Fur-

thermore, there are considerable reports indicating that the 

increase of NRF2 in CSCs is associated with p62. Accumula-

tion of p62 was found to be necessary for HCC-initiated cell 

survival and expansion by increasing NRF2 activity (Umemura 

et al., 2016). High levels of p62 are directly associated with 

NRF2 signaling activation in multiple CSCs models, including 

the CD44+/CD24- breast CSCs, ALDH+ ovarian CSCs, and 

EpCAM+ HNSC CSCs (Kim et al., 2018a; Noman et al., 2020; 

Ryoo et al., 2018). The interplay between CSCs and the 

niche microenvironment is important for tumor progression 

and therapy resistance. Tumor-initiating cells from NRF2-

high squamous cell carcinoma stimulated the release of IL-

33, which promotes the differentiation of macrophages to 

secrete transforming growth factor β (TGF-β). CSCs-mediated 
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paracrine effect on TGF-β signaling consequently induces 

cancer invasion and resistance (Taniguchi et al., 2020).

NRF2 AND CANCER PLASTICITY

Given that EMT contributes to the plasticity of CSC and non-

CSCs, the potential relationship between NRF2 and EMT is 

an intriguing question. Several lines of evidence indicate the 

involvement of NRF2 in EMT; however, this correlation does 

not seem to be consistent. E-cadherin, a marker of epithelial 

cells, was shown to inhibit NRF2 accumulation through direct 

binding and KEAP1-dependent proteasomal degradation; 

thus, loss of E-cadherin in EMT could increase NRF2 levels, 

which results in cancer resistance to chemotherapy (Kim 

et al., 2012). In another study, NRF2 activation suppressed 

E-cadherin expression through an unidentified mechanism 

and increased the invasion of pancreatic ductal carcinoma 

cells (Arfmann-Knübel et al., 2015). In lung cancer cells, 

TGF-β, a potent inducer of EMT, increases ROS and activates 

NRF2 signaling. This event is necessary for NOTCH4 induction 

and TGF-β-induced EMT (Yazaki et al., 2021). However, loss 

of NRF2 can enhance HCC motility with a concomitant de-

crease in E-cadherin and an increase in the EMT transcription 

factor zinc finger protein SNAI2 (SLUG) (Rachakonda et al., 

2010). Nrf2-knockout mice develop a higher degree of lung 

metastasis following inoculation with mouse lung carcinoma 

cells, and Kepa1-knockdown mice are resistant to cancer cell 

migration to the lungs (Satoh et al., 2010). TGF-β-induced 

cancer migration and associated signaling activation were 

higher in NRF2-silenced lung cancer cells (Ryu et al., 2020).

	 Conflicting observations suggest that the association be-

tween NRF2 and cancer plasticity might be a phase-specific 

Fig. 3. Association of NRF2 with cancer stem cells (CSCs) properties. NRF2 signaling is activated in CSCs and contributes to CSC 

properties, such as tumor initiation, metastatic malignancy, and therapy resistance. NRF2 is activated by CSC markers such as CD44, 

EpCAM, and ALDH, and p62 accumulation is associated with NRF2 activation. CD133 leads to NRF2 stabilization through PI3K/AKT 

pathway activation. TWIST-mediated PERK activation directly induce NRF2 accumulation. Competitive binding of Nestin with KEAP1 

induces NRF2 liberation and translocation into the nucleus. NRF2 upregulates multiple antioxidant defense genes and FOXO3 to maintain 

low ROS levels. ABC transporters, including ABCB1, ABCG2, and ABCA3, are upregulated by NRF2 and contribute to chemotherapy 

resistance. High level of NRF2 is also associated with the upregulation of transcription factors, including NOTCH1/3, Sonic Hedgehog, 

β-catenin, and TAZ to maintain stemness of cancer cells. NRF2 activation stabilizes cells in hybrid epithelial/mesenchymal (hybrid E/

M) state to support phenotypic conversion to CSCs. ROS, reactive oxygen species; EpCAM, epithelial cell adhesion molecule; PI3K, 

phosphoinositide 3-kinases; sMAFs, samll MAF proteins; ARE, antioxidant response element; KEAP1, Kelch-like ECH-associated protein 1; 

DLG, DLG motif; ETGE, ETGE motif; ALDH, aldehyde dehydrogenase; NOTCH, neurogenic locus notch homolog protein; HH, hedgehog 

homolog.
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phenomenon. Several recent studies have emphasized the 

role of hybrid E/M cells, in cancer stemness, which have both 

epithelial and mesenchymal features. The computation-

al-experimental approach revealed that NRF2 could prevent 

complete EMT, while stabilizing a hybrid E/M phenotype by 

upregulating E-cadherin and ZEB-1 in lung cancer and blad-

der cancer cells (Bocci et al., 2019). In particular, this study 

showed that the NRF2 levels are maximally increased in the 

hybrid E/M state, and NRF2 knockdown destabilized the 

hybrid E/M phenotype. Consistently, a simulation study of 

network dynamics suggested that NRF2 is a stabilizing factor 

for the hybrid E/M phenotype (Pasani et al., 2020). In sili-

co-in vitro analysis, NRF2 activation enhances the hybrid E/M 

phenotype at the migrating edge in a wound healing assay, 

and the involvement of NOTCH signaling was also confirmed 

in experimental settings (Vilchez Mercedes et al., 2022). Al-

though sufficient evidence is lacking, these reports suggest 

the possibility that NRF2 can change and function during the 

plastic phase of cancer. Therefore, the functional identifica-

tion of NRF2 in cancer plasticity is expected to provide clues 

to control the emergence of CSC properties.

CONCLUSION AND PERSPECTIVES

In this review, we examine recent evidence that demon-

strates NRF2 signaling is activated in CSCs and contributes 

to CSC properties, such as tumor initiation, metastatic 

malignancy, and therapy resistance. To date, multiple CSC 

markers and transcription factors have been reported to be 

associated with the upregulation of NRF2 expression in CSCs. 

In particular, the reciprocal regulation of NRF2 and NOTCH 

signaling could explain the changes and functions of NRF2 

in CSCs. Activated NRF2 signaling in CSCs has been primarily 

attributed to maintaining intracellular ROS levels low, which 

leads to enhanced CSC survival after ROS-generating therapy. 

NRF2 activation also induces resistance to chemotherapy by 

increasing ABC transporter expression.

	 Considering the multifaceted role of NRF2 in cancer cells, 

the function of NRF2 in CSCs is expected to expand. For 

instance, CSCs are believed to favor glycolysis and pentose 

phosphate pathway (PPP) metabolism, which aids in main-

taining low ROS levels by inhibiting mitochondrial oxidative 

phosphorylation and NADPH generation (Tuy et al., 2021). 

From this perspective, activation of the PPP pathway or 

changes in amino acid metabolic pathways, which are ob-

served in NRF2-activated cancers, may contribute to meta-

bolic changes in CSCs (Hayes and Dinkova-Kostova, 2014; 

Okazaki et al., 2020b). The immune evasion property is 

another hallmark of CSCs. The immune response of CSCs is 

reprogrammed to promote tumor immune escape, resulting 

in immunotherapy failure (Bayik and Lathia, 2021). As NRF2 

was found to upregulate programmed cell death ligand 1 

(PD-L1), an immune checkpoint protein for the inhibition of 

adaptive immune response, high levels of NRF2 in CSCs may 

contribute to the immune evasion traits of CSCs (Shen et al., 

2020; Zhu et al., 2018). The CSC microenvironment is an im-

portant contributor to the regulation of CSC fate. In particu-

lar, secretory factors derived from the tumor niche have been 

shown to activate self-renewal and differentiation of CSCs 

(Batlle and Clevers, 2017). Proteome analysis revealed that 

the NRF2 antioxidant system is enriched in conditioned media 

from colorectal CSCs (Emmink et al., 2013). NRF2 is also in-

volved in the secretion of cytokines from non-cancerous and 

cancerous cells (Kitamura et al., 2017; Taniguchi et al., 2020). 

Considering these reports, it is probable that NRF2 signaling 

contributes to the regulation of the crosstalk between CSCs 

and their microenvironment.

	 Based on the context discussed above, a novel strategy for 

targeting NRF2 and CSCs can be developed. EpCam antibod-

ies, such as adecatumumab and γ-secretase inhibitors target-

ing NOTCH signaling, have been developed as CSC targeting 

therapies (Yang et al., 2020). Considering the increase in 

NRF2 in EpCAM+ CSCs and NOTCH-activated cells (Noman et 

al., 2020; Wakabayashi et al., 2014), it would be interesting 

to determine whether these drugs improve CSC resistance 

by suppressing NRF2 signaling. NRF2 inhibitors are being 

developed to control tumorigenesis and malignant progres-

sion. Although the issue of selectivity between normal cells 

and cancer cells remains, several synthetic and natural com-

pounds, including brusatol, chrysin, and trigonelline, have 

been investigated to demonstrate their inhibitory effects on 

tumor growth, malignant progression, and therapy resistance 

(Cuadrado et al., 2019; Panieri et al., 2020; Taguchi and Ya-

mamoto, 2020). The development of NRF2 inhibitors that 

selectively act on CSCs is expected to be a promising strategy 

for suppressing CSC survival and malignant properties.
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