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Abstract
Climate change is expected to increase climate variability and the occurrence of ex-
treme climatic events, with potentially devastating effects on aquatic ecosystems. 
However, little is known about the role of climate extremes in structuring aquatic com-
munities or the interplay between climate and local abiotic and biotic factors. Here, we 
examine the relative influence of climate and local abiotic and biotic conditions on bio-
diversity and community structure in lake invertebrates. We sampled aquatic inverte-
brates and measured environmental variables in 19 lakes throughout California, USA, 
to test hypotheses of the relationship between climate, local biotic and environmental 
conditions, and the taxonomic and functional structure of aquatic invertebrate com-
munities. We found that, while local biotic and abiotic factors such as habitat availabil-
ity and conductivity were the most consistent predictors of alpha diversity, extreme 
climate conditions such as maximum summer temperature and dry- season precipita-
tion were most often associated with multivariate taxonomic and functional composi-
tion. Specifically, sites with high maximum temperatures and low dry- season 
precipitation housed communities containing high abundances of large predatory 
taxa. Furthermore, both climate dissimilarity and abiotic dissimilarity determined taxo-
nomic turnover among sites (beta diversity). These findings suggest that while local- 
scale environmental variables may predict alpha diversity, climatic variability is 
important to consider when projecting broad- scale aquatic community responses to 
the extreme temperature and precipitation events that are expected for much of the 
world during the next century.
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1  | INTRODUCTION

A growing body of research suggests that climate variability is increas-
ing (Easterling et al., 2000; Huntington, 2006; Karl, Meehl, & Miller, 
2008; Ruff, Kushnir, & Seager, 2011), producing more extreme pre-
cipitation and temperature events. These climate extremes may be 

equally important determinants of biological organization as chang-
ing mean environmental conditions (Boucek & Rehage, 2014; Lloret, 
Escudero, Iriondo, Martínez- Vilalta, & Valladares, 2012). Recent case 
studies have shown that extreme climatic conditions frequently de-
termine organismal fitness (Easterling et al., 2000; Kingsolver et al. 
2012; Paaijmans et al. 2013; Vasseur et al. 2014), which should in 
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turn determine local species persistence and thus community makeup. 
Despite this evidence, the implications of climate extremes for the 
structure of biological communities remain largely unknown (Diez 
et al., 2012; Lynch et al., 2013; Vázquez, Gianoli, Morris, & Bozinovic, 
2015; Williams & Jackson, 2007). Specifically, we do not yet under-
stand how climate extremes interact with local biotic and abiotic driv-
ers of community structure (Jentsch, Kreyling, & Beierkuhnlein, 2007; 
Wernberg, Smale, & Thomsen, 2012) especially in freshwater systems.

Conversely, the role of the local biotic and abiotic environment 
in structuring aquatic communities is well documented. For exam-
ple, interspecies interactions such as predation (Shurin et al., 2002; 
Terborgh, 2015) and herbivory (Hairston & Hairston, 1993) are strong 
determinants of community structure. Likewise, the local abiotic 
environment is known to affect aquatic communities through water 
temperature, conductivity, dissolved oxygen, and other physical and 
chemical factors (Dossena et al., 2012; Kratina, Greig, Thompson, 
Carvalho- Pereira, & Shurin, 2012; Ledger, Brown, Edwards, Milner, 
& Woodward, 2013; Ledger, Edwards, Brown, Milner, & Woodward, 
2011; Schindler et al., 1990; Woodward et al., 2012).

Although abiotic, biotic, and climate effects can be studied sepa-
rately, it is more appropriate to study them together due to the simple 
reality that abiotic and biotic factors interact with one another over 
long- term climate regimes (Dunson & Travis, 1991). The importance 
of this integrated approach becomes obvious when trying to under-
stand how climate extremes may affect community structure. Changes 
in climate can affect biotic interactions that structure communities, 
such as competition and predation (Greig, Wissinger, & McIntosh, 
2013; Tylianakis, Didham, Bascompte, & Wardle, 2008), and charac-
teristics of the local environment may complicate seemingly straight-
forward associations between climate and local abiotic conditions 
(Fey, Mertens, Beversdorf, McMahon, & Cottingham, 2015a; Hwan & 
Carlson, 2016). Ecologists have increasingly adopted this integrative 
approach; however, much of our understanding of how communities 
are structured still focuses on the importance of average conditions 
and does not account for variability in climate or in the local environ-
ment (Thompson, Beardall, Beringer, Grace, & Sardina, 2013).

Climate and local environmental conditions can affect multiple 
dimensions of biodiversity (Leary, Rip, & Petchey, 2012). This includes 
major biogeographic patterns such as species richness (alpha diversity) 
and turnover in species composition among sites (beta diversity). They 
also impact variation in functional traits of species within communities 
and in trait composition across communities (Boucek & Rehage, 2014). 
Despite an increasing number of studies that integrate taxonomic and 
trait information, the relationship between the set of environmental 
factors that shape taxonomic diversity and those that determine func-
tional diversity is still poorly understood. This is especially true in rela-
tion to variation in climate factors. Environmental characteristics can 
be expected to filter species from the regional species pool based on 
their traits, allowing only a subset to persist in a given location (Webb, 
Hoeting, Ames, Pyne, & Poff, 2010). Therefore, different factors act-
ing on functional and taxonomic diversity could highlight community 
structuring mechanisms that act across taxonomic groups (Weiher & 
Keddy, 1995).

Manipulative experiments have been used to tease apart specific 
environmental drivers of community responses to climate perturba-
tions (Fey & Cottingham, 2012; Greig et al., 2012; Jentsch et al., 2007), 
but mechanisms identified at small experimental scales may not fully 
explain broad landscape patterns in community structure (Kissling & 
Schleuning, 2014). While manipulative experiments are ultimately 
necessary to determine cause and effect, observational studies can 
lead to important insights because the effects of the biotic and abiotic 
environment are integrated over longer timescales and greater spatial 
extent than are often possible during experimental studies (Whittaker, 
Willis, & Field, 2001). Indeed, evaluating the role of extreme, rare 
events is often difficult because by definition they are rare (Fey et al., 
2015b; Siepielski & Benkman, 2007). One approach to address this 
challenge is to pair observational studies with landscape- scale climate 
records (e.g., Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), which 
makes it possible to model the relationship between longer term cli-
mate variability that captures climate extremes and local environmen-
tal variables and community structure.

Aquatic invertebrate communities in mountain lakes of California, 
USA, are ideal for these investigations because (1) they encompass a 
wide range of spatial scales and climate patterns, (2) their communi-
ties are taxonomically diverse, and (3) associated climate records are 
readily available. We sampled aquatic invertebrates in these lakes and 
examined the local environment and climate as predictors of spatial 
patterns in taxonomic and trait diversity. In studies comprising multiple 
spatial scales such as ours, the scales of environmental predictors and 
community responses alone may account for observed patterns (Heino 
et al., 2015; Levin, 1992; Wiens, 1989). Therefore, we hypothesized 
that the scale of the diversity measurements would match the scale 
of the environmental predictors: (1) local biotic and abiotic factors will 
be the strongest determinants of local alpha diversity and community 
composition of taxonomy and traits, and (2) topographic and climate 
factors will be the strongest determinants of turnover among commu-
nities (beta diversity). We found that this was not entirely the case, 
and incongruences between our predictions and outcomes suggest an 
important role of climate extremes.

2  | MATERIALS AND METHODS

2.1 | Invertebrate sampling

We sampled aquatic invertebrates in 19 lakes throughout California, 
USA, during June and July of 2014 (Figure 1; Table 1). We selected 
lakes based on their accessibility, permanence, and the presence of 
macrophytes in the littoral zone. We targeted macrophytes for inver-
tebrate sampling because emergent vegetation has been documented 
to be important habitat for a rich community of species (Beckett, 
Aartila, & Miller, 1992; Brown, Poe, French Iii, & Schloesser, 1988; 
Cyr & Downing, 1988; Gregg & Rose, 1985), and is the primary habi-
tat for the most numerous invertebrate predatory taxa in our sam-
ples, damselflies in the family Coenagrionidae (Crowley & Johnson 
1992). Invertebrates were collected using a 6- L box sampler (100- um 
mesh), which was placed over the macrophytes, allowing us to target 
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taxa that live on and around the stems and leaves (Downing, 1986). 
Three box samples were taken per lake, and invertebrates were pre-
served in 70% ethanol. We subsampled each box to a threshold of 300 

individuals and identified animals to the highest resolution possible 
given available resources (usually family, Merritt, Cummins, & Berg, 
2008). Invertebrate abundances for the three box samples were aver-
aged for each lake.

2.2 | Environmental predictors

We assembled a set of 61 potential explanatory variables to develop 
models to explain variation in community structure across our lake 
samples. These variables encompassed a wide range of spatial and 
temporal scales and included factors that we measured in situ, such as 
water chemistry and habitat structure, and factors that we assembled 
from other sources such as land cover classes and climate variables.

2.2.1 | Local water chemistry and 
environmental variables

We recorded water temperature, dissolved oxygen, conductivity, and 
pH of three replicate water samples taken from the littoral zone of 
each lake using handheld probes (YSI model 85, YSI Incorporated, 
Yellow Springs, OH, USA; Milwaukee model SM102, Milwaukee 
Instruments incorporated, Rock Mount, NC, USA). We measured 
chlorophyll- a in the water column by filtering 1000 ml of lake water 
through a glass fiber filter (47 mm, Pall Corporation, Ann Arbor, MI, 
USA), extracting the pigment for 24 hr at 4°C with 95% ethanol, 
and quantifying fluorescence using a fluorometer (Turner Designs, 

F IGURE  1 Locations of the lakes included in our study within the 
state of California, USA
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N
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TABLE  1 Physical, geographic, and climate characteristics of the lakes included in this study

Lake Latitude Longitude Elevation (m) Lake area (m2)
Annual mean 
temperature (°C)

Annual 
precipitation 
(mm)

Blue Lake 41.415 −120.686 1,850 648,487 5.9 420

Blue Lake Road Pond 38.616 −119.916 2,452 2,998 4.2 1,035

Boulder Oaks 32.967 −116.929 450 3,997 16.6 430

Burnside Lake 38.714 −119.891 2,498 1,070 4 990

Camp Lake Sequoia 36.730 −118.988 1,630 322,424 10.1 824

Corte Madera Pond 32.799 −116.555 1,117 6,537 12.9 585

Crystal Lake 34.320 −117.847 1,688 34,029 10.4 826

Dos Picos 32.998 −116.938 454 8,851 16.5 439

Gumboot Lake 41.211 −122.512 1,861 43,612 5.2 954

Jenk’s Lake 34.165 −116.884 2,051 37,741 8.5 656

Juanita Lake 41.818 −122.129 2,931 226,508 6.1 453

Lake Cuyamaca 32.985 −116.583 1,415 395,706 12 736

Lake Fulmore 33.805 −116.780 1,632 12,573 11.3 677

Letts Lake 39.303 −122.710 1,381 129,313 9.4 1,263

Lower Rose Valley 
Lake

34.542 −119.187 1,019 20,738 13.3 547

Mendenhall Ranch 33.321 −116.828 1,368 5,292 12.8 663

Mosquito Lake 38.516 −119.914 2,464 13,972 4.1 1,042

Orr Lake 41.663 −121.989 2,787 245,920 7 439

Water of the Woods 32.875 −116.466 1,640 2,046 11.5 642
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Sunnyvale, CA, USA). Raw fluorescence was then converted to μg/L 
chlorophyll- a. We quantified macrophyte density in three quadrats 
(0.5 × 0.5 m) distributed approximately evenly along 10- m transects 
though the littoral zone where samples were collected. We sampled 
fish using a 4.5 × 1.5 m beach seine (5 mm mesh), towed for 10 m 
through the water adjacent to the macrophyte beds. Three replicate 
tows were taken per lake; fish presence/absence was recorded, and 
then fish were released. Means of continuous variables were used in 
all analyses.

2.2.2 | Climate variables

We obtained climate data from WorldClim (Hijmans et al., 2005; 
www.worldclim.org) on aspects of each lake’s precipitation and tem-
perature regimes, including measures of both mean and extreme con-
ditions (Table S1). We used a dataset representing “current” 50- year 
average climate conditions (1950–2000) in high- resolution grids (30 
arc- seconds), providing a spatial resolution of approximately 1 km.

2.2.3 | Land cover and other variables

Categorizing sites by land cover is a useful way to summarize land 
use and broad- scale landscape heterogeneity (Homer, Huang, Yang, 
Wylie, & Coan, 2004), especially in our case since our lakes were 
distributed over a wide spatial and anthropogenic land use gradient. 
Regional land cover data were obtained from the 2011 National Land 
Cover Database (Homer et al., 2015) and are described in Table S2. 
We characterized land cover surrounding each sampling location with 
a buffer radius of 500 m, sampling 0.785 km2 for each location. This 
resolution struck a balance between our need to characterize larger 
scale patterns of land cover and the need to differentiate land cover 
characteristics among relatively close sites (minimum distance of 
3.58 km). We also obtained human population density for subcounty 
partitions from the 2010 census from Census.gov. All spatial data 
were obtained using the function extract() in the raster 2.2- 31 pack-
age (Hijmans & van Etten, 2012) in R (R Core Team 2014) .

2.3 | Alpha diversity metrics

We calculated species richness, taxonomic diversity (Hill numbers; 
Hill, 1973; Jost, 2006), and functional diversity (FD(Q); Chiu & Chao, 
2014) for each box sample and then averaged the three samples for 
each lake. We selected Hill numbers to measure taxonomic diversity 
because they represent the species equivalents of standard entropy- 
based diversity measurements such as Shannon index and are easily 
interpretable (Jost, 2009).

We also examined how functional trait diversity varied among 
sites. Species traits (e.g., body size and trophic level) determine how 
species respond to the environment and affect ecosystem functioning 
(Naeem & Wright, 2003), and trait- based approaches allow for com-
parisons among communities without shared species (McGill, Enquist, 
Weiher, & Westoby, 2006; Messier, McGill, & Lechowicz, 2010). 
We used published resources (Boersma, Bogan, Henrichs, & Lytle, 

2014a; Schriever et al., 2015) to compile information for the taxa in 
our  samples on seven functional traits: body size, functional feeding 
group, locomotion, dispersal capacity, respiration mode, voltinism, 
and diapause (Table S3). These traits were selected to represent fun-
damental biological processes that are important in the structure of 
aquatic communities. We calculated functional diversity (FD(Q); Chiu 
& Chao, 2014) to quantify the total functional distance among all spe-
cies in each lake community. FD(Q) is similar to Rao’s Q (Botta- Dukát, 
2005) in that it is an abundance- weighted index of the trait dissimilar-
ity of species in a community, except that it is constructed from func-
tional Hill numbers and thus is more interpretable (Pavoine, Marcon, 
& Ricotta, 2016). We measured dissimilarity in trait composition using 
Sorensen distance (Sørensen, 1948) to account for the non- normal 
distributions and large number of zeros that characterize community 
data (McCune & Grace, 2002).

Predators have a fundamental role structuring communities 
(Nystrom, Svensson, Lardner, Bronmark, & Graneli, 2001; Terborgh, 
2015). To explore the role of macroinvertebrate predators in deter-
mining prey community diversity, we also analyzed a matrix of prey 
taxa only. This allowed us to use variables associated with predator 
abundance and diversity as predictors. To do so, we created a second 
sample- by- species matrix after removing all predatory taxa. We cal-
culated species richness, taxonomic diversity, and functional diversity 
for each box sample for both the complete matrix and the prey matrix. 
Then, we averaged these abundance and diversity values across the 
three samples within each lake to create two lake- by- species matrices: 
the complete community matrix and the prey matrix. We used both 
prey and complete matrices for our analyses of alpha diversity and 
community composition, described below.

Diversity metrics were calculated using the vegan (Oksanen et al., 
2012) and FD (Laliberté & Shipley, 2011) package in R version 3.1.1 (R 
Core Team 2014).

2.4 | Linear models

We used model selection to test hypotheses of the drivers of alpha 
diversity (richness, taxonomic diversity, and functional diversity). One 
of the ongoing challenges with applying linear modeling approaches to 
understand community structure is how to handle a large number of 
predictors (Cade, 2015; Hooten & Hobbs, 2015; Warton et al., 2015), 
because models that include many predictors are likely to detect spu-
rious associations (Burnham & Anderson, 2002). In order to avoid 
spurious model selection outcomes, we simplified the list of predic-
tors into reduced models representing our hypotheses (Burnham & 
Anderson, 2002) and then tested these hypotheses using AICc. We 
created four models of the drivers of alpha diversity: local biotic, local 
abiotic, climate, and topographic processes (Table 2). The first three 
models were created based on our questions regarding the relative 
influence of local and climate factors. The topographic model included 
spatial and land use variables such as land cover, geographic coordi-
nates, and elevation.

We determined the subset of available variables to include in 
each of the four models using a combination of approaches. First, we 

http://www.worldclim.org
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examined collinearity among variables using scatterplots, correlation 
matrices, and variance inflation factors. For highly correlated vari-
ables, we selected representatives that explained the variability in the 
response, characterized biological processes of interest associated 
with freshwater community structure, and were easily interpretable. 
Correlations between the selected variables in the four models can be 
found in Table S4.

2.4.1 | Climate

Many of the climate variables were correlated (e.g., maximum temper-
ature of the warmest month, maximum temperature of the warmest 
quarter, mean temperature of the driest quarter, annual mean tem-
perature), so we removed variables with high variance inflation factors 
until we settled on a model that minimized collinearity and contained 
measures of both means and variability for the 50- year time span of 
our climate data. This resulted in a candidate model that contained 
annual mean temperature, temperature annual range, annual precipi-
tation, and the coefficient of variation of precipitation.

2.4.2 | Topographic

We selected two land cover variables to include in the topographic 
model: the proportion of evergreen vegetative cover and the propor-
tion of land covered in water. Canopy cover is important for shad-
ing macrophyte beds (Köhler, Hachoł, & Hilt, 2010; Twilley & Barko, 
1990) and contributing leaf litter to the lake detritus (Webster & 
Benfield, 1986), which can have strong effects on the composition 
of aquatic communities (Anderson & Sedell, 1979; Kelly, Bothwell, & 
Schindler, 2003). Evergreen trees were the dominant canopy in our 
study. We included water coverage to account for the overall amount 
of aquatic habitat available and also the degree of isolation and frag-
mentation of lakes, which affect the availability of sources for poten-
tial colonists and can influence community assembly dynamics (Chase, 
Bergett, & Biro, 2010; Michels et al., 2001). Due to the northeast- to- 
southwest arrangement of California’s mountain ranges (Figure 1), 
latitude and longitude of our lakes were also highly correlated. We 
elected to include latitude because latitudinal diversity gradients are 
of interest in the general ecological literature (Gaston, 2000; Hawkins 
et al., 2003; Whittaker et al., 2001).

2.4.3 | Local biotic and local abiotic

The two local models contained all of the biotic and abiotic variables 
that we measured during sampling: water temperature, dissolved oxy-
gen, conductivity, and pH in the local abiotic model, and the presence 
or absence of fish, chlorophyll- a, and the density of macrophytes in 
the biotic model.

2.4.4 | Model selection

Following appropriate transformations (Table 2), we found that dis-
tributions of all variables approximated normality and subsequently 

used multiple linear regressions for the model selection procedure. 
Species richness is classically modeled with a Poisson distribu-
tion; however, in our case, we averaged the three box samples per 
lake prior to modeling so richness also approximated normality. We 
assessed the relative support for each of the candidate models using 
Akaike’s information criterion with a correction for small sample sizes 
(AICc) and the resulting ∆AICc values and Akaike weights (Burnham 
& Anderson, 2002). We considered models with ∆AICc of <2 to be 
equivalent. Model assessment was conducted using the leaps (Lumley, 
2009) and AICcmodavg (Mazerolle, 2015) packages in R Version 3.1.1.

2.5 | Community composition

Patterns of species co- occurrence and functional diversity cannot be 
understood with summary metrics of alpha or beta diversity alone. 
Thus, we examined the relationship between the entire set of local, 
topographic, and climate predictors and community/trait composi-
tion with multivariate ordination methods. To prepare the lake- by- 
species matrix for ordination, we removed rare taxa (<3 individuals 
in all lakes) and singleton taxa (species found only in a single lake). 
The lake- by- species matrix was multiplied by the species- by- trait 
matrix to generate a lake- by- trait matrix that represented the rela-
tive abundance of each trait state in each lake (McCune & Grace, 
2002). We applied a Wisconsin transformation to the species and 
trait matrices before ordinating (Legendre & Gallagher, 2001). We 
used pairwise Bray–Curtis distances between lakes for both species 
and trait analyses.

We ordinated the species and trait matrices using nonmetric mul-
tidimensional scaling (NMDS). This approach allowed us to examine 
associations between the entire suite of potential predictor variables 
and taxonomic and functional composition without first defining 
explicit hypotheses or removing correlated predictors. We exam-
ined stress values and convergence to assess ordination fit; two- 
dimensional ordinations were appropriate in all cases. To facilitate 
comparisons of species and trait ordinations, we rotated each NMDS 
ordination to align with a vector representing the abundance of coe-
nagrionid damselflies. Damselflies were the most numerous preda-
tory taxon by a factor of 10, and previous studies have documented 
their fundamental role in aquatic food webs (Merritt et al., 2008). We 
examined species and trait correlations with the ordination space 
(considered meaningful when r > .5). We plotted significant associa-
tions between the potential predictors and the NMDS axes as vectors 
on the ordinations (p < .05, except where noted). We ordinated the 
full species/trait matrices and species/trait matrices without preda-
tory taxa (four ordinations total) to allow us to examine the effect of 
predators as drivers of prey community and trait composition. We 
conducted all multivariate analyses in R package vegan (Oksanen 
et al., 2012) in R Version 3.1.1.

2.6 | Beta diversity

Finally, we examined dissimilarity among sites in taxonomic and trait 
composition with beta diversity. Beta diversity is defined in many ways 
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in the literature (Anderson et al. 2011). We were interested in beta 
diversity as turnover, which is the change in community composition 
among sample units along a gradient. Our aim was to determine which 
environmental gradient(s) best predicted turnover in taxonomic and 
functional diversity. To do so, we first generated Euclidean distance 
matrices representing the intersite dissimilarity in four predictor matri-
ces of interest: local biotic, local abiotic, topographic, and climate. We 
added an additional distance matrix representing the Euclidean dis-
tance among sites (km), as geographic distance decay is often important 
for determining community differentiation and we needed to control 
for it in our models (Nekola & White, 1999; Soininen, McDonald, & 
Hillebrand, 2007). We corrected for the curvature of the earth using 
the Haversine formula (Shumaker & Sinnott, 1984). These five pre-
dictor matrices were assessed as predictors of two response distance 
matrices: taxonomic beta diversity and functional beta diversity. To 
calculate taxonomic dissimilarity for prey and complete matrices, we 
used Raup–Crick dissimilarity (Raup & Crick, 1979). This null- model 
approach accounts for differences in alpha diversity among sites 
that may otherwise exaggerate beta diversity patterns (Chase, Kraft, 
Smith, Vellend, & Inouye, 2011). We calculated trait dissimilarity as the 
Euclidean distance between pairs of lakes based on the lake- by- trait 
matrix described under “Community composition.”

Next, we used partial Mantel tests to assess the capacity of the 
predictor distance matrices to predict beta diversity after controlling 
for geographic distance (Goslee & Urban, 2007). For taxonomic and 
functional beta diversity, we compared four candidate models, con-
structed from each of our four predictor matrices: community dis-
similarity ~ predictor matrix + geographic distance. We assessed 
significance at an alpha of 0.05. Partial Mantel tests were conducted 
using the R package vegan (Oksanen et al., 2012).

3  | RESULTS

3.1 | Alpha diversity

We identified 37 taxa in the 19 lakes. The most abundant taxon was 
Chironomidae, with an average of 232 individuals per box sample. 
Microcrustaceans (copepods, daphniids, and ostracods) were also 
numerous (mean abundances >50), as were physid and planorbid 
snails (mean abundances >30). The number of individuals per sam-
ple varied from 59 to 6,728 (mean = 812), and six taxa appeared in 
only a single sample (Corydalidae, Tipulidae, Dixidae, Crambidae, 
Sphaeriidae, and Viviparidae). The wide range of abundances was 
mirrored by high interlake variability in all three diversity metrics: 
species richness (mean = 9.51, SD = 3.25), taxonomic diversity 
(mean = 4.57, SD = 1.82), and functional diversity (mean = 58.21, 
SD = 32.30).

Model selection largely supported our hypothesis that biotic 
and abiotic factors would determine taxonomic and functional alpha 
diversity (Table 2). The local biotic model was preferred over local 
abiotic, topographic, and climate models for taxonomic diversity, and 
biotic and abiotic models were nearly equivalent at predicting func-
tional diversity and species richness. These patterns held for both 

analyses including the entire community and the prey community 
alone (Table 2).

When we examined individual environmental variables within each 
preferred model, macrophyte density was a significant predictor of 
taxonomic diversity and richness, and conductivity predicted richness 
and functional diversity. In the prey models, mesopredator abundance 
was a significant predictor of taxonomic diversity. Complete model 
selection results are presented in Table 2.

3.2 | Community composition

Variables representing climate extremes were important for both 
taxonomic and trait composition. Specifically, of all of the potential 
local, topographic, and climate variables, maximum temperature of 
the warmest month and mean annual precipitation were found to be 
significantly correlated with the taxonomic NMDS ordination space 
(Table 3; Figure 2a). Taxa that were positively associated with Axis 1 
included predatory diving beetles (Dytiscidae), mayfly prey (Baetidae), 
and the planorbid and physid snails (Pearson r: .5854, .5130, .5832, 
and .5802, respectively). Predatory dragonflies (Aeshnidae) and daph-
niid plankton prey (Cladocera) were negatively associated with Axis 2 
(r: −.6591, −.5419).

Similar to the taxonomic ordination, climate extremes were also 
associated with the trait ordination. Dry- season precipitation and 
the maximum temperature of the warmest month were significantly 
correlated with trait composition (Table 3). Body size was an influen-
tial trait on Axis 1 of the trait ordination, and large body sizes were 
associated with high temperatures and low precipitation (Figure 2b; r: 
.6320). Influential traits for Axis 2 included many traits that are associ-
ated with adaptation to life in an aquatic environment, including swim-
ming capacity (r: −.680), passive and active aquatic dispersal (r: −.569 
and .561), and filter feeding (r: −.721).

Taxonomic and trait ordinations of the prey community largely 
highlighted the same patterns as those of the entire community 
(Table 3 and Fig. S1). Overall, the ordinations revealed consistent 
associations between community composition and precipitation and 
temperature extremes.

3.3 | Beta diversity

After controlling for geographic distance, we found that among- site 
dissimilarity in climate was a significant predictor of taxonomic dis-
similarity (Mantel test: r = .3277, p = .001), as was local abiotic dissimi-
larity (r = .3183, p = .03); however, biotic dissimilarity and topographic 
dissimilarity were not (biotic: r = .06264, p = .334, topographic: 
r = .07431, p = .317). Thus, spatial variation in taxonomic beta diver-
sity was largely determined by climate and local abiotic factors.

The functional beta diversity analysis was less conclusive. After 
controlling for the effects of distance, there were no significant asso-
ciations between functional diversity and any of the four predictor 
matrices. Euclidean distance was the only significant predictor of 
functional dissimilarity between sites, albeit weakly (r = .16709853, 
p = .034).



     |  8101BOERSMA Oet MAal

4  | DISCUSSION

We detected a consistent relationship between climate and the 
taxonomic and trait structure of aquatic invertebrate communities. 
Specifically, measures of the variability of temperature and precipita-
tion—not mean values—were associated with multivariate trait compo-
sition among communities. Additionally, dissimilarities in climate and 
local abiotic conditions were better predictors of community turnover 
among sites than the dissimilarity of either the biotic environment or 
topographic characteristics. Despite a signal of climate extremes in 
multivariate community structure and beta diversity, biotic and abi-
otic local environmental conditions were the best predictors of alpha 
diversity at the local scale. In conjunction with previous studies, we 
found that the taxonomic alpha diversity of aquatic invertebrate com-
munities is strongly shaped by the biotic environment (Shurin, Gruner, 
& Hillebrand, 2006).

4.1 | Climate variability

Our study provides evidence that climate extremes are associated 
with functional trait composition (Figure 2b). Specifically, precipita-
tion during the driest quarter and maximum temperature during the 
warmest month were significantly correlated with the trait ordina-
tion space, suggesting that these variables may be important deter-
minants of spatial variation in trait composition. Logic dictates that 
communities in naturally variable regions are more likely to contain 
taxa that are adapted to fluctuating environmental conditions. As a 

result, these communities may have high resistance and resilience 
to future extreme events (Boersma et al., 2014a; Bogan, Boersma, & 
Lytle, 2015), and there is growing evidence that community responses 
to extreme climate events are governed by the functional diversity 
of local communities (Boucek & Rehage, 2014; Kreyling, Jentsch, & 
Beierkuhnlein, 2011). One prediction of climate change models is 
an increase in the frequency, duration, and magnitude of extreme 
climatic events (Easterling et al., 2000; IPCC 2012; Karl, Knight, & 
Plummer, 1995; Seager et al., 2007, Sydeman, Santora, Thompson, 
Marinovic, & Lorenzo, 2013; Vano et al., 2014), and recent research 
suggests that increasing variability in environmental conditions can 
be as important in determining organismal responses as changing 
mean values (Kayler et al., 2015; Thompson et al., 2013), especially 
in aquatic systems (Calapez, Elias, Almeida, & Feio, 2014; Chessman, 
2015; Szczerkowska- Majchrzak, Lik, & Leszczyńska, 2014). Climate 
extremes like high temperature and low precipitation, such as we 
identified in this study, likely limit the diversity of aquatic species 
at a site to a subset of the regional species pool that can survive 
local conditions (Bogan et al., 2015; Boulton & Lake, 2008; García- 
Roger et al., 2013). An understanding of this climate- driven filter-
ing process is necessary to predict how ecosystems may respond to 
future climate disturbances (Webb et al., 2010). Our study advances 
this understanding by identifying extreme dry- season precipitation 
and temperature as potentially important variables in this filtering 
process.

Maximum temperature of the warmest month was also positively 
correlated with the abundance of large predatory taxa (Figure 2b and 

Community Ordination Correlated variable R2 p- value

Entire Taxonomy MaxTempWarmestMo .5859 .006

AnnPrecip .4958 .002

PrecipColdestQ .4927 .003

PrecipWettestMo .4781 .005

PrecipWettestQ .4745 .006

Traits PrecipDriestQ .4153 .014

PrecipDriestMo .391 .014

MaxTempWarmestMo .3083 .045

Prey Taxonomy PrecipDriestQ .6286 .001

AnnPrecip .5727 .002

PrecipWettestMo .5627 .001

PrecipColdestQ .5511 .001

PrecipWettestQ .5299 .003

PrecipWarmestQ .4618 .007

PrecipDriestMo .4569 .008

MaxTempWarmestMo .4572 .008

Traits DamselSum .546 .011

EvergreenForest .495 .003

ShrubScrub .4503 .006

PrecipDriestQ .3943 .016

PrecipDriestMo .3689 .021

TABLE  3 Vector correlations with 
NMDS ordination axes (Figure 2 and Fig. 
S1). Vectors are listed for the entire 
community ordination with correlations at 
p < .05 and for the prey ordination at 
p < .01. When vectors overlapped, the 
vector with the lowest p- value is displayed 
on the ordinations and indicated here by 
bold text. Abbreviations are described in 
Tables S1 and S2
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Fig. S1a). There is evidence that warming can strengthen trophic cas-
cades in pond food webs by increasing the effects of fish on primary 
productivity (Kratina et al., 2012), and top predators may mediate the 
effects of climate on the rest of the biotic community (Boersma, Bogan, 
Henrichs, & Lytle, 2014b). Our results suggest that future increasing 
maximum summer temperatures may increase the abundance of pred-
atory taxa. Changing distribution and abundance of dominant pred-
ators may further amplify the strength of top- down effects (Baum & 
Worm, 2009; Otto, Berlow, Rank, Smiley, & Brose, 2008). Ultimately, 
this could fundamentally restructure food webs.

Despite the consistency of the climate signal in our analyses of 
beta diversity and community composition, climate did not predict 
local alpha diversity. Our climate data were compiled from 50 years of 
observations taken at a relatively coarse spatial resolution given the 
size of our lakes (Hijmans et al., 2005) and therefore may lack site- 
specific information necessary to predict alpha diversity. Additionally, 
our family- level taxonomic resolution may have obscured a signal of 
climate in local communities. It is also possible that the effects of cli-
mate on local diversity are propagated through changes to local biotic 
and abiotic factors as has been observed in other studies (Boersma 
et al., 2014b; Kratina et al., 2012). Future investigations that use local 
weather station records and species- level taxonomic information may 
be necessary to understand the role of climate at the local scale.

4.2 | Local biotic factors

We confirm the conclusions of previous studies that local biotic fac-
tors, such as predation and productivity, are important drivers of 
aquatic biodiversity (e.g., Chase, 2007; Hairston & Hairston, 1993; 
Terborgh, 2015). Our local biotic model consistently outperformed 

topographic and climate models, with biological variables explain-
ing between 30% and 52% of the variation in alpha diversity. Of the 
variables in the local biotic model, macrophyte density was the most 
consistent predictor. Macrophytes are home to complex food webs 
(Newman, 1991) and provide important structure for both grazing 
herbivores and sit- and- wait predators (Gregg & Rose, 1985; Warfe & 
Barmuta, 2004). The density of macrophytes varied widely among our 
lake samples, and our results reflect the influence of physical structure 
on invertebrate communities.

As expected, predator abundance predicted prey taxonomic diversity 
in the linear models (Table 2). In the multivariate analyses of prey com-
munity composition, large predatory dragonflies (Aeshnidae) and diving 
beetles (Dytiscidae) had the strongest associations with the ordination 
axes of any other taxon (Figure 2a), representing their influence on com-
munity structure. Aeshnid dragonflies are opportunistic predators of coe-
nagrionid damselflies and other mobile taxa (McPeek, 1990), and dytiscid 
beetles are generalist predators and scavengers (Hicks, 1994; Obha, 
2009; Velasco & Millan, 1998). These findings support recent assertions 
of the strength of top- down processes at determining community struc-
ture (Boersma et al., 2014b; Terborgh, 2015). Further research is needed 
to determine whether biotic and climate drivers interact synergistically to 
amplify their effects on functional diversity and trait composition.

4.3 | Beta diversity

Taxonomic dissimilarity among lakes was best predicted by intersite 
dissimilarity in climate and local abiotic variables, whereas functional 
dissimilarity was predicted by Euclidean distance alone. Among- site 
differences in species composition can be determined by many con-
current forces (Cottenie, 2005; Heino et al., 2015; Leibold & McPeek, 

F IGURE  2 Nonmetric multidimensional scaling ordination of lakes by their taxonomic and trait composition. (a) Taxonomic ordination 
(NMDS: k = 2, stress = 0.1872), (b) trait ordination (NMDS: k = 2, stress = 0.1264588). Vectors represent significant correlations between biotic, 
abiotic, topographic, or climate variables and the ordination space (Pearson correlation: p < .05). When vectors overlapped on the ordinations, 
the vector with the lowest p- value is displayed. Influential species/traits are indicated along each axis (|r| > .5). Each ordination was rotated so 
that its first axis is parallel to a vector of damselfly abundance (“Coenagrionidae”) to facilitate comparison between plots

(a) (b)
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2006; Siepielski & McPeek, 2013). Our results suggest that species 
sorting along environmental gradients may play an important role in 
determining the structure of lake invertebrate fauna. We suspect that 
climate extremes act to filter the overall regional species pool and yield 
a subset of regional diversity that can survive in a given area. Then, 
local biotic interactions among this subset of species are most impor-
tant at the local level. However, the lack of an association between 
functional trait dissimilarity and climate, abiotic, biotic, or topographic 
dissimilarity suggests that this “filtering” process is not based on the 
traits included in this analysis.

Our study contributes to the growing number of empirical inves-
tigations that document the potential role of climate extremes in 
shaping community structure (Jentsch et al., 2007; Thompson et al., 
2013; Vázquez et al., 2015) and the association between climate and 
functional traits (Barrows, Rotenberry, & Allen, 2010; Brown & Milner, 
2012; Buisson, Grenouillet, Villeger, Canal, & Laffaille, 2013). While 
much needs to be done to understand the fundamental role of climate 
variation in structuring communities, recent theoretical work suggests 
that increasing environmental variability and novel climate distur-
bance regimes can surpass species’ abilities to respond via phenotypic 
plasticity or adaptive evolution. Botero et al. (2015) show that even 
very minor changes in environmental conditions can constitute “tip-
ping points” between plasticity and population collapse. These tipping 
points also act at the community level and can fundamentally restruc-
ture food webs (van Nes & Scheffer, 2004). Indeed, our results suggest 
that temperature and precipitation extremes may have important roles 
in structuring communities. Moreover, embedded within this larger 
scale climate variation, local abiotic and biotic factors further act on 
constituent species to govern the makeup and spatial variation of the 
communities we documented. Understanding this complex interplay 
between climate extremes at the regional level and abiotic and biotic 
factors at the local level is necessary for a more complete view of how 
and why communities are structured as they are and how they may 
change in response to novel future conditions.
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