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Key to progress in molecular simulation is the development of
advanced models that go beyond the limitations of traditional
force fields that employ a fixed, point charge-based descrip-
tion of electrostatics. Taking water as an example system, the
FFLUX framework is shown capable of producing models that
are flexible, polarizable and have a multipolar description of
the electrostatics. The kriging machine-learning methods used
in FFLUX are able to reproduce the intramolecular potential
energy surface and multipole moments of a single water mole-
cule with chemical accuracy using as few as 50 training

configurations. Molecular dynamics simulations of water clus-
ters (25–216 molecules) using the new FFLUX model reveal
that incorporating charge-quadrupole, dipole–dipole, and
quadrupole–charge interactions into the description of the
electrostatics results in significant changes to the inter-
molecular structuring of the water molecules. © 2019 The
Authors. Journal of Computational Chemistry published by
Wiley Periodicals, Inc.

DOI: 10.1002/jcc.26111

Introduction

The increasing power of computers has enabled classical
molecular dynamics (MD) simulations to tackle scientific prob-
lems of increasing complexity. Yet the ability to access increas-
ingly large time and length-scales has shown that the
traditional (bio)molecular force fields (FFs) that are used to
model the potential energy surface (PES) of the systems simu-
lated suffer from a number of limitations.[1] One alternative to
classical MD is ab initio MD (AIMD) where the PES is modeled
by a quantum mechanical description. However, AIMD also suf-
fers from a number of limitations, in terms of both the compu-
tational cost and the description of the PES that it supplies, for
example, traditional generalized gradient approximation (GGA)
density functionals theory (DFT) functionals do not describe the
medium-to long-range dispersion interactions between species
accurately.[2–4] As such, over the last decade, there has been
significant research based around the development of a new
generation of FFs for classical MD simulations.[5,6] The methods
that these next-generation FFs use, in order to provide a more
accurate representation of the PES than traditional FFs, vary.[6]

However, one key issue many attempt to address is to provide
a more realistic description of electrostatics than the point-
charge model of traditional FFs.

FFLUX[7,8] is a next-generation FF that describes the interac-
tion of atoms via the quantum chemical topology (QCT)
approach.[9,10] QCT defines finite-volume, space-filling atoms
that naturally emerge in the electron density as the so-called
basins with nuclear attractors, using the language of dynamical
systems. Previous simulations[11–16] have used a QCT descrip-
tion to determine the high-rank multipolar[17,18] electrostatic
interactions between molecules, but the intramolecular geome-
try of the molecules was constrained, leading to the model not
being polarizable. In the current work, we do include

polarization within this context of multipolar electrostatics of
(quantum) topological atoms.[19] For that purpose, we need a
more complete description of the energies involved, other than
electrostatics, which is provided by a QCT method called inter-
acting quantum atoms (IQA).[20] Inspired by early work[21] of
our group, IQA defines intra-atomic energy (including kinetic,
electrostatic and exchange (−correlation) energy), as well as
interatomic exchange-(correlation) energy. The IQA energy con-
tributions mentioned previously describe how energy varies,
within a flexible monomer, at the atomistic level. Thanks to a
recent advance,[22] the density functional B3LYP can be used in
the context of IQA, which is relevant given the level of theory
used here (vide infra). By combining a QCT description of the
PES with the machine-learning method kriging (also known as
Gaussian process regression), the geometry optimization and
MD simulations of flexible molecules, such as peptide-capped
glycine,[23] are made computationally tractable. FFLUX has
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recently been shown to describe the PES of individual mole-
cules, thereby accurately identifying energetic minima.[24]

Water has always been a key target in the development of
simulation models due to its importance in so many systems,
especially biological systems. The performance of biomolecular
force fields is related to the ability of accurately describing
water–water and biomolecule–water interactions.[25–28] The
complex, often atypical, nature of water[29] has meant that
developing a transferable model that can accurately describe
its properties across different systems and conditions is highly
challenging.[30] At the same time, the number of water mole-
cules in a typical biomolecular simulation means that computa-
tional cost is still a major factor in any choice of water model;
hence, the enduring popularity of fixed point-charge models
with pairwise potentials, such as the SPC[31] and TIPnP[32] fami-
lies. However, while moving beyond a point-charge description
of electrostatics incurs an increased computational cost, it is
key to improving the accuracy and transferability of water
models. A wide range of techniques are currently being devel-
oped to provide a more accurate description of the electrostatic
interactions (e.g., SWM4-(N)DP,[33,34] BK3,[35,36] MB-pol,[37–39]

APIMD-QDO,[40,41] AMOEBA,[42–45] OPC,[46] and others[47–50]). For
a fuller discussion of these different models, each with their
own advantages and disadvantages, we refer readers to two
recent review articles.[30,51]

The present study first describes the construction of a set of
FFLUX models that describe the water monomer, determining
which properties are most crucial in affecting model perfor-
mance and how many configurations are required in the train-
ing ensemble. Next, the FFLUX models are applied to the
simulation of water clusters, illustrating for the first time a MD
simulation using FFLUX of multiple flexible, polarizable mole-
cules at finite temperature.

Methods

FFLUX background

An illustrative representation of the interaction of atoms in
FFLUX simulations is shown in Figure 1. The intra-molecular PES
is described by a kriged potential based on the sum of the

atomic energy terms, EAIQA, one term for each of the three atoms

present in each water molecule. The intermolecular interactions
between pairs of atoms in different water molecules consists of
an electrostatic interaction (including multipolar electrostatics)
and a dispersion interaction complemented with a Pauli repul-
sion term (here described using a Lennard-Jones [LJ] potential).
The electrostatic interactions are described by evaluating the
interaction of the atomic multipole moments. The moments are
situated on the nuclear site and are also predicted by kriging
models. As the configuration of a water molecule changes, the
predicted multipole moments on the atoms in the water mole-
cule will also change, thereby allowing the simulation of a polar-
izable water model with a multipolar description of the
electrostatics. Thus, in the present FFLUX description, the flexibil-
ity of the molecule and its polarizability are directly connected.

However, it would be possible to use kriging models to repro-
duce polarizations based on charge-only models.[52]

In FFLUX, atomic multipole moments are described as spheri-
cal harmonics of rank l, where l = 0 corresponds to the atomic
charge, l = 1 corresponds to the dipole (consisting of three
moments), l = 2 corresponds to the quadrupole (five moments),
and so on. This formalism is more compact than the Cartesian
one, which introduces redundancies. The overall level of elec-
trostatic interaction is then defined by evaluating all the inter-
actions up to rank L, given by

L= lA + lB + 1 ð1Þ

where lA and lB represent the rank of the multipole moments on
atoms A and B, respectively. Thus, if L = 3, then the electrostatic
interaction between atoms includes the monopole–monopole,
monopole–dipole, monopole–quadrupole, dipole–dipole, dipole–
monopole, and quadrupole–monopole interactions. In the pre-
sent proof-of-concept study, we have limited simulations to the
level of L = 3 and below, in order to reduce the computational
cost but simulations at higher L are possible and will be an area
of investigation in future work. Unlike the intramolecular or elec-
trostatic interactions, the dispersion interactions between pairs of
atoms are not based on kriging models but rather described by
LJ potentials. Because we ultimately intend to replace these LJ
potentials by kriging models, the parameters for the O and H
atoms are taken (slightly modified) from a previous study[15] and
have not been optimized to any significant degree.

Construction of FFLUX models

The development of FFLUX models for a molecule involves of a
series of distinct steps:

Figure 1. Schematic representation of the interactions that are present
between atoms in the FFLUX force field. The intramolecular degrees of
freedom are determined via kriging models of the atomic EAIQA energies. The
electrostatic interactions between all intermolecular pairs of atoms are
obtained from multipole moments predicted by kriging models. All
intermolecular dispersion interactions are described by Lennard-Jones
(LJ) potentials. [Color figure can be viewed at wileyonlinelibrary.com]
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1. Generation of an ensemble of molecular configurations.
2. Calculation of the wave function of each configuration.
3. Calculation of the atomic properties of each configuration.
4. Mapping of the atomic properties to geometric features via

the kriging machine-learning method.

We describe the computational details associated with each
below (further details of the process for constructing FFLUX
models can also be found in previous works[7,8,23,24,53]).

Generation of configurational ensembles. The configurational
ensemble was generated based on distortion according to the
normal modes of molecules via the in-house code EROS, a
method previously shown to generate an ensemble that pro-
vides a good description of the PES of a water molecule.[53] The
EROS sampling method involves taking a “seed” configuration
of a molecule and stochastically sampling along the normal
modes, with the constraint that both bond lengths and angle
are distorted by no more than 20% from their value in the seed
geometry. In the present study, the seed geometry used was
the B3LYP[54]/aug-cc-pVTZ[55] minimum energy configuration of
a single water molecule in the gas phase with no solvent cor-
rections applied. The same set of configurations was used for
constructing both the atomic energy and atomic multipole
models.

DFT calculations of wave functions. After generation of the
ensemble, the wave functions of all the configurations in the
ensemble were obtained from DFT calculations using the B3LYP
functional and the aug-cc-pVTZ basis set with 6d orbitals (six
components Cartesian functions) included and with no solvent
corrections applied. All DFT calculations were performed using
GAUSSIAN09.[56]

Atomic property calculations. In the present study, there are

two sets of atomic properties of interest: the EAIQA energy of

each atom and the multipole moments of each atom. These
properties have been calculated using the QCT methodology, a
parameter-free approach to partitioning the wave function
using only the gradient vector of the electron density.

According to the IQA description the energy of a molecule is

partitioned into the sum of atomic energies, EAIQA, which are

composed of intra-atomic, EAintra (for atoms A), and inter-atomic

components, EAA’inter, where A’ is any atom but atom A.

EAIQA = EAintra + EAA0inter ð2Þ

It is possible to break down the intra- and inter-atomic ener-
gies further into kinetic, exchange-correlation and electrostatic
contributions and construct FFLUX models for these various dif-
ferent components. However, because one of our previous

studies showed that a FFLUX model built at the EAIQA level per-

formed at least as well as the combination of models built from
the separate contributions,[53] all the models in the present

work are built at the EAIQA level. Note that this level is all that is

needed to perform atomistic simulations. In other words,

keeping track of the types of energy during a MD trajectory
only serves insight, not accuracy.[53]

The multipole moments of each atom are determined via the
integration of an atomic basin of the appropriate spherical ten-
sor and weighted by the electron density, as described more
fully in previous work.[18,57]

The calculations of the IQA energies and multipole moments
from the wave functions were performed using the program
AIMAll (version 17),[58] with the default parameter options and
with the original implementation for the calculation of the two-
electron integrals (i.e., not using the “TWOe implementation”).

Construction of kriging models. Before building the kriging

models of the EAIQA and atomic multipole moments, any config-

urations were removed from the ensemble of sample configura-
tions where the net molecular charge is >0.001 e and/or the
atomic integration error of AIMAll, L(Ω), was above a threshold
value for one or more atoms. Models were constructed using L
(Ω) = 0.0001 and 0.00005 Ha. Next, a number, denoted Ntrn, of
the remaining configurations in the sample were randomly
selected as the training set used to build the kriging model,
with (some of) the remaining configurations in the sample used
as a validation set, allowing the quality of kriging models to be
tested.

Full methodological details of how a property of an atom can
be linked to the geometrical features through kriging machine
learning are given in previous work.[23] In the present work, the
kriging machine learning generates a model that expresses the

atomic energies, EAIQA, (and thus a molecular potential) or

atomic multipole moments as a function of positions of all the
atoms in the molecule. Each atomic property, Y, is given by

Y = μA +
XNtrn

j =1

aAjexp −
XNfeat

h=1

θAh f Ah, j− f Ah

��� ���pAh
" #

ð3Þ

where μA is the estimated mean value (trend model) of all the

training data points, aAj is the kriging weight of training point j,

θAh is the activity of the feature-space described by the summa-

tion index h, f Ah, j is the known feature value from training point

j, f Ah is the current feature for which prediction must be made,

and pAh relates to the smoothness of the feature space. Kriging

models can be constructed by optimizing θAh and/or pAh . Previ-
ous work on organic molecules has indicated that for molecules

of 6–14 atoms in size optimizing pAh as well as θAh results in only
limited improvement, if any, of the resulting kriging models,
and comes with an increased computational cost,[24] both in
the construction of the kriging model and in its evaluation.
However, to determine whether the limited effect of the opti-

mization of pAh holds true for water, a system with only three
intramolecular degrees of freedom, kriging models were con-

structed with both θAh and pAh optimized and with θAh optimized

and pAh fixed at 2.
The kriging models were calculated using the in-house devel-

oped program FEREBUS,[59] with the values of the kriging
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parameters optimized using particle swarm optimization in
order to maximize the concentrated log-likelihood.

MD simulation methodology

The MD simulations were performed on clusters of water mole-
cules. The number of water molecules in a cluster was defined
as Nmol, and simulations were performed with Nmol = 25,
50, 100, and 216. Furthermore, simulations were performed at
electrostatic ranks L = 1, 2, and 3. Some simulations were per-
formed with the water molecules held rigid in order to allow
the investigation of the effects of polarizability. The Supporting
Information Table S1 gives a breakdown of the different sys-
tems and the timescales each system was simulated for.

All simulations of the FFLUX water models were performed
using an in-house modified version of the DL_POLY_4.08 pro-
gram.[60] The equations of motion were integrated using the
velocity Verlet algorithm with a 1 fs timestep. The temperature
of the system was maintained at 300 K using the Andersen
thermostat.[61] As mentioned earlier, the intramolecular energy
of each water molecule was calculated from the sum of the

EAIQA kriging models. A cutoff of 10.0 Å was used for the LJ inter-

actions with the LJ potential shifted up slightly such that the
energy was equal to zero at the cutoff. The LJ parameters were
taken from previous simulations of rigid QCT water models[15]

and then modified slightly to improve stability. The final param-
eters were εHH = 0.753 kJmol−1; εHH = 0.015 kJmol−1;
σOO = 3.23 Å; σOO = 1.10 Å with the Lorentz–Berthelot combin-
ing rules used for the OH parameters. The multipole moments
on each atom were predicted using kriging models while the
electrostatic interaction between two atoms A and B was calcu-
lated using

EABelec =
X

lA lBmAmB

QlAmAT lAlBmAmBQlBmB ð4Þ

where l and m, respectively, denote the rank and component of
the multipolar moment Q, and T is the interaction tensor
between the multipole moments on atom A and atom B. At the
current time, the electrostatic interactions are evaluated using a
simple direct space approach with a cutoff of 30.0 Å (greater
than the largest separation distance on any two water mole-
cules in any of the systems) in a nonperiodic box. Work is cur-
rently ongoing to convert the code to describe electrostatic
interactions via an Ewald sum approach.

In addition to the simulations of the FFLUX water systems,
simulations of three alternate flexible water models were also
performed in order to act as a point of comparison. The three
models chosen were AMOEBA14,[43] AMOEBA+,[44] and MB-
pol.[37–39] The AMOEBA14 and AMOEBA+ are different versions
of water models developed with the AMOEBA FF framework
using a distributed multipole analysis to go beyond a point
charge description of electrostatics. The MB-pol water model
has been designed to capture many-body terms and includes
explicit terms for one-, two- and three-body interactions and
with polarization described via a modified Thole-type mode. All

three models have been shown to reproduce many of the key
parameters/features of water with a high degree of accuracy.

The simulation of MB-pol water was performed using the
MB-pol plugin to OpenMM.[62] The current implementation of
MB-pol in OpenMM does not allow cluster simulations in the
NVT ensemble. As such a cluster of 216 water molecules was
placed in a 60 × 60 × 60 Å3 periodic cell, sufficient to ensure
the cluster was effectively in vacuo and equivalent to the setup
of the FFLUX simulations. A 10.0 Å cutoff was used for the van
der Waals interactions and short-range electrostatics, with the
long-range electrostatics evaluated using an Ewald sum. The
system was simulated in the NVT ensemble for 10 ps with a
0.2 fs timestep.

The simulations of the AMOEBA14 and AMOEBA+ models
were performed using the TINKER program.[63] Clusters of
216 water molecules were simulated for 1 ns. Similar to the MB-
pol model, the clusters of water molecules were simulated in
the NVT ensemble in a box of 75 × 75 × 75 Å3, thereby again
introducing a “drop of water in a large box.” A 10.0 Å cutoff
was used for the van der Waals interactions and short-range
electrostatics, with the long-range electrostatics evaluated using
an Ewald sum. The temperature was maintained using the
Andersen thermostat.

Results and Discussion

Performance of kriging water models

The description of a FFLUX PES is dependent on the kriging
machine-learning models that have been developed. In brief,
there are a number of parameters that can be varied during the
generation of kriging models, and a series of different models
has been systematically constructed in order to determine the
most appropriate model(s) to use in the MD simulations.

FFLUX models were constructed for a varying number of
training points: Ntrn = 50, 75, 125, 250, 500 and 1000; for L

(Ω) = 0.0001 and 0.00005 Ha; and with pAh = 2 and optimized,
so in total for 24 = 6× 2× 2 different models. Typically, the per-
formance of FFLUX models increases with Ntrn but so does the
computational cost of both construction and evaluation.[24]

Thus, before performing the MD simulations, we systematically
evaluated the performance of the different models.

An initial test of the quality of the generated FFLUX model is
its ability to reproduce the sum of the atomic properties of con-
figurations in the validation set. The prediction error of a con-
figuration is the absolute difference between the sum of the
atomic energies/charges calculated from AIMAll and those cal-
culated using FFLUX. A plot of prediction error (x-axis) against
the cumulative percentage (y-axis) of configurations in the vali-
dation set results in a so-called S-curve. An S-curve gives an
indication of the quality of a given kriging model from the posi-
tion of the curve on the x-axis (the lower the values the better
the model), its gradient (the steeper the curve the better the
model) and the shortness of the tail near 100% (the shorter the
better). Figure 2 shows exemplar S-curves for models con-
structed with different numbers of in the training set and with

pAh fixed at 2 and L(Ω) = 0.00005 Ha, and Tables 1 and 2 give
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the mean absolute errors for the different models. In addition,
Figures S1 and S2 in the Supporting Information show S-curves
for the EIQA energies of various models, whereas Figures S3 and
S4 show S-curves for the molecular charge of various models.

Consistent with previous results, an increase in Ntrn typically
led to an increase in model performance, but with diminishing
returns (Figs. 2, S1–S4, and Tables 1 and 2). For models where

pAh was fixed to 2, there was very little improvement in the per-
formance of models with Ntrn > 125 or 250 for the EIQA or
molecular charge, respectively. In fact, increasing Ntrn from
500 to 1000 actually resulted in an increase of the mean abso-
lute error (MAE). Table 2 shows that reducing L(Ω) from 0.0001
to 0.00005Ha typically led to a modest improvement in the
atomic charge models, which became more significant as Ntrn

was increased. Likewise, optimizing pAh resulted in only a small
improvement in models when Ntrn ≤ 75 but a significant
improvement when Ntrn ≥ 250. Overall, the quality of all models
was very high, with errors of less than 1 kJmol−1 and 2 me
(milli-electron) in the EIQA energy and molecular charge, respec-
tively. It is ultimately desirable to use FFLUX models that are
constructed from as few training points as possible.

In order to further test the Ntrn = 50, L(Ω) = 0.00005 Ha,

pAh = 2 model, we investigate how well it described the PES
associated with the stretching of one of the O─H bonds. One

of the O─H bond lengths was increased from 0.85 to 1.15 Å in
0.005 Å steps, while the other O─H bond was fixed at 0.9619Å,
and the HOH bond angle fixed at either 105.05 or 100�. These
two values were chosen for analysis as 105.05� is the bond
angle of the optimized molecule and 100� is the mode bond
angle of the models during the MD simulations (vide infra). At
each point, the energy of the molecule and charge on the oxy-
gen atom was calculated using B3LYP or IQA and compared
against the values of the same properties predicted by the
FFLUX models. Figure 3 shows that even for this model con-
structed from an ensemble containing only 50 configurations,
FFLUX reproduces the molecular energy and atomic charge
excellently.

From the results of the above analysis, it was decided that

the Ntrn = 50, L(Ω) = 0.00005 Ha, pAh =2 model will be used as
the standard model in the MD simulations. However, a few sim-
ulations will be performed using the Ntrn = 500, L(Ω) = 0.00005

Ha, pAh = 2 model, to investigate if any significant differences in
water behavior are observed for higher quality models.

Simulations of water clusters

The radial distribution functions, g(r), for a water cluster of
50 molecules are shown in Figure 4 for L = 1, 2, and 3, for

Figure 2. S-curves showing the prediction error of the sum of (a) the atomic energies and (b) the atomic charges for models constructed with varying Ntrn, pAh
fixed at 2 and L(Ω) = 0.00005 Ha. [Color figure can be viewed at wileyonlinelibrary.com]

Table 1. The MAEs in the prediction of the sum of the EAIQA atomic
energies (kJmol−1) for the configurations in the validation ensembles
for the various models constructed.

Ntrn
[a]

L(Ω)[b] = 0.0001 Ha L(Ω) = 0.00005 Ha

pAh = 2 pAh Opt pAh = 2 pAh Opt

50 0.552 0.534 0.620 0.561
75 0.390 0.210 0.379 0.193
125 0.210 0.114 0.201 0.126
250 0.254 0.051 0.184 0.033
500 0.209 0.026 0.165 0.022
1000 0.242 0.029 0.181 0.033

[a] Number of configurations in training ensemble.
[b] Atomic integration error cutoff.

Table 2. The MAEs in the prediction of the sum of the atomic charges
(me) for the configurations in the validation ensembles for the various
models constructed.

Ntrn
[a]

L(Ω)[b] = 0.0001 Ha L(Ω) = 0.00005 Ha

pAh = 2 pAh Opt pAh = 2 pAh Opt

50 1.71 0.75 1.27 0.57
75 0.85 0.34 0.69 0.24
125 0.39 0.18 0.36 0.17
250 0.30 0.05 0.19 0.06
500 0.19 0.03 0.16 0.02
1000 0.29 0.02 0.22 0.01

[a] Number of configurations in training ensemble.
[b] Atomic integration error cutoff.
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FFLUX models constructed from the Ntrn = 50 data. Figures S5–
S7 in the Supporting Information show that increasing Ntrn to
500 does not result in significant differences to g(r), and that
varying the number of water molecules in the cluster affects
the height of the peaks but not their position. In spite of the
lack of optimization of the LJ parameters, the position of the
first peaks in gOO(r) is in good agreement with the experimental
value of bulk water (r = 2.78 Å). The positions of the second
peaks are lower than the experimental value for bulk water
(r = 4.53 Å) and show more variation with the level of electro-
static description, with the L = 3 peak shifted to an even lower
distance compared to L = 1 and L = 2. Furthermore, an extra
maximum appears in the gOO(r) profile at ~5.35 Å for L = 3. For
gOH(r) the L = 1 and L = 2 profiles are equivalent, whereas in

the case of L = 3, the maxima are again shifted to slightly lower
r, and an extra peak is present at longer distances (~4.50 Å).
The most significant difference with L is observed in the gHH(r)
profiles. While L = 1 and L = 2 show relatively minor differences,
the second maximum in the L = 3 profile shifts from 2.43 to

Figure 3. Comparison of the B3LYP/IQA and FFLUX calculations of (a) the
EIQA energy, relative to the global minimum and (b) the atomic charge on
the oxygen atom for water molecular configurations with one O─H bond
length varied (the other bond length is fixed at 0.9619 Å). In the legends, θ
corresponds to the HOH bond angle, while B3LYP, IQA, and FFLUX
correspond to the method used to perform the calculation. [Color figure can
be viewed at wileyonlinelibrary.com]

Figure 4. Radial distribution functions, g(r), taken from FFLUX simulations of
a cluster containing 50 molecules with different levels of electrostatic
interaction: (a) gOO(r), (b) gOH(r) and (c) gHH(r). [Color figure can be viewed at
wileyonlinelibrary.com]
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2.13 Å (note the first peak corresponds to the intra-molecular
H─H distance).

FFLUX has been evaluated against three other flexible,
polarizable water models by comparing the g(r) for FFLUX

(L = 1) against those of AMOEBA14, AMOEBA+ and MB-pol
(Fig. 5). All three of these models give g(r) profiles for bulk
water that are in excellent agreement with experimental data.
The positions of the peaks in the g(r) vary only slightly with
model but there is considerable difference in the height of the
peaks. The AMOEBA14 and AMOEBA+ profiles are similar, with
AMOEBA+ having a slightly lower peak height. MB-pol not
only has a lower peak height than the AMOEBA models have
but also has no minimum in the gOO(r) profile. It should be
noted that the differences between g(r) of bulk water and a
cluster of water molecules are greater in the case of MB-pol
than for the AMOEBA (and FFLUX) models (Supporting Infor-
mation Fig. S8). In the simulation of bulk water, the MB-pol
model does have a minimum in gOO(r) at ~3.4 Å, suggesting
that the MB-pol model is more sensitive to differences in the
water environment than the other models. FFLUX predicts
peak heights significantly larger than the other three models
do, which suggests that the resulting water cluster is over-
structured. The intermolecular structuring of water models is
determined by the balance between the electrostatic interac-
tions (that enforce a tetrahedral geometry) and the dispersion
interactions (that disrupt the H-bonding network[2,4,29,64]). As
mentioned earlier, the parameters for the LJ potential in
FFLUX were not optimized for these models (beyond ensuring
that they resulted in stable clusters), and thus the dispersion
interactions between molecules are probably too weak in
comparison with the electrostatic interactions. This is an area
for future development in FFLUX. An alternative explanation
for overstructuring of the water may be the sensitivity of
atomic multipoles, especially at higher l, to the environment.
Previous work has shown that the dipole and quadrupole
moments calculated via a QCT approach quickly converge to a
stable value with cluster size. However, this is another area of
future investigation for FFLUX.[65]

From the above results, it is apparent that simulations with
L = 1 and L = 2 show very similar g(r) profiles but that simula-
tions with L = 3 results in significant changes to the inter-
molecular structuring of the water molecules. To determine the
relationship between the intermolecular structuring and intra-
molecular degrees of freedom, the distribution of the bond
lengths and bond angle of the water molecules was calculated.
For L = 1 and L = 2 systems, the bond length distribution
(Fig. 6) is centered at the B3LYP bond length of a gas molecule,
0.9619 Å, in very close agreement with the experimental gas
phase O─H bond length of 0.9578 Å,[66] and slightly lower than
the experimental bond length of liquid water, 1.01 Å.[67] When
L = 3, the distribution is shifted to slightly greater lengths
(mode bond length of 0.975 Å). The distributions of the O─H
bond length of the FFLUX models are very similar (Fig. 6b) to
that of the AMOEBA14 and MB-pol models (while the AMOEBA
+ model has a distribution shifted to a slightly lower length).
The bond angle distributions (Fig. 7) of the FFLUX models are
shifted to lower angles than the B3LYP gas phase equilibrium
bond angle of 105.05� (the experimental gas phase value is
104.47�[66]). In contrast, the AMOEBA14, AMOEBA+, and MB-pol
models all give distributions centered around the gas phase
bond angle of ~105� . The distribution of the FFLUX models

Figure 5. Radial distribution functions, g(r), of the FFLUX L = 1 model and
the AMOEBA14, AMOEBA+, and MB-pol water models: (a) gOO(r), (b) gOH(r),
and (c) gHH(r) for a cluster of 216 molecules. [Color figure can be viewed at
wileyonlinelibrary.com]
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does vary with L: for the L = 1 model the peak is at ~100�, the
mode bond angle for L = 2 is the same as for L = 1, but there is
a small increase in the population of bond angles that are
greater than 106� . For L = 3 the peak in the distribution is at
103.5� , which is closer to gas phase equilibrium but still lower
than the angle predicted by the other AMOEBA and MB-pol
models. The intramolecular geometry of the FFLUX water
models is not significantly affected by cluster size or increasing
the number of training points (see Figs. S9 and S10 in the
Supporting Information).

The distributions of atomic charge on the oxygen and
hydrogen atoms of the water molecules (which is a function
of the intramolecular geometry of each water molecule) are
shown in Figure S11 in the Supporting Information. Overall,
the population distribution of the atomic charges is quite

similar for L = 1, 2, and 3 suggesting that the difference in the
intermolecular structuring is largely due to the incorporation
of the charge–quadrupole, dipole–dipole, and quadrupole-
charge terms rather than resulting from differences in intra-
molecular geometry or atomic multipole moments. To confirm
this hypothesis, we performed simulations where the internal
geometry of the water molecules was held fixed (i.e., the water
molecules were not polarizable). As the internal geometry of
these models is fixed, the multipole moments on atoms will
not differ with L. The g(r) profiles for these simulations
(Supporting Information Figs. S12–S14) show some differences
in peak heights, but the peak positions and overall shape of
the profiles is similar to those of the flexible and polarizable
models. As such we can be confident that it is the incorpora-
tion of the extra electrostatic terms into the L = 3 model that

Figure 6. The population distributions of the O─H bond lengths from
(a) simulation of a cluster containing 50 water molecules using the FFLUX
models at L = 1, 2, and 3, and (b) simulation of a cluster of 216 water
molecules with FFLUX L = 1, AMOEBA14, AMOEBA+ and MB-pol water
models. The dashed lines give the equilibrium bond length of a single water
molecule in the gas phase, 0.9619 Å. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 7. The population distributions of the HOH bond angle from
(a) simulation of a cluster containing 50 water molecules using the FFLUX
models at L = 1, 2 and 3 and (b) simulation of a cluster of 216 water
molecules with FFLUX L = 1, AMOEBA14, AMOEBA+, and MB-pol water
models. The dashed lines give the equilibrium bond angle of a single water
molecule in the gas phase, 105.05� . [Color figure can be viewed at
wileyonlinelibrary.com]
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results in the different intermolecular structuring of the water
molecules.

Conclusions

Simulations of a flexible, polarizable water models with multi-
polar description of electrostatics have been performed by
combining an IQA description of the PES of a water molecule
with the machine learning method kriging. It has been found
that using as few as 50 configurations for training the kriging
models is sufficient to reproduce the intramolecular PES and
atomic charges of a water molecule. The intermolecular struc-
turing of the water molecules is also unaffected by increasing
the number of configurations used to construct the kriging
models. It is found that, while incorporating charge–dipole
interactions into the description of the electrostatics results in
only minor differences, the incorporation of charge–quadru-
pole, dipole–dipole, and quadrupole–charge interactions results
in significant changes to the intermolecular structuring of the
water molecules (but not to their intramolecular geometries).
The positions of the peaks in the g(r) profiles indicate that
FFLUX models are in reasonable agreement with existing data
but that the water is somewhat overstructured, due to an
imbalance between the electrostatic and dispersion interac-
tions. Unlike the intramolecular degrees of freedom or atomic
multipole moments, the dispersion interactions between mole-
cules are, presently, simply accounted for via Lennard-Jones
potentials. In the short term, the overstructuring can be
addressed by optimization of the parameters used in the
Lennard-Jones potentials and/or using an alternate potential
form (such as the Buckingham potential) with optimized param-
eters. In the longer term, the aim is to employ machine learning
potentials to also describe the intermolecular dispersion
interactions.
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