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Current applications of human induced pluripotent stem cell (hiPSC) technologies in

patient-specific models of neurodegenerative and neuropsychiatric disorders tend to

focus on neuronal phenotypes. Here, we review recent efforts toward advancing hiPSCs

toward non-neuronal cell types of the central nervous system (CNS) and highlight their

potential use for the development of more complex in vitromodels of neurodevelopment

and disease. We present evidence from previous works in both rodents and humans

of the importance of these cell types (oligodendrocytes, microglia, astrocytes) in

neurological disease and highlight new hiPSC-based models that have sought to

explore these relationships in vitro. Lastly, we summarize efforts toward conducting

high-throughput screening experiments with hiPSCs and propose methods by which

new screening platforms could be designed to better capture complex relationships

between neural cell populations in health and disease.
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INTRODUCTION

The development of successful treatments for neurological disease is hampered by a constellation of
unique challenges that has resulted in a historically poor rate of success in drug development in this
area (Ringel et al., 2013). Many neurological diseases are complex and heterogeneous in nature,
exhibiting a breadth of genetic and epigenetic variants of small effect sizes which incompatible
and/or impractical to model using traditional in vitro and in vivomodels (Sullivan et al., 2012; Fass
et al., 2014). Furthermore, the use of rodent models may be insufficient to capture the complexity
of human disease, as large differences in neurogenesis, neuroanatomy and distribution of neural
cell types within the brain exist between mice and humans. Lastly, the lack of accessibility of neural
tissue (both living and post-mortem) combined with difficulties in culturing these cell types in
vitro has made developing cell culture models of neurological disease exceedingly difficult and
slowed understanding of the pathophysiology underlying a number of these conditions. Human
induced pluripotent stem cells (hiPSCs) now offer a nearly limitless potential for disease modeling
and drug screening applications. Their great self-renewal and wide differentiation capacity, coupled
with the relative ease of producing patient-specific hiPSCs harboring genetic variations implicated
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in disease, makes possible the generation of large quantities of
diverse cell types in a controlled and iterative manner, ideal for
high throughput screens to discover and evaluate the efficacy and
safety of novel therapeutics (Haggarty and Perlis, 2014; Mertens
et al., 2016). In recent years, stem cell models of complex genetic
diseases have helped to shed new light on the pathology of various
neurodegenerative and neuropsychiatric disorders (Di Giorgio
et al., 2008; Dimos et al., 2008; Park et al., 2008; Soldner et al.,
2009; Brennand et al., 2011; Yagi et al., 2011; Yoon et al., 2014).

Until recently, studies of mechanism and pathology of
neuropsychiatric disorders have tended to focus predominantly
on neurons, with little recognition of the complex milieu of
cell types that interact with these cells and influence their
function. Fortuitously, our newfound ability to generate a
variety of cell types found in the central nervous system
(CNS) from hiPSCs now presents an exciting opportunity to
explore how these various cell types interact with one another
in a controlled manner. In this review, we briefly overview
current advances toward generating the major neural cell types—
neurons, astrocytes, oligodendrocytes andmicroglia—using stem
cell technologies. Further, we highlight recent advancements
in understanding non-neuron cell-autonomous effects in the
pathology of three representative neuropsychiatric disorders—
Amyotrophic Lateral Sclerosis (ALS), schizophrenia and Rett
Syndrome—both in vitro and in vivo, with an eye toward
using this information to develop hiPSC-based drug screening
platforms that better capture disease pathology.

PROGRESS IN CELLULAR
REPROGRAMMING STRATEGIES TO
GENERATE MAJOR CNS CELL TYPES

Neurons
The lack of live patient neural tissue, combined with the
limitations of post-mortem brain tissue, has spurred efforts
to find new methods of models of CNS diseases. Stem cell
based technologies, particularly the ability to reprogram induced
pluripotent stem cells (hiPSCs), presents a powerful opportunity
to create scalable, easily perturbed platforms to study how
various genetic abnormalities implicated in disease manifest in
altered neural cell function. There exist two general strategies
for the creation of neurons using hiPSC-based technologies,
directed differentiation and induction, each having advantages
and disadvantages that Should be carefully considered when
developing an appropriate platform for drug development.

Directed differentiation of iPSCs involves the sequential
addition of growth factors and small molecules intended to
recapitulate the embryonic developmental cues that drive the
generation of mature tissue and different cell types in vivo.
Neuronal differentiation protocols typically proceed via a neural
progenitor cell (NPC) intermediate, a population of cells with
the capacity to self-renew and to generate both neurons and glia.
The application of a variety of mitogens can confer different
positional identities and enrich for specific subtypes of neural
cells. For a more in depth review of these differentiation methods
and their developmental basis, an excellent review has been

published elsewhere (Mertens et al., 2016). Conversely, neuronal
induction proceeds via the forced overexpression of key neuronal
transcription factors. When first reported, induced neurons were
generated through the overexpression of three factors—BRN2
(also known as POU3F2), achaetescute homolog 1 (ASCL1)
and myelin transcriptional factor1-like protein (MYT1L)—in
mouse or human fibroblasts (Vierbuchen et al., 2010; Pang
et al., 2011; Son et al., 2011; Vadodaria et al., 2016). Collectively
known as the BAM factors, they rapidly yielded a heterogeneous
population of induced neurons that formed synapses and
fired action potentials. A growing understanding of the key
transcription factors responsible for assigning regional specificity
and neurotransmitter identity has expanded our ability to induce
specific populations of excitatory (NGN2) (Zhang et al., 2013),
inhibitory (ASCL1, LHX6, DHX2, miR9/124) (Sun et al., 2016),
dopaminergic (MASH1, NURR1, LMX1A) (Caiazzo et al., 2011)
and serotonergic (ASCL1, NGN2, NKX2.2, FEV, GATA2, LMX1B)
(Vadodaria et al., 2016; Xu et al., 2016) neurons for fibroblasts,
hiPSCs and/or NPCs.

The choice between directed differentiation and neuronal
induction approaches generally reflects needs of the experiment
in question. From a practical standpoint, differentiation of iPSCs
is costly and time consuming, often requiring 4–6months to yield
functional neurons. In contrast, while induced neurons can be
generated from fibroblasts within 1–3 weeks (without the need
to reprogram and validate hiPSCs), the populations produced
tend to include large numbers of fibroblast-like contaminants
and the absolute number of neurons that can be generated is less,
reflecting the more limited replicative capacity of fibroblasts. A
compromise of inducing neurons directly from hiPSCs promises
a larger number of rapidly maturing neurons andmay growmore
common as subtype-specific induction methodologies become
more refined.

Several fundamental differences distinguish neurons
generated by directed differentiation or induction. First,
chromatin remodeling is an essential part of the cellular
reprogramming process; while important epigenetic markers
associated with complex genetic diseases may be lost during
hiPSC reprogramming, this does not seem to occur to the same
extent during neuronal induction (Huh et al., 2016; Mertens
et al., 2016). It is thought that cellular division during directed
neuronal differentiation requires broad transcription factor
access to previously closed regions, thus changing the epigenetic
landscape of the cell in question. In contrast, neuronal induction
does not require proliferation; the pioneer transcription factors
seem to not require extensive chromatin remodeling to complete
this process (Liu et al., 2013; Iwafuchi-Doi and Zaret, 2014;
Fishman et al., 2015) and so may better preserve epigenetic
signatures. Second, the establishment of an embryonic-like
state during the reprogramming process is now understood to
result in terminally differentiated phenotypes that resemble fetal
rather than adult cells (Mariani et al., 2012; Nicholas et al., 2013;
Brennand et al., 2015), suggesting that hiPSC-based models may
better capture the genetic elements of disease predisposition
rather than the disease-state itself. Although novel strategies to
accelerate aging in vitro are being uncovered (Miller et al., 2013;
Studer et al., 2015), the generation of induced neurons directly
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from fibroblasts more faithfully maintains epigenetic markers
associated with the aging state (Mertens et al., 2016). Third,
although neuronal induction bypasses key neurodevelopmental
processes, perhaps failing to capture critical biology relevant for
disease pathology, induced neurons have now been successfully
applied to query neuronal deficits in autism (Chanda et al., 2013;
Pak et al., 2015; Yi et al., 2016), bipolar disorder (Bavamian et al.,
2015), Alzheimer’s disease (Hu et al., 2015).

Astrocytes
Once regarded as a population of cells providing little more
than structural support to neuronal networks, the known roles
of astrocytes in regulating neuronal function in the CNS is
growing. It is now well-recognized that perturbed astrocyte
function can exacerbate, and even cause, CNS diseases (Chung
et al., 2015); for example, neuroinflammation and ischemia
induce two different types of reactive astrocytes, termed A1
(“harmful”) and A2 (“helpful”) (Liddelow and Barres, 2017;
Liddelow et al., 2017). Astrocytes are the most abundant cell
type in the CNS and perform a wide variety of functions,
including axonal guidance, response to inflammation, wound
healing, and the formation of the blood brain barrier (Barres,
2008; Zhang and Barres, 2010; Verkhratsky et al., 2012; Freeman
and Rowitch, 2013). Importantly, astrocytes are involved
in recycling of glutamate and molecular regulation of ion,
neurotransmitter and neurohormone concentrations, as well as
synaptic pruning and maturity, underscoring their vital role
in neuronal communication (Newman, 1995; Danbolt, 2001;
Pfrieger, 2009). Astrocytes seem to function in an ordered
manner to cover independent territory, contacting thousands
of synapses through their multiple processes and branches
(Bushong et al., 2002). In addition, these processes can be
used to create connections with local capillaries and develop
independent neurovascular units in which astrocytes mediate
changes in CNS blood flow in response to neuronal activity
(Schummers et al., 2008;Wolf and Kirchhoff, 2008; Koehler et al.,
2009). Mirroring the diversity of their function, astrocytes display
extraordinary heterogeneity in morphology, physiology, gene
expression and developmental origin (Zhang and Barres, 2010).
The number and complexity of astrocytes increase significantly
with neuronal complexity in higher vertebrates, with important
differences between rodents and humans that underscore the
importance for cell-based systems to understand the contribution
of this important cell type in disease pathology (Zhang et al.,
2016). The astrocyte-to-neuron ratio increases with evolutionary
complexity from low vertebrates to rodents and primates, with
humans having a 46% higher glia-neuron ratio even when
compared to other primates (Sherwood et al., 2006). Compared
to their rodent counterparts, human cortical astrocytes are larger,
display greater heterogeneity and diversity, and exhibit marked
differences in their electrophysiological properties (Oberheim
et al., 2009). When transplanted into mice, human glia (relative
to transplanted mouse glia) improved learning and activity-
dependent plasticity compared to controls (Han et al., 2013).
These results underscore large and important differences between
human and murine astrocytes, emphasizing the importance of
developing clinically relevant, human-specific in vitro models

that can help uncover important roles of human astrocytes in
health and disease.

Strategies for the directed differentiation of astrocytes from
hiPSCs can either rely on an NPC (Haidet-Phillips et al., 2011;
Krencik and Zhang, 2011; McGivern et al., 2013; Serio et al., 2013;
Shaltouki et al., 2013) or oligodendrocyte progenitor cell (Jiang
et al., 2013) intermediate. Transplanted hiPSC-derived astrocytes
integrate and function in themouse brain in vivo (Haidet-Phillips
et al., 2011; Krencik and Zhang, 2011; Jiang et al., 2013; Chen
et al., 2015). Consistent with the late emergence of astrocytes
during corticogenesis (Tabata, 2015), existing methods tend to
be slow (up to 6 months), thus limiting their use for in vitro
modeling (Krencik and Zhang, 2011; Jiang et al., 2013; Shaltouki
et al., 2013). Induction of astrocytes from mouse fibroblasts
occurs more rapidly (within 16 days), via overexpression of
the transcription factors NF1A, NF1B, and Sox9 (Caiazzo et al.,
2015), the utility of this protocol in generating functional
human astrocytes has not been demonstrated. hiPSCs have
been differentiated to functional astrocytes for cell-based models
of neuropsychiatric disorders in vitro (McGivern et al., 2013;
Roybon et al., 2013; Serio et al., 2013; Shaltouki et al., 2013).
Resulting hiPSC-derived astrocytes express canonical markers,
participate in glucose homeostasis (Shaltouki et al., 2013), and
can be engrafted into mouse striatum and upregulate expression
of classical reactive astrocytic chemokines when treated with
TNFα (Roybon et al., 2013). McGivern et al differentiated
hiPSCs from patients with spinal muscular atrophy (SMA) into
astrocytes, demonstrating that mutated SMA astrocytes had
enlarged cell bodies with shorter processes andmore pronounced
GFAP expression, indicative of a reactive astrocyte phenotype
(McGivern et al., 2013). In a similar fashion, Serio et al
created astrocytes from hiPSCs carrying the TDP-43 mutation
associated with ALS, and found that the resulting astrocytes had
decreased survival, increased levels of TDP-43, and intracellular
mislocalization of TDP-43 (Serio et al., 2013). Together, these
studies demonstrate the utility of human and disease specific
models for probing changes in astrocytic phenotype due to
genetic or environmental challenges in vitro.

Oligodendrocytes
Oligodendrocytes wrap neuronal axons in a thick membrane of
myelin, enabling rapid conductance of electrical signals through
neural networks. Myelination occurs as multi-step process that
begins with proliferation and migration of oligodendrocyte
precursor cells across large distances to the appropriate axon,
synthesis of the myelin sheath itself, and finally wrapping and
compaction of the insulating layer around the axon (Barateiro
et al., 2016). The final steps of wrapping and compaction occur
in the last weeks of gestation and the first postnatal months,
with the bulk of the white matter in the CNS being produced
during the first year of birth (Barateiro et al., 2016). Interestingly,
myelinating capacity appears to be restricted to shortly after
oligodendrocyte differentiation is completed (Watkins et al.,
2008), such that the appearance of white matter in specific
neuroanatomic regions appears to accompany maturation of
cognitive function of that area (Nagy et al., 2004; Mabbott
et al., 2006; Fields, 2008). Maintenance of myelin occurs
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throughout life, owing to the proliferation and activation of
adult oligodendrocyte precursor cells (Zhu et al., 2007; Young
et al., 2013); the inability to repair damaged myelin is implicated
in myelin disorders such as ALS and multiple sclerosis (MS)
(Barateiro et al., 2016). Oligodendrocytes communicate in a
variety of ways with other cell types in the CNS; trophic factors
secreted by oligodendrocytes modulate neuron axonal size and
regulate distribution of ion channels in the axon (Barres, 2008),
whereas gap junctions between astrocytes and oligodendrocytes
allow exchange of small molecules that affect electrical coupling,
and it appears that astrocytes play a role in the initiation of
myelination (Orthmann-Murphy et al., 2008).

Although human oligodendrocytes can be generated from
hiPSCs (Goldman and Kuypers, 2015) and are seemingly highly
active once transplanted in vivo (Windrem et al., 2014), they
myelinate less than 3% of axons in vitro (Kerman et al.,
2015). Oligodendrocytes can also be generated through direct
conversion methods in mice, via the overexpression of Sox10,
oligodendrocyte transcription factor 2 (Olig2) and either Nkx6.2
(Najm et al., 2013) or zinc-finger protein 536 (ZPF536) (Yang
et al., 2013); the first method yielded oligodendrocyte restricted
induced oligodendrocyte precursor cells, the second retained
competence to generate astrocytes as well. It remains uncertain
to what extent these same factors will be sufficient to generate
induced oligodendrocyte precursor cells from human fibroblasts.
Moving forward, methods to regionally pattern the fate and
function of differentiated or induced oligodendrocyte precursor
cells will be necessary.

Microglia
Microglia maintain homeostasis throughout the CNS through
active surveillance following by phagocytic clearance of debris
and elimination of synapses during development in a process
known as “synaptic pruning”; they also perform vital immune
functions as the first line of defense in the nervous system.
Using their extensive processes, microglia sweep the CNS
parenchyma in search of unhealthy or diseased astrocytes
and neurons that fail to express particular receptors and/or
secrete “healthy” signals (Davalos et al., 2005; Sieger et al.,
2012; Aguzzi et al., 2013; Prinz and Priller, 2014). Microglia
measure neuronal activity using neurotransmitter receptors and
immune activity by expressing receptors for chemokines and
complement factors (Hanisch and Kettenmann, 2007); they
respond to stimuli by altering migration, inflammatory response,
cytokine release and phagocytic activity (Prinz and Priller,
2014). Microglia are the primary antigen presenting cells of the
CNS, presenting antigens to infiltrating T lymphocytes through
major histocompatibility complex (MHC) class II complexes
(Butovsky et al., 2005). Activation of microglia in response to
injury or disease results in a morphological change that differs
depending on the signals detected and microglial modulators
present (Hanisch and Kettenmann, 2007). Following tissue
injury or in response to pathogens, non-neural macrophages
undergo polarization into either (pro-inflammatory) or M2
(anti-inflammatory) macrophages. Likewise, activated microglia
become polarized into M1-like and M2-like phenotypes; co-
culture with M1 microglia leads to a cytotoxic phenotype

in neurons and oligodendrocytes, while co-culture with M2
microglia promotes neurite outgrowth cells (Kigerl et al., 2009;
Hu et al., 2012). However, microglia have difficulty undergoing
polarization to an M2-like phenotype in vitro when compared to
non-neural macrophages, hampering a complete understanding
of these two different phenotypes (Kim et al., 2004; Durafourt
et al., 2012). Interestingly, differences between M1 and M2
macrophages and microglia become difficult to appreciate in
inflammatory and neurodegenerative diseases, withmicroglia co-
expressing markers of both subtypes (Dal Bianco et al., 2008;
Vogel et al., 2013).

Until recently, no directed differentiation protocols for the
creation of microglia existed, limiting our understanding of this
cell type to those studies performed using mouse models or post-
mortem human tissue. Because microglia are derived from the
primitive macrophages in the yolk sac of myeloid lineage (Alliot
et al., 1999), they cannot be generated using neural progenitor
cells (NPCs) as in other lineages discussed previously. Three
recent reports have now detailed the creation of microglia from
hiPSCs via a hematopoietic progenitor-like intermediate cell
(Muffat et al., 2016; Abud et al., 2017; Pandya et al., 2017).
While the protocols differed in their reliance on embryoid body
differentiation and/or FACS, all three methods yielded immature
microglia-like cells expressing canonical microglial markers and
demonstrating phagocytic and migratory functionality (Muffat
et al., 2016; Abud et al., 2017; Pandya et al., 2017).

Summary
With a newfound ability to generate all of the major cell types of
the CNS - neurons, astrocytes, oligodendrocytes and microglia—
human hiPSC-based models are now primed to explore how
the interactions of these various cell types contribute to risk
for a variety of neuropsychiatric disorders. While post-mortem,
animal models and hiPSCs have identified a number of cell
autonomous deficits that underlie neurodegenerative (Marchetto
et al., 2011; Bahmad et al., 2017; Poon et al., 2017) or psychiatric
(Brennand and Gage, 2012; Ho et al., 2015; Wen, 2017)
disorders, complex interactions between neural cells can now be
explored in a fully human and patient-derived platform (Table 1).
Below, we discuss evidence for non-cell autonomous effects
in neurodegenerative disease (represented by ALS), psychiatric
disease (represented by schizophrenia) and neurodevelopmental
disease (represented by Rett Syndrome).

NON-CELL AUTONOMOUS EFFECTS IN
NEUROPSYCHIATRIC DISORDERS

Amyotrophic Lateral Sclerosis (ALS)
ALS is a debilitating neurodegenerative condition causingmuscle
atrophy and loss of control of motor function, rendering patients
paralyzed and eventually unable to breathe (Brooks, 1996; Appel
et al., 2011). The symptomatic phase of ALS is associated with
massive activation of microglia and astrocytes, which destroy
motor neurons of the CNS (Kushner et al., 1991; Nagy et al.,
1994; Schiffer et al., 1996). Though there is undoubtedly a genetic
component to the disease, themajority of cases are idiopathic and
with no family history, although a handful of highly penetrant
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TABLE 1 | Contribution of non-neuron cell types in neurodegenerative and neuropsychiatric diseases.

Cell type Physiological function Representative role in disease

pathology

Protocols Challenges

Astrocyte Blood-brain barrier

maintenance, glutamate,

homeostasis, synaptic

pruning, neurotransmitter

reuptake, wound healing

and response to

inflammation.

ALS: Expression of mSOD1 in neurons is

not sufficient to cause degeneration in

mouse models of ALS, yet Selective

deletion of mSOD1 from astrocytes

confers slower disease progression in

mice. Human wild type neurons undergo

degeneration in vitro when co-cultured by

mSOD1 in astrocytes.

Schizophrenia: Loss of astrocytes

associated with schizophrenia as are

altered gene sets involved in astrocyte

function.

Rett syndrome: MeCP2 deficiency in

astrocytes causes abnormalities in neural

cytokine production impacting

development. hiPSC derived astrocytes

derived from patients with Rett syndrome

have deficiencies in microtubule transport

that are abrogated by drugs shown to

have behavior correcting effects in mice.

(1) Directed differentiation from hiPSCs

through NPC intermediate

(Haidet-Phillips et al., 2011; Krencik

and Zhang, 2011; McGivern et al.,

2013; Serio et al., 2013; Shaltouki

et al., 2013).

(2) Directed differentiation from hiPSCs

through oligodedrocyte progenitor

(Jiang et al., 2013).

(3) Transcription factors induction of

fibroblasts in mice (Caiazzo et al.,

2015).

Slow culture/differentiation

time for hiPSC based

protocols (∼6 months).

No fibroblasts-induction

protocols available for

human cells.

Poorly understood role of

astrocyte heterogeneity in

disease limits ability to

recapitulate these effects

in vitro.

Oligodendrocyte Myelination of neuronal

axons in the CNS to enable

conductance of electrical

signals. Proliferation and

activation of

oligodendrocyte precursor

cells (OPC) occurs

throughout life.

Schizophrenia: Changes in

oligodendrocyte density, differentiation and

morphology in post-mortem tissue

studies. Rodent in vitro studies show

genes associated with Schizophrenia (e.g.,

DISC1 impact oligodendrocyte

differentiation.

(1) Directed differentiation from hiPSCs

(Goldman and Kuypers, 2015).

(2) Direct conversion by overexpression

of Sox10, Oligo2 together with either

Nkx6.2 or ZPF536 in mice (Najm et al.,

2013; Yang et al., 2013).

No available protocols for

the conversion of

oligodendrocyte from

fibroblasts in humans.

Myelination may be

restricted to period

immediately following OPC

maturation.

Microglia Perform synaptic pruning

and play critical immune role

by removing diseased

neurons and glia serving as

antigen presenting cell

of CNS. Change phagocytic

activity and mediate

inflammatory reaction in

response to

neurotransmitter signals

in CNS.

ALS: Selective removal of mSOD1 from

microglia extends lifespan in mouse model

of ALS.

Rett Syndrome: murine Rett syndrome

microglia have neurotoxic effects in

co-cultured with hippocampal neurons.

hiPSC derived microglia carrying MECP2

deletion are smaller potentially limiting their

ability to perform critical immune

surveillance functions.

(1) Directed differentiation via

hematopoietic progenitor (Muffat et al.,

2016; Abud et al., 2017; Pandya et al.,

2017).

Little known about in vitro

microglia phenotypes due to

historical difficulty culturing

human primary cells.

Representative examples from both in vitro and in vivo studies in mice and human are included, as well as relevant citations for protocols to generate these cell types through directed

differentiation of hiPSCs or through reprogramming of other cell types.

monogenic forms of ALS follow Mendelian inheritance patterns
(Brown, 1997; Cole and Siddique, 1999). The initial signs of ALS
are mild, and somany patients are not identified until the damage
to the tissue is quite significant. Altogether, the complex genetics,
unclear environmental compounds and late diagnoses of ALS
patients have made understanding the onset of disease pathology
very difficult to date.

Mutations in the Super Oxide Dismutase gene (SOD1) lead
to a dominant, inherited form of ALS (Rosen et al., 1993),
and are well-studied with the hope that by focusing on the
most penetrant and significant genetic defects associated with
ALS, we may come to understand broader aspects of ALS
disease onset and progression that are relevant to other ALS-
associated mutations. Initial experiments in rats with mutant

SOD1 gene (mSOD1) displayed degenerative symptoms and
pathology consistent with ALS (Nagai et al., 2007). Moreover,
introduction of the mutant gene into motor neurons in the
CNS did not cause neurodegeneration when motor neurons
were surrounded by healthy support cells, but even those wild
type neurons proximal to mutant glia underwent degeneration
(Clement et al., 2003). These data suggest that ALS disease onset
and progression might be mediated by negative interactions
between various cell types of the CNS, rather than an intrinsic
dysfunction in neurons themselves. In fact, selective deletion
of the mSOD1 gene from mouse astrocytes in transgenic mice
conferred a slower disease progression (Yamanaka et al., 2008).
More recently, microglia have also been identified as key
mediators of ALS progression; selective removal of the mSOD1
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gene frommicroglia significantly extended lifespan (Boillée et al.,
2006). Interestingly, while the interaction between neurons and
microglia appears to be protective at first, cellular stress resulting
from misfolded mSOD1 ultimately activates microglia to a
proinflammatory and neurotoxic phenotype (Appel et al., 2011).

Consistent findings were subsequently observed using in vitro
models of ALS. Mouse astrocytes expressing the mSOD1 gene
have a toxic effect on wild type neurons in vitro; this effect
was stronger in motor neurons than neuronal cell types (Di
Giorgio et al., 2007; Nagai et al., 2007). Expression of mSOD1 in
neurons alone is insufficient for neurodegeneration. To observe
significant injury, mSOD1 must be expressed in glia; moreover,
the presence of wild type non-neuronal cells delays degeneration
(Clement et al., 2003; Zhao et al., 2010). Sandwich co-cultures
of mouse embryonic stem cell (ESC)-derived motor neurons
and primary glia allows controlled interaction and subsequent
separation of these two cell types, identifying striking differences
in autonomous and non-autonomous changes in gene expression
(Phatnani et al., 2013).

Ultimately, many of these results have now been reproduced
in a human context. As in mouse ESC-derived motor neurons,
human ESC-derived motor neurons are also selectively more
sensitive to toxic non-cell autonomous effects than interneurons
(Di Giorgio et al., 2008). This toxicity was correlated with
changes in glial gene expression, which was used to identify
candidate molecules associated with the toxic mutant glia-
associated effects. For example, when prostaglandin D2 was
added exogenously tomotor neurons co-cultured with unaffected
glia there was a reduction in survival of motor neurons; however,
when administered in the presence of a prostaglandin D2
inhibitors, those co-cultures containing mutant astrocytes had
better survival relative to control. Similar experiments in which
ESC-derived motor neurons were co-cultured with primary
mSOD1-expressing human glia also showed a specific decrease
in motor neurons, with no adverse effects on other neural cell
types (Marchetto et al., 2008). The toxicity of mSOD1-expressing
astrocytes was due, at least in part, to reactive oxygen species
(ROS) generated by the glia; overexpression of NOX2 increased
oxygen radicals, an effect could be reversed using apocynin, a
NOX2 inhibitor, preventing the loss of motor neurons when
co-cultured with mSOD1-expressing glia.

Although the mSOD1 gene has now been conclusively
linked to aberrant glia function and subsequent motor neuron
death in ALS, it remains unclear to what effect the other
familial and sporadic forms of ALS arise due to astrocyte
malfunction. The ongoing generation of a library of ALS patient-
specific hiPSCs should provide a powerful tool to interrogate
how diverse mutations identified in ALS patients influence
glial/neuron interplay within the CNS, and how this contributes
to disease pathology. A growing number of recent studies have
reported significant changes in mitochondrial function, synapse
organization, receptor binding, and neuronal health in ALS-
patient derived motor neurons (Dimos et al., 2008; Egawa
et al., 2012; Chestkov et al., 2014; Alves et al., 2015). Recently,
Meyer et al. reported a method to induce fibroblasts from ALS
patients with two independent diseases-associatedmutations into
astrocytes; relative to controls, these induced astrocytes showed

increased toxicity in co-culture with mouse motor neurons in
vitro (Meyer et al., 2014). Yet the story of astrocyte/neuron
interplay in ALS may be mutation-specific, as co-culture of
hiPSC-derived astrocytes and motor neurons carrying a separate
ALS causing mutation, TDP-43, revealed that mutant TDP-43
astrocytes did not cause adverse effects on neuronal survival.
These results highlight the importance of modeling a variety
of ALS-associated mutations, in order to understand the full
complexity of processes contributing to neurodegeneration. As
gene editing and hiPSC technologies improve, it will become
increasingly feasible and important to conduct larger high
throughput experiments, in order to understand how various
ALS causing mutations affect neuronal health and function in a
human disease context.

Schizophrenia
Schizophrenia is a debilitating neuropsychiatric disorder present
in 1% of the world population and is associated with increased
risk of homelessness, unemployment and suicide (Kooyman
et al., 2007; Foster et al., 2012). Symptoms typically present in
the early stages of adult life and include but are not limited to
psychosis, reduced social engagement and lack of motivation that
present a high personal cost and risk to the patient (Lewis and
Lieberman, 2000). Post-mortem studies of neural tissue, as well
as MRI studies on patients with schizophrenia reveal reduced
brain volume, spine density and abnormal neural distribution
and connectivity, particularly in the prefrontal cortex and
hippocampus (Benes et al., 1991; McCarley et al., 1999; Lewis
and Lieberman, 2000; Hulshoff Pol et al., 2002). Both the
molecular mechanisms and cell types involved in schizophrenia
pathology are complex, confounding the development of novel
pharmacological treatments. While the high heritability of
schizophrenia (80–85%) points to a strong genetic component,
the disorder is highly polygenic and associated with rare highly
penetrant mutations as well as common variations of smaller
effect; schizophrenia is significantly associated with at least
108 different genetic loci (Schizophrenia Working Group of
the Psychiatric Genomics Consortium, 2014) of various effect
sizes. The genetic complexity of this disorder necessarily limits
the development and applicability of mouse models for this
psychiatric disorder, making necessary the creation of human
cell-based scalable platforms capable of recapitulating critical
aspects of disease initiation and progression.

The diverse neural regions implicated in its pathology suggest
that symptoms may be indicative of underlying problems with
neural communication involving various cell types. hiPSC-based
studies of schizophrenia to date have generally focused on cell-
autonomous deficiencies in neuron differentiation (Robicsek
et al., 2013; Yoon et al., 2014; Brennand et al., 2015) maturation
(Brennand et al., 2011) and function (Wen et al., 2014; Yu
et al., 2014). Nonetheless, a growing role for aberrant astrocyte
function (Matute et al., 2005), microglia activity (van Berckel
et al., 2008) and decreased myelination (Bernstein et al., 2015)
is now being appreciated in clinical studies, although it is
unclear whether these reflect a cause or consequence of symptom
onset. Our hope is that hiPSC-based technologies will provide
a tractable, modular platform to establish causal links between
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schizophrenia genetic predisposition, cell-type interactions and
disease-relevant phenotypes.

Magnetic resonance imaging (MRI) and non-volumetric
diffusion tensor imaging (DTI) of post-mortem tissue have
revealed abnormalities in white matter on a macro and
microstructure level respectively (Walterfang et al., 2011;
Whitford et al., 2011), prompting an increased interest in
the role that oligodendrocytes may play in schizophrenia.
Numerous studies have now associated schizophrenia with
decreased oligodendrocyte differentiation (Mauney et al., 2015)
and density (as much as 30% reduced in some brain regions)
(Vikhreva et al., 2016), as well as changes in oligodendrocyte
morphology and spatial distribution in patient brains (Uranova
et al., 2001; Schmitt et al., 2009). Moreover, in vitro rodent
studies demonstrated that the schizophrenia-associated gene
DISC1 impacts oligodendrocyte differentiation (Hattori et al.,
2014) and human genetics have identified oligodendrocyte
gene sets associated with schizophrenia, most of them related
to fatty acid and cholesterol metabolism (Goudriaan et al.,
2014). To date, no hiPSC- or ESC-based technologies have
examined the effect of schizophrenia-associated variants on
oligodendrocyte differentiation and function, which could shed
light on how the differences in white matter organization
and myelination observed in post-mortem tissue arise on the
cellular level.

Astrocytes are believed to contribute primarily to
neuroinflammation and synaptic maturation/pruning in
the human brain (Freeman and Rowitch, 2013), processes that
are increasingly linked to schizophrenia (Jaaro-Peled et al.,
2010; Fineberg and Ellman, 2013). Astrocyte loss has also been
associated with schizophrenia in various cortical and subcortical
regions of the brain, particularly in the white matter (Rajkowska
et al., 2002; Williams et al., 2013a,b). Along with the gene
sets involved in oligodendrocyte function, additional gene
sets involving astrocyte function are altered in schizophrenia
(Goudriaan et al., 2014). Post-mortem pathology inevitably
leads to tissue shrinkage (“fixation artifacts”), particularly in
regions that have abundant astrocyte cell processes (Garman,
2011); despite this technical limitation, a few post-mortem
studies have observed subtle reductions in glial cell volume
(Rajkowska et al., 2002) and cell number (Stark et al., 2004) in
schizophrenia cortical brain tissue, although these results are
not yet widely accepted. Postmortem cortical expression (Barley
et al., 2009) and protein levels (Steffek et al., 2008) of major
astrocyte associated genes such as glial fibrillary acidic protein
(GFAP) are perturbed in schizophrenia. Critically, the relevance
of these post-mortem observations is clouded by the fact that
antipsychotic treatments may impact astrocyte levels and/or
function in the CNS, as these cells express dopamine receptors
(Hertz et al., 1984).

The use of hiPSC-based models for schizophrenia continues
to be increasingly useful; we and others have demonstrated
increases in oxidative stress, (Paulsen et al., 2012; Robicsek et al.,
2013; Brennand et al., 2014) deficits in adherens junctions and
polarity (Yoon et al., 2014), as well as marked differences in
migration and responses to environmental stressors in NPCs
derived from schizophrenic patients (Brennand et al., 2014;

Hashimoto-Torii et al., 2014). Similarly, schizophrenia hiPSC
neurons exhibit decreased synaptic maturation and neurite
number (Brennand et al., 2011; Robicsek et al., 2013; Wen
et al., 2014; Yu et al., 2014), as well as a reduction in
synaptic activity (Wen et al., 2014; Yu et al., 2014). Given the
success of these previous hiPSC models and the strong evidence
presented above on the role of glial cell-types in schizophrenia
disease pathology, it may be very informative to extend these
in vitro systems to query glial function using patient-specific
hiPSC lines to develop better, more human-specific models of
schizophrenia.

Rett Syndrome
Rett Syndrome is a rare X-linked neurodevelopmental disorder
affecting the graymatter of the brain, primarily in female patients,
and characterized by an initial period of normal development
during early infancy followed by a sudden attenuation of
developmental growth and the loss a number of motor and
language skills (Hagberg et al., 2002). This regression of physical
development is associated with differences in cognitive function;
many patients exhibit autistic-like behaviors, sleep disorders
and increased anxiety (Hagberg et al., 2002; Bienvenu and
Chelly, 2006). Rett Syndrome is frequently caused by de novo
mutations in the methyl CpG binding protein 2 gene (MECP2),
though other genetic variations account for a minority of cases.
MECP2 encodes the regulatory protein MeCP2, which binds
to methylated DNA to regulate transcription of a number of
genes (Amir et al., 1999; Bienvenu and Chelly, 2006). How
such broad changes in transcriptional regulation leads to the
neurodevelopmental and neurobehavioral phenotypes of Rett
syndrome is not fully clear, but the unigenic nature of the
disorder makes it particularly tractable to study using hiPSC-
based technologies.

The role of MECP2 mutations in neurons has been well-
examined in a variety of studies (Marchetto et al., 2010; Kim
et al., 2011; Farra et al., 2012), but mutant MECP2 also exerts its
effect through non-cell autonomous events involving astrocytes.
MeCP2 deficiency in astrocytes causes significant abnormalities
in cytokine production and neuronal dendritic induction that
could impact neurodevelopment in mice (Maezawa et al., 2009).
Mutant astrocytes have an adverse effect when co-cultured with
either wild type or mutant hippocampal neurons, an effect that
can be recapitulated using conditioned media alone (Ballas et al.,
2009), suggesting that astrocyte targets of MeCP2 regulation
are involved in glial maintenance of neuronal function and
that astrocytes are a key player in Rett syndrome pathology.
Importantly re-expression of MECP2 preferentially in astrocytes
restores normal neuronal dendritic morphology, improves
locomotion and anxiety, and rescues respiratory symptoms in a
mouse model of Rett syndrome (Lioy et al., 2011).

While the role of astrocytes in non-cell autonomous effects
on neuronal function in Rett syndrome is well-established in
mice, it was unclear whether the same effects held true in a
human context. Two recent studies using Rett syndrome patient-
derived hiPSCs have now not only confirmed that astrocyte role
in Rett Syndrome, but also identified molecular targets involved
in astrocyte-mediated neuronal deficits. Astrocytes derived from
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patient-specific hiPSCs recapitulate the negative effects on
neuronal morphology observed in mouse studies, an effect that
can again be reproduced using only conditionedmedia (Williams
et al., 2014). Using combinations of control and Rett Syndrome-
derived astrocytes and interneurons, the authors show that the
glial effect on neuronal function is independent of intrinsic
deficits in neurons themselves and demonstrated that insulin-like
growth factor (IGF-1) and GPE (a short peptide containing the
first 3 amino acids of IGF-1) are capable of partially rescuing the
astrocyte-mediated neuronal phenotypes. The power of hiPSC-
based systems to probe non-cell autonomous systems in Rett
syndrome is underscored by recent studies demonstrating that
MECP2-mutant astrocytes from patient-derived hiPSCs have
deficiencies in microtubule-dependent vesicle transport, and
that administration of Epothilone D, a microtubule stabilizing
agent capable of crossing the blood brain barrier is sufficient
to restore microtubule dynamics in these cells (Delépine et al.,
2016). Critically, weekly doses of Epothilone D was capable of
reversing the reduced exploratory behavior in a mouse model
of Rett Syndrome (Delépine et al., 2016), demonstrating the
power of hiPSC-based platforms to identify new targets that
are capable of improving animal behavior when administered
in vivo.

Microglia have also been implicated in Rett syndrome
pathology through a variety of in vitro and in vivomouse models.
Selective correction of Rett syndrome microglia with wild type
microglia using a Cre-Lox based system in mice produced an
improvement of symptoms, one that could be reversed using
annexin IV, suggesting that microglia-mediated phagocytosis
is a key mechanism of Rett syndrome pathology (Derecki
et al., 2012). In addition, murine Rett syndrome microglia
appear to have a direct neurotoxic effect on hippocampal
neurons in co-culture models, releasing increased glutamate
that causes stunted dendritic morphology and disruption of
microtubule organization that ultimately disrupts synaptic
function (Maezawa and Jin, 2010). While these findings have
not yet been tested in a human context, it was recently shown
that hiPSC-derived microglia carrying the MECP2 deletion
are significantly smaller than their wild type counterparts
(Muffat et al., 2016), which may impart a decreased ability
to “patrol” the parenchyma and clear apoptotic tissue. Further
studies using this newly developed pathology may offer
important insight into Rett syndrome pathology and provide
a powerful platform to identify molecular targets for drug
development.

Altogether, while Rett syndrome is arguably the first autism
spectrum disorder to be convincingly linked to aberrant astrocyte
and microglial function, there is no reason to suspect that
other forms of autism will not soon be associated with
neuron non-cell autonomous effects as well. Complex genetic
neuropsychiatric disorders, from ALS to schizophrenia to Rett
Syndrome, may in fact represent a convergence of clinical
phenotypes arising through a diverse range of genetic and cellular
mechanism, suggesting that a “personalized” or genotype-
dependent understanding of disease mechanisms may be critical
for properly matching patients with appropriate therapeutics.

THE FUTURE OF hiPSC-BASED DRUG
SCREENING

The development of new pharmaceutical treatments for
neuropsychiatric diseases has been severely hampered by the
poor availability of preclinical models that adequately capture
the complex pathophysiology of these disorders. It has been
difficult to translate the success of the high throughput drug
screens used to identify novel targets and lead structures for
therapeutics in other fields to neuroscience. Moving forward,
we hope that this will be addressed by this new ability to create
disease specific, patient-derived hiPSC lines, which serve as
genetically relevant models that are scalable and easily perturbed
through genetic and chemical approaches. Importantly, the
ability to create and bank large stores of hiPSC-derived cells
will permit repeated experiments across genetically isogenic
human cell types, hopefully improving reproducibility. As
advancements in high content imaging technologies develop
alongside hiPSC technology, this integrated approach may help
identify new therapeutic targets for drug development and
advance our understanding of genotype-phenotype correlations
in neuropsychiatric disease in ways that were not previously
possible. This approach is of particular importance for complex
genetic diseases such as schizophrenia and autism, where
simplistic knock in models fail to accurately capture each
patient’s complex and potentially unique genetic background.

Pluripotent stem cell based screens have shown notable
recent successes in the context of neuropsychiatric disease,
reviewed elsewhere (Haggarty and Perlis, 2014; Haggarty
et al., 2016). In the context of mitochondrial DNA (mtDNA)
disorders, NPCs derived from patients carrying a single base
pair mutation in the MT-ATP6 gene have defective ATP
production, elevated mitochondrial membrane potential, and
dysregulation of calcium handling (Lorenz et al., 2017); a
large high-throughput screen using FDA approved drugs
identified avanafil as a potential therapeutic owing to its
ability to restore normal calcium homeostasis. The introduction
of a TCF/LEF-responsive luciferase reporter into hiPSC-
derived NPCs permitting screening of a small pilot library
of 1500 compounds, identifying a number of compounds
that potentiate Wnt or lithium signaling (Zhao et al., 2012),
with potential relevance to a number of psychiatric disorders
(including schizophrenia and Fragile X) and many common
antidepressants and antipsychotics. A similar approach, applying
an ATP bioluminescence end-point assay to screen a 1,000
compound library, identified five novel compounds that enhance
proliferation and viability of hiPSC-derived NPCs (McLaren
et al., 2013); these compounds could be used to further
expand populations of NPCs and facilitate larger screens moving
forward.

While the screens outlined above are unique in their methods
and targets of interest, they are unified in their focus on a
single cell type, limiting their relevance to the physiological
context. With advancements in hiPSC differentiation protocols
now encompassing many different neural cell types, we hope
that future screening experiments will combine several distinct
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pre-differentiated cell types. Such a proof-of concept screen
was conducted using Nestin-positive progenitor cells that
were differentiated into neurons and/or astrocytes, cultured
both in isolation and together (Efthymiou et al., 2014); a
high-throughput MTT assay measured viability, while live-
cell imaging tracked organelles within neurons and examined
neurite length as a proxy for neuronal maturation. Likewise, a
large 2.4 million compound screen using mouse ESC derived
NPCs differentiated into a mix of neuron and glial subtypes
used a fluorimetric imaging plate reader to measure calcium
influx and screen for potentiators of AMPA receptor signaling
(McNeish et al., 2010); however, the analysis did not stratify
hits based on cell type, potentially diluting more modest effects
that may have had large effects within key cell types. Overall,
given our growing understanding of non-cell autonomous effects
on neuronal health, next generation screening platforms must
address the challenge of stratifying by cell type and considering
interactions between cell types within a single population of cells.
Toward this, an elegant platform that allows for the targeting
of safe harbor loci in hiPSCs to introduce multiplexed lineage-
specific reporter systems on the same isogenic background (Pei
et al., 2015) could be combined with high content imaging
technologies, providing a valuable context to resolve which cell
populations are affected by candidate molecules. The importance
of this analysis is demonstrated in a follow-up paper by the same
group, which showed that of an initial panel of 80 compounds,
50 were observed to have a cytotoxic effect in at least one cell type

but only four of those showed cytotoxicity in four different neural
subtypes (Pei et al., 2016). Given the disparate and cell-specific
phenotypes discussed above in a variety of neuropsychiatric
disorders, qualifying successful “hits” on high throughput screens
by matching the drug target with the cell type will be of critical
importance for pharmaceutical development.

A number of coculture platforms have been developed
for the study of neurological disease, shedding light on the
interactions that occur between neural cell types (excellently
reviewed by Meyer and Kaspar, 2017). These vary in their design
and complexity, from focusing on paracrine signaling through
transwell interactions to culturing disparate cell populations
in pre-determined orientations to modeling physiological
structures such as the blood brain barrier. Recently, a number
of groups have reported protocols for the generation of
endothelial cells, pericytes, neurons and astrocytes involved in
the blood-brain barrier (BBB) from hiPSCs and other sources,
using transwells to study efflux of a variety of drugs across
the newly formed barrier (Lippmann et al., 2012; Boyer-Di
Ponio et al., 2014; Appelt-Menzel et al., 2017; Yamamizu
et al., 2017). When combined with microfluidic systems
similar to those reported in Wang et al, these coculture
systems may provide an efficient and cost-effective model
to screen large pharmaceutical libraries (Wang et al., 2017).
Newer, more sophisticated screening platforms should take
inspiration from these co-culture models, adapting platforms
to a high-throughput format that can be combined with

FIGURE 1 | Next-generation drug screening platform for neuropsychiatric disorders. Directed differentiation and reprogramming of patient-specific cell types into

various neural cell types allows for combination culture of cell types of interest. When combined with lineage-specific reporter systems, mixed neural cultures could be

screened using small-molecule libraries and the results of downstream assays correlated with the cell-type of interest.
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fluorescent reporters and high content imaging software,
allowing exploration of how the interactions between cell
types change under the influence of pharmaceutical compounds
(Figure 1).With ever improving cellular differentiation protocols
allowing us to generate larger numbers of defined neural
cell types with increasing efficiency, future screens should
improve our understanding of neurological disease pathology
and identify new treatment modalities for neurodegenerative and
neuropsychiatric disease.

SUMMARY

New advances in the field of stem cell biology and
reprogramming are allowing for the creation of once inaccessible
neural cell types, improving our ability to model complex
neuropsychiatric and neurodegenerative diseases in ways not
previously possible. The development of these models has
begun to shed light on important interactions between neural
cell-types in the context of human disease pathology. As the

importance of these non-cell autonomous effects becomes
increasingly clear, drug discovery platforms that pair new
stem cell technologies with high throughput assays and high
content imaging software capable of analyzing individual cell
populations within a heterogenous pool may be an invaluable
resource for the development of new therapies for these complex
disorders.
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