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Abstract

This study explored the effect of OPRM1 promoter region DNA methylation on the outcome of 

treatment with the opioid antagonist naltrexone (NTX) for alcohol dependence (AD). Ninety-three 

patients with DSM-IV AD [41 African Americans (AAs) and 52 European Americans (EAs)] 

received double-blind treatment with NTX or placebo for at least three months. Relapse to heavy 

drinking was assessed during the first 13 weeks of the trial. Peripheral blood methylation levels of 

33 CpG units in the OPRM1 promoter region were quantified using Sequenom EpiTYPER 

technology. Bayesian logistic regression was used to analyze the effects of NTX treatment, CpG 

methylation, CpG methylation×NTX treatment, and age on AD relapse. The Random Forest 

machine learning algorithm was applied to select AD relapse predictors. No significant effect of 

individual OPRM1 promoter CpG units on AD relapse was observed in either AAs or EAs. Age 

was significantly associated with AD relapse in EAs, among whom older subjects had a lower 

relapse rate. Random forest analyses revealed that the prediction rate for AD relapse reached 

66.0% with five top variables (age and four CpG units; ranked by their importance to AD relapse) 

in the prediction model. These findings suggest that methylation levels of individual OPRM1 
promoter CpG units do not contribute significantly to inter-individual variation in NTX response. 

However, the age of subjects in combination with a cluster of specific OPRM1 promoter CpG 
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units may affect NTX treatment outcome. Additional studies of OPRM1 DNA methylation 

changes during and after NTX treatment of AD are needed.
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Introduction

Naltrexone (NTX) and two other medications (disulfiram and acamprosate) have been 

approved by the U.S. Food and Drug Administration (FDA) for the treatment of alcohol 

dependence (AD). NTX is an opioid antagonist, which blocks opioid receptors (particularly 

the mu-opioid receptor or MOR) and thus reduces the reinforcing effect of alcohol 1. There 

is a high degree of variability in the response to NTX treatment among AD subjects. The 

efficacy of NTX treatment of AD depends on subjects’ genetic background 2, drinking 

situation (reward or relief drinking) 3, comorbid nicotine use or smoking status 4 and other 

factors.

Pharmacogenetic studies have been used to identify mechanisms underlying response 

variation in AD subjects receiving pharmacotherapy. Because NTX blocks opioid receptors, 

several clinical trials of the medication 5–9, including ours 10, have been conducted to 

examine the association between variation in opioid receptor genes and NTX treatment 

response. These studies focused on the potential moderating effect of a single nucleotide 

polymorphism (SNP rs1799971 or A118G) in Exon 1 of the MOR gene (OPRM1). The 

MOR is widely distributed throughout brain reward circuits, and it mediates the 

consumption and rewarding effects of alcohol and other substances including drugs of abuse 
11, 12. SNP rs1799971 results in a non-synonymous substitution of aspartate for asparagine 

in the amino terminus of the MOR, which has functional effects 13. Although some of these 

studies showed differential responses to NTX as a function of the OPRM1 SNP rs1799971 
5, 7, 8, others found no significant effect of this variant on the outcome of NTX treatment 
6, 9, 10. The conflicting results suggest that other genetic factors or physiological or 

environmental factors (e.g., sex, age, diet, co-occurring diseases, and co-administered 

medications) may account for individual differences in response to NTX treatment.

The epigenetic state [e.g., DNA methylation (at CpG dinucleotides) and histone 

modifications (i.e., histone acetylation and methylation)] of genes changes during normal 

development and aging. Environmental factors can cause positive or negative epigenetic 

modifications with lasting effects on development, metabolism, and health 14, although an 

epigenetic state can be inherited meiotically as well as mitotically 15. DNA methylation is 

the most widely studied epigenetic modification, which in mammals occurs mainly within 

the context of the CpG dinucleotide. Methylation of CpG sites (particularly those located in 

the promoter regions of genes) can either directly block transcription factor binding or 

attract methylated-CpG-binding proteins and other chromatin-remodeling enzymes to 

prevent the binding of transcription factors. Altered DNA methylation has been associated 

with a variety of diseases including AD 16. Given the important role of the mu-opioid 
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receptor in the reward pathway, several studies have examined DNA methylation patterns in 

the OPRM1 promoter region in subjects with alcohol or drug dependence. Increased 

OPRM1 promoter DNA methylation in heroin addicts has been reported 17, 18. We observed 

hypermethylation of OPRM1 promoter CpG sites in AD subjects 19. CpG sites in the 

promoter region of genes are usually unmethylated or hypomethylated 20. Thus, an increase 

in methylation of OPRM1 promoter CpG sites may inhibit OPRM1 transcription (or MOR 

expression) as demonstrated in the study by Andria et al. 21, although OPRM1 promoter 

DNA methyaltion may not play a major role in regulating OPRM1 transcription 22 . 

However, the latter study only analyzed the correlation of the mean methylation level of 22 

OPRM1 promoter CpGs and OPRM1 expression in postmortem brains of opiate addicts. In 

other words, it is unknown if the methylation of these 22 OPRM1 promoter CpGs can 

influence OPRM1 transcription individually or synergically. Additionally, genetic variants 

such as the functional nonsynonymous variant (OPRM1 118A>G or rs1799971) can 

influence OPRM1 DNA methylation levels 23. Because of the reduced availability of MORs, 

AD patients whose OPRM1 promoter CpG sites are hypermethylated may drink more 

alcohol to obtain the same euphoric effect as they did previously when they consumed less 

alcohol.

Because epigenetic variation modulates transcriptional networks and cellular functions, 

epigenetic markers are potential novel diagnostic tools for assessing disease phenotypes or 

predicting disease progression and treatment response. Pharmacoepigenetics, which studies 

the effect of epigenetic markers on variability and the underlying mechanism of drug 

response, is an emerging area of interest. There is also an increasing interest in developing 

therapeutic interventions that target epigenetic modifiers [such as DNA methyltransferases 

(DNMTs) and histone deacetyltransferases (HDACs)] for treating disease by reversing DNA 

and histone modifications 24. Pharmacoepigenetics has been applied to identify epigenetic 

markers that predict the outcome of pharmacological treatments for cancers 25, 26, diabetes 
27, 28, schizophrenia 29, depression 30, and Alzheimer’s disease 31. For example, the DNA 

methylation state of the hyperpigmentation progressive 1 gene (HPP1) was identified as an 

early marker of response to combined therapy of metastatic colorectal cancer with 

fluoropyrimidine, oxaliplatin, and bevacizumab 26. To date, no pharmacoepigenetic studies 

have examined the impact of epigenetic markers on the response to the pharmacotherapy of 

AD or other substance use disorders.

Our hypothesis is that both genetic and environmental factors (including chronic alcohol 

consumption) influence the DNA methylation status of the promoter region of OPRM1, thus 

changing the expression of MORs or the number of available target sites for occupancy by 

NTX. Therefore, OPRM1 promoter DNA methylation could influence the efficacy of NTX 

in AD treatment or moderate the risk of relapse after NTX treatment. In the present study, 

we investigated the effect of peripheral blood OPRM1 promoter region DNA methylation on 

AD relapse following NTX treatment in both African American (AA) and European 

American (EA) subjects with AD. Although blood and brain DNA methylation patterns of 

OPRM1 may differ because DNA methylation is tissue-specific 32, blood is more easily 

accessible than brain tissues and thus blood DNA methylation sites may be useful 

biomarkers of mental disorders, including AD.
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Subjects and Methods

Study population

Ninety-three AD subjects (41 AAs and 52 EAs) for the present study were selected from 

among participants in a study of the effect of opioid receptor gene variants on the outcome 

of NTX treatment of AD 10. All subjects were male veterans who met criteria for AD on the 

basis of the Structured Clinical Interview for DSM-IV 33. They participated in the Veterans 

Affairs Cooperative Study 425, “Naltrexone in the Treatment of Alcohol Dependence,” a 

double-blind, placebo-controlled, multicenter NTX treatment trial 34. To evaluate whether 

treatment outcome was due to NTX rather than psychological or other factors, we included 

placebo-treated patients in the study. Table 1 summarizes the demographics and drinking 

outcomes of the 93 AD subjects included in this pharmacoepigenetic study.

AD relapse assessment

Outcome variables of NTX or placebo treatment included: (1) number of subjects who 

relapsed to heavy drinking during the first 13 weeks of treatment [with relapse defined as the 

first day of heavy drinking (six or more drinks consumed)] 10; (2) number of days to relapse 

during the first 13 weeks of treatment; and (3) percent drinking days during the first 13 

weeks of treatment.

OPRM1 promoter region DNA methylation assay

Genomic DNA was extracted from the peripheral blood of the above 93 AD subjects before 

they initiated NTX or placebo treatment. Genomic DNA (1 μg) was treated with the bisulfite 

reagent included in the EZ DNA Methylation Kit (Zymo Research, Orange, CA). Two 

amplicons spanning 734 bp [from 365 bp upstream of the translation start site (TSS) to 369 

bp downstream of the TSS] of the OPRM1 promoter region and harboring 44 CpG sites 

were generated by polymerase chain reactions (PCRs) using two pairs of tagged primers 

[primers for Amplicon 1: aggaagagagTGTTTAGTGAAGAGATTTATTTTTTGGA 

(forward) and cagtaatacgactcactatagggagaaggctACCATCTAAATAAAACAAATTAACCCA 

(reverse); primers for Amplicon 2: aggaagagagGAGTTTTGGGAGTTAGGTGTTTTTT 

(forward) and cagtaatacgactcactatagggagaaggctATTCCTAAATCAACTTATCCCACTT 

(reverse)]. The reverse primer was tagged with the T7-promoter sequence for in vitro 
transcription. The OPRM1 promoter region DNA sequence (734 bp) harboring the 44 CpG 

sites [covered by two OPRM1 Amplicons (482 bp and 284 bp)] are delineated in 

Supplementary Fig. S1-3. The primer pairs for the two target regions were designed using 

EpiDesigner (www.epidesigner.com, Sequenom). A touchdown PCR using the FastStart Taq 

DNA polymerase (Roche, Mannheim, Germany) was performed as previously described 35. 

The PCR products were treated with alkaline phosphatase ExoSAP-IT (Affymetrix, Santa 

Clara, CA), transcribed to RNAs by T7 RNA polymerase (Roche, Mannheim, Germany), 

and cleaved by RNase A (Roche, Mannheim, Germany) at specific bases (U or C). The 

obtained mixture of RNA fragments was spotted on a 384-pad SpectraCHIP (Sequenom, San 

Diego, CA), followed by spectral acquisition on a MassARRAY Analyzer (Sequenom, San 

Diego, CA). Five DNA samples (4 AA and 1 EA DNA samples) were failed in the DNA 

methylation assay (i.e., missing methylation data for more than half of the 44 CpG sites in 

these samples).
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Among the 44 CpGs, seven CpGs (−336CpG, −329CpG, −286CpG, −279CpG, −268CpG, 

−252CpG, and −247CpG) are in the upstream region of OPRM1 Exon 1, 15 CpGs 

(−197CpG, −169CpG, −159CpG, −152CpG, −93CpG, −90CpG, −80CpG, −71CpG, 

−60CpG, −50CpG, −32CpG, −25CpG, −18CpG, −14CpG, and −10CpG) are in the 5’ 

untranslated region (5’ UTR) of OPRM1, 18 CpGs (+12CpG, +23CpG, +27CpG, +53CpG, 

+84CpG, +126CpG, +135CpG, +140CpG, +145CpG, +150CpG, +159CpG, +182CpG, 

+186CpG, +206CpG, +215CpG, +237CpG, +243CpG, and +258CpG) are located in the 

translated region of OPRM1 Exon 1, and four CpGs (+301CpG, +312CpG, +316CpG, and 

+328CpG) were located in OPRM1 Intron 1 following Exon 1. The methylation calls were 

performed using the EpiTyper software v1.0 (Sequenom, San Diego, CA), which generated 

quantitative data (methyl CpG/total CpG) for each CpG site. For CpG sites that were too 

close to be cleaved apart by RNase A, they were measured as a unit. The methylation levels 

of four CpGs (CpG-197 or Unit 6, CpG+23 or Unit 17, CpG+237 or Unit 28, and CpG+243 

or Unit 29) were not detectable. The remaining 40 CpGs formed 29 CpG units (18 in 

Amplicon 1 and 11 in Amplicon 2) (Fig. 1).

Statistical analysis

Because of the existence of quasi-complete separation 36 in our data set, we used a Bayesian 

approach to logistic regression to examine the effect of OPRM1 promoter region DNA 

methylation on patients’ response to NTX or placebo treatment [bayesglm(formula = AD 

relapse ~ Race + Age + Treatment + Methylation + Treatment *Methylation, family = 

binomial(link = “logit”)]. Bayesian logistic regression sets an informative prior distribution 

for the coefficients to be constrained. The analysis was conducted using the R package ‘arm’ 

version 1.10–1 (https://CRAN.R-project.org/package=arm). The dependent variable was the 

AD relapse status in the first 13 weeks after at least three months’ of treatment with NTX or 

placebo. Twenty-nine Bayesian logistic regression models (corresponding to 29 OPRM1 
promoter region CpG units) were fitted, each including the same three input variables (race, 

age, and treatment) and differing by a single input variable (i.e., the methylation level of 

each of 29 CpG units).

The Random Forest algorithm was used to select a group of input variables as predictors of 

AD relapse. Because the methylation levels of CpGs in OPRM1 promoter region may be 

correlated, a regression model assuming that input variables are independent from one 

another is not suitable for selecting predictors of AD relapse. In the prediction analysis, we 

used Random Forest, a non-parametric model that does not make any assumptions regarding 

the structure of the data 37. The Random Forest analysis has been applied in disease 

prediction using methylated CpG sites. For example, Quraishi et al. utilized Random Forest 

to identify 140 CpG sites that were potentially associated with eczema through the out-of-

bag (OOB) error rate calculation 38.

A Random Forest consists of multiple classification trees and each tree is constructed on 

randomly selected samples that form the training set. The samples that are not in the training 

set are defined as out-of-bag (OOB) samples. For the same sample, each tree outputs one 

class and the forest predicts the mode of the class. To compute the OOB error rate 39, the 

forest first predicts the class of each sample using only the trees that do not contain that 
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sample in the training set to achieve OOB prediction. By comparing OOB prediction with 

the real class of each sample, the forest outputs the OOB error rate.

When fitting a Random Forest model for a classification task, there are two different 

measures of variable importance 40. One is Gini Index – the sum of decreases in node 

impurities from splitting on the variable, averaged over all trees. Another is Mean Decrease 

Accuracy – the sum of decreases in prediction accuracy from permuting the variable, 

averaged over all trees. Variables of low importance can be excluded from a model, making 

it simpler and faster to fit and predict. Because we were more interested in the accuracy of 

prediction than the node purity, we used the Mean Decrease Accuracy to measure the 

importance of variables to AD relapse. We examined the OOB error rates for Random 

Forests with a series (1 to 32) of variables (race, age, treatment, and 29 CpG units ranked by 

their importance to AD relapse) being used to construct Random Forests. Then we extracted 

and plotted the prediction error rate of each forest.

Results

AD relapse after NTX or placebo treatment

The relapse information of AD patients during the first 13 weeks after NTX or placebo 

treatment is summarized in Table 1. Among the 41 AA AD patients, 28 (age±mean: 51±9 

years) received NTX treatment and 13 (age±mean: 50±9 years) received placebo treatment. 

Among the 52 EA AD patients, 36 (age±mean: 50±10 years) received NTX treatment and 

16 (age±mean: 50±11 years) received placebo treatment. The number of patients who 

relapsed (P > 0.05 by Chi-square tests), the number of days to relapse (P > 0.05 by t-tests), 

and the percent drinking days (P > 0.05 by t-tests) in the first 13 weeks after the initiation of 

NTX or placebo treatment did not differ significantly between NTX and placebo treatment 

groups in either AAs or EAs.

DNA methylation differences between NTX and placebo treatment groups

DNA methylation levels of 29 CpG units (formed by 40 CpG sites) in OPRM1 promoter 

region were compared between AD patients receiving NTX treatment and those AD patients 

receiving placebo treatment. As shown in Supplementary Table S1, none of the 29 CpG units 

had significant differences in their methylation levels between NTX and placebo treatment 

groups in ether AAs or EAs. In other words, these two groups of AD patients had similar 

DNA methylation patterns in their OPRM1 promoter regions before receiving NTX or 

placebo treatment.

Effect of individual CpG methylation on AD relapse by Bayesian logistic regression 
analysis

Methylation of CpG units, NTX treatment, and treatment-by-methylation interactions did 

not significantly affect the probability of relapse in either AAs or EAs (Tables 2 and 3). 

However, the effect of age differed between populations, with AAs showing no effect of age, 

while in EAs, the P values for age were < 0.05 in all 29 regression models, such that older 

EA subjects were less likely to relapse (−0.08<β<−0.07, 0.017<P<0.040) (Table 3). When 
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both AA and EA subjects were considered, no other variables other than age significantly 

affected the probability of AD relapse rate (Supplementary Table S2).

Identification of AD relapse predictors by Random Forest analysis

We used the Random Forest algorithm to ascertain the impact of 32 variables (race, age, 

NTX or placebo treatment, and 29 CpG units; all of the data were presented in 

Supplementary Table S3) on AD relapse risk. As shown in Figure 2, age had the highest 

importance to AD relapse. This finding was consistent with the output of the Bayesian 

logistic regression model, which showed that age was the only variable that significantly 

influenced the risk of relapse. Additionally, we used the Random Forest algorithm to select a 

group of variables from the above 32 variables that could predict relapse with the highest 

accuracy (or the lowest error rate). As indicated in Figure 3, the lowest prediction error rate 

(34%) [or the highest prediction rate (66%)] was achieved when the top five most important 

variables (age and methylation levels at Unit 3, Unit 8, Unit 14, and Unit 15) were used to fit 

the Random Forest model as predictors.

Discussion

Although NTX is FDA-approved for treating AD, the responsiveness of AD patients to NTX 

treatment is highly variable. Pharmacogenetic studies have investigated whether the 

heterogeneity in NTX’s treatment effects is due to variation in opioid receptor genes, but the 

findings have been inconsistent. The present study tested the hypothesis that DNA 

methylation patterns in the OPRM1 promoter region moderated AD patients’ response to 

NTX treatment. Our data did not reveal a significant effect of methylation of individual CpG 

units in the OPRM1 promoter region on relapse to heavy drinking after NTX or placebo 

treatment, although age and a group of CpG units may influence AD relapse in an 

integrative manner.

There are several possible explanations for the negative findings. First, our sample size was 

small. It provided limited statistical power to identify CpGs with a moderate effect on AD 

relapse. Second, cell heterogeneity from blood samples may bias the results. DNA 

methylation variation resulting from different proportions of blood cell types may mask the 

response difference among AD patients receiving NTX or placebo treatment. Recent studies 

have shown that peripheral blood DNA methylome profiles (or methylation levels of a set of 

CpGs in the genome) could be used as biomarkers to infer the proportions of different types 

of blood cells, including CD8+ and CD4+ T-lymphocytes, natural killer cells, B cells, 

monocytes, and granulocytes 41, 42. In future studies, when DNA methylome data are 

available for subjects included in the present study, we will be able to control for the 

potential cofounding effects of blood cell types by taking estimated cellular proportions into 

consideration. Third, although DNA methylation changes in blood can serve as useful 

biomarkers for health or disease status, DNA methylation patterns of genes in peripheral 

blood may be distinct from those in the brain. The μ-opioid receptor (coded by OPRM1) is 

primarily expressed in the brain, where it mediates the rewarding effects of opioids and other 

drugs of abuse by modulating the dopamine system 43. However, OPRM1 is also expressed 

in white blood cells, and peripheral blood OPRM1 DNA methylation levels are potential 
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biomarkers of AD severity and treatment outcome. Additionally, DNA methylation in the 

OPRM1 promoter region may not have a major regulatory effect on MOR expression in the 

brain, as demonstrated in the study by Knothe et al 22. Thus, there may not be a measurable 

effect of OPRM1 DNA methylation status on NTX treatment outcome.

It is intriguing that age had a significant effect on AD relapse in EAs, among whom older 

subjects had a lower relapse rate. Previous studies also demonstrated that older age was 

associated with better outcomes for alcohol and other drug addiction treatment (using non-

pharmacological therapies, such as supportive group therapy, education, relapse prevention, 

and family-oriented therapy) 44. Accumulating evidence suggests that DNA methylation 

changes are highly correlated with chronological age in human brains 45. Our finding 

presumably reflects the effects of aging on the epigenetic status of rewarding or addiction-

related genes, making older subjects more responsive to pharmacological treatment. 

Additionally, the interaction of age and genetic variants (e.g., OPRM1 SNP A118G) could 

influence the NTX treatment response. Thus, we genotyped A118G in EA AD patients. It 

showed that a greater proportion (25.0%) of older EAs (above the mean age of 50 years) had 

genotype A/G compared to younger EAs (less than 50 years old) (8.3%). However, further 

studies are warranted to validate the finding and explore the mechanism by which the effects 

of DNA methylation or genetic variation occur.

A major limitation of the present study is the lack of availability of blood for DNA 

extraction obtained after treatment. This would have allowed us to test another hypothesis, 

i.e., that NTX treatment alters the DNA methylation patterns of reward or addiction-related 

genes such as OPRM1, leading to altered expression of these genes and a higher level of 

responsiveness (or no relapse within 13 weeks) to NTX treatment. As shown in Table 1, 

some AD subjects did not relapse during the 13-week treatment period. It is thus of interest 

to understand why these AD subjects were more responsive to NTX treatment than others. It 

is unknown whether NTX or placebo treatment alters epigenetic status of genes (including 

OPRM1), resulting in a better outcome (or no AD relapse) after treatment. Follow-up 

epigenome-wide associated studies (EWAS) can determine whether DNA methylation 

patterns are changed in certain genes after NTX or placebo treatment. Additionally, it is 

unknown whether brain tissue OPRM1 promoter DNA methylation exerts a significant effect 

on AD relapse, but brain tissue sample are not accessible.

Efforts to improve the efficacy of pharmacotherapy for AD through the use of personalized 

approaches can help in avoiding the exposure to medications of patients who are unlikely to 

respond to them. One approach for realizing a precision approach to treating AD involves 

pharmacogenetic studies that can be used to select a subgroup of patients who are most 

likely to benefit from the treatment. Another approach involves pharmacoepigenetic studies, 

in which patients’ epigenetic status (e.g., DNA methylation levels) is used to match them 

with specific pharmacotherapies that optimize the response to treatment. Despite the lack of 

a significant finding of an epigenetic moderator of NTX response, the present study provides 

a useful initial effort and a model for subsequent research using this approach. In our future 

pharmacoepigenetic studies, we may consider subgrouping patients based on methylation 

levels (high vs. low) of specific promoter CpG sites (particularly those CpGs showing 

differential methylation in patients and located in transcription factor binding sites) before 
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treatment, and then we analyze whether treatment outcome is different between these two 

subgroups of patients. In this way, we can directly examine the impact of OPRM1 promoter 

CpG methylation on treatment outcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
44 CpG sites in the OPRM1 promoter region (734 bp).

Amplicon 1: 27 CpG sites (or 20 CpG units); Amplicon 2: 17 CpG sites (13 CpG units).
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Fig. 2. 
Importance of variables to relapse estimated by the Random Forest algorithm.

The plot shows 32 variables (age, race, naltrexone treatment, and 29 CpG units) on the Y-

axis, and their importance to relapse to heavy drinking on the X-axis. The variables are 

ordered top-to-bottom as most- to least-important to relapse to heavy drinking.
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Fig. 3. 
Out-of-bag (OOB) error rates versus numbers of most important variables to relapse 

included in the Random Forest prediction model.

The plot shows cumulative OOB error rates (on the Y-axis) as a function of numbers (on the 

X-axis) of most important variables (age, race, treatment, and 29 CpG units; ranked from 

most- to least-important to relapse to heavy drinking) included in the Random Forest 

prediction model.
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