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Abstract
The influence of Fe speciation on the decomposition rates of N2O over Fe–ZSM-5 catalysts prepared by Chemical Vapour 
Impregnation were investigated. Various weight loadings of Fe–ZSM-5 catalysts were prepared from the parent zeolite 
H-ZSM-5 with a Si:Al ratio of 23 or 30. The effect of Si:Al ratio and Fe weight loading was initially investigated before 
focussing on a single weight loading and the effects of acid washing on catalyst activity and iron speciation. UV/Vis spec-
troscopy, surface area analysis, XPS and ICP-OES of the acid washed catalysts indicated a reduction of ca. 60% of Fe loading 
when compared to the parent catalyst with a 0.4 wt% Fe loading. The TOF of N2O decomposition at 600 °C improved to 
3.99 × 103 s−1 over the acid washed catalyst which had a weight loading of 0.16%, in contrast, the parent catalyst had a TOF 
of 1.60 × 103 s−1. Propane was added to the gas stream to act as a reductant and remove any inhibiting oxygen species that 
remain on the surface of the catalyst. Comparison of catalysts with relatively high and low Fe loadings achieved comparable 
levels of N2O decomposition when propane is present. When only N2O is present, low metal loading Fe–ZSM-5 catalysts 
are not capable of achieving high conversions due to the low proximity of active framework Fe3+ ions and extra-framework 
ɑ-Fe species, which limits oxygen desorption. Acid washing extracts Fe from these active sites and deposits it on the surface 
of the catalyst as FexOy, leading to a drop in activity. The Fe species present in the catalyst were identified using UV/Vis 
spectroscopy and speculate on the active species. We consider high loadings of Fe do not lead to an active catalyst when 
propane is present due to the formation of FexOy nanoparticles and clusters during catalyst preparation. These are inactive 
species which lead to a decrease in overall efficiency of the Fe ions and consequentially a lower TOF.

Keywords  Nitrous oxide · Iron zeolites · Fe–ZSM-5 · N2O decomposition · Acid washing · Iron species · Chemical vapour 
impregnation · UV/Vis · XPS

1  Introduction

Nitrous oxide (N2O) is a highly potent greenhouse gas, hav-
ing a global warming potential of roughly 300, therefore the 
effect on the atmosphere is far more devastating than carbon 
dioxide [1–3]. N2O is produced by both natural and anthro-
pogenic sources [4–6]. There are many sources of anthro-
pogenic N2O such as sewage treatment, fuel and biomass 
combustion, industrial chemical processes, and contributions 
from the agriculture sector [4]. Agricultural processes lead 
to around 60% of the global emissions. The main industrial 

processes that lead to the formation of N2O such as adipic 
and nitric acid production [1], with adipic acid production 
leading to around 80% of the global industrial emission of 
N2O (~ 10% total) [6, 7]. There are also small industrial 
uses such as hospital and dental surgeries [8]. Therefore 
it is extremely important to decompose N2O before it is 
released into the atmosphere. Decomposition of N2O takes 
place through dissociation into O2 and N2 (Eq. 1, [9, 10]).

There are many types of catalysts that can be used for 
N2O decomposition including perovskites [11–15], ceria-
based catalysts [16–18], spinels [19–21] and iron contain-
ing zeolites [22]. In the latter case, H-ZSM-5 has been fre-
quently used as a support [23–25]. Xie et al. reported 100% 
conversion at 450 °C using 7.46 wt % Fe [26] while Wood 
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and co-workers [27] reported 84% conversion at 500 °C 
using an Fe/ZSM-5 catalyst with a loading of 0.57 wt%. 
Sobalik et al. showed that when using Ferrierite (FER) a 
Si:Al ratio of 8.5 outperformed Si:Al 10.5 when the same Fe 
loading is prepared for N2O decomposition [28]. Rauscher 
et al. reported that low Si:Al ratios are more effective for 
N2O decomposition catalysts [23]. Fe–ZSM-5 (Si:Al = 11.4) 
exhibited 95% conversion of N2O at 500 °C in contrast to Fe-
BEA (93) achieving just 20% conversion of N2O at 575 °C 
[29]. The work of both these groups show that Si/Al ratio 
is an important factor for activity of an N2O decomposition 
catalyst.

Furthermore, it was shown that zeolites with different 
framework structures can be used for the decomposition of 
N2O with MFI (ZSM-5), beta (BEA) and ferrierite (FER) 
zeolites acting as supports for Fe [29–31]. Jisa et al. reported 
that low loaded Fe-FER was the most active, achieving 85% 
conversion at 450 °C [32]. FER had the lowest Si/Al ratio 
(8.6) out of all the zeolites tested compared to 15.5 for BEA 
and 13.4 for MFI. Supporting the earlier findings that a low 
Si:Al ratio is necessary for high N2O conversion. As the 
active Fe site is considered to form on the Al moiety in the 
zeolite framework, low Si:Al ratio zeolites can facilitate a 
higher concentration of active species [26].

The rate-limiting step in the decomposition of N2O is typ-
ically the recombination of oxygen to form O2. Specifically, 
the dissociation of N2O on the active Fe species is facile and 
leaves an oxidised Fe active site. The surface oxygen must 
then recombine with another oxygen atom to form O2. It has 
been demonstrated that the addition of a reductant can facili-
tate the abstraction of oxygen from the oxidised active site, 
significantly increasing the observed rate of N2O decomposi-
tion at lower temperatures [27, 33–38]. Propane [26, 39–42] 
has been used as a reductant, in addition to ethane, methane 
and CO [26, 43–47].

Fe–ZSM-5 can be prepared by various ion-exchange 
methods, including via wet [48–51] or solid state [23, 50, 
52], or sublimation [28, 32, 53–56] methodologies. Wet 
ion exchange includes the use of solvents, while solid state 
includes solventless mechanical mixing. Sublimation makes 
use of low evaporation temperature salts, usually FeCl3, as 
precursors. One challenge with this preparation method is 
that Cl− ions tend to remain after sublimation and a post-
preparation washing step may be required. To combat this 
we have used a variation of this preparation method: chemi-
cal vapour impregnation (CVI). In this method, Fe(acac)3 
is used instead of FeCl3, as acetylacetonate precursors are 
easily removed under vacuum [57–59].

During the deposition of Fe on zeolites it is possible to 
form various types of Fe species such as framework Fe3+ 
(formed during isomorphous substitution), isolated Fe3+ or 
Fe2+ anchored to the zeolite framework by either Si–O–Fe 
or Al–O–Fe bridges, di-nuclear Fe–O–Fe species either in 

the framework or in the channels, oligomeric Fe oxo-spe-
cies, and both small nanoparticles and bulk FeOx particles 
[26, 59–61]. Determination of the active Fe species for N2O 
decomposition remains a challenge; thus far nano-particulate 
iron [26, 62] and extra-framework Fe have been suggested 
to catalyse the decomposition of N2O. However, most sug-
gest that extra framework Fe is the active species due to 
enabling the formation of α-oxygen, [38, 63–68] which is 
formed by decomposing N2O over reversible redox α-Fe 
sites that switch between Fe2+ and Fe3+ [69, 70].

Treatment of catalysts with acids was reported to increase 
both their activity and stability, due to the removal of specta-
tor Fe species (FexOy nano-particulates and clusters), with 
extended periods of time for acid washing not required to 
remove Fe species, with Fe being removed almost immedi-
ately [59]. Due to the stability of the zeolites, acid washing 
does not greatly affect the pore channels and new mesopores 
were not created. During mild acid washing only a small 
quantity of surface Al is removed [71]. This stability implies 
that only the Fe species present will be affected by the acid 
washing and the zeolite will remain unchanged [72]. Alter-
natively literature shows that steaming pre-treatments can 
be used to extract iron from the pores and into the extra-
framework sites [53, 73–76], however we will not consider 
this technique in this work.

In this work we have investigated the importance of dif-
ferent Fe species in Fe–ZSM-5 for the decomposition of 
N2O in the presence and absence of a reductant, propane. In 
addition to comparing different Fe loadings, we have evalu-
ated the efficacy of acid washing to increase the efficiency 
of the Fe in the active catalyst and we have used UV/Vis 
spectroscopy to identify the different Fe species.

2 � Experimental

2.1 � Catalyst Preparation

A series of Fe–ZSM-5 catalysts (0.4, 1.25, 2.5 wt%) were 
prepared by CVI following the procedure described by Forde 
et al. [58]. Prior to catalyst preparation, ZSM-5 (23) and (30) 
(Zeolyst, 2 g) were dried under vacuum, and then placed into 
a Schlenk flask and evacuated at room temperature using a 
vacuum line, followed by heating at 150 °C for 1 h under 
continuous vacuum to remove any surface water species. 
ZSM-5 (23 or 30) (Zeolyst, 0.975–0.996 g) and iron acety-
lacetonate Fe(acac)3 (Sigma Aldrich, 0.0253–0.1582 g) were 
placed into a glass vial and mixed by manual shaking. The 
obtained mixture was then transferred to a 50 mL Schlenk 
flask fitted with a magnetic stirrer bar and sealed. The flask 
was then evacuated at room temperature using a vacuum 
line followed by heating at 150 °C for 2 h under continuous 
vacuum conditions with stirring to induce sublimation and 
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deposition of the organometallic precursor onto the support. 
The flask was then brought up to atmospheric pressure with 
air and the sample removed and calcined at 550 °C in static 
air for 3 h.

Acid washing was performed by heating 10 v/v% 
HNO3(aq) (50 mL) to 50 °C, adding the catalyst (0.25 g) and 
stirring for 10 min. The solution was filtered and washed 
with deionised water (1 L g−1) followed by drying in an oven 
at 110 °C for 16 h. The samples obtained using this method 
were denoted as Acid Washed (AW).

2.2 � Catalyst Testing

All reactions were performed at atmospheric pressure in 
a continuous-flow fixed-bed reactor. A 35 cm length of 
1/4 in outer diameter stainless steel tubing was packed with 
0.0625 g of catalyst that was sandwiched between two lay-
ers of quartz wool. The reaction temperature was tested in 
the range 200–600 °C. The total flow for all reactions was 
100 mL min−1 (GHSV of 45,000 h−1) and the gas feed was 5 
v/v% N2O in He or 5 v/v% N2O, 5 v/v% C3H8 in He. All out-
going gaseous products were analysed online using an Agi-
lent 7890B Gas Chromatograph (GC) [columns: Hayesep Q 
(80–100 mesh, 1.8 m) MolSieve 5A (80–100 mesh, 2 m)] 
fitted with a thermal conductivity detector.

Here we define Turnover Frequency (TOF) based on the 
total moles of Fe present by ICP (Eq. 2) as it is a challenge 
to determine the concentration of surface active sites.

2.3 � Catalyst Characterisation

Diffuse reflectance UV/Vis spectra was collected using an 
Agilent Cary 4000 UV/Vis spectrophotometer. Samples 
were scanned between 200 and 800 nm (150 nm min−1).

X-ray photoelectron spectroscopy (XPS) was performed 
on a Thermo Fisher Scientific K-alpha+ spectrometer. Sam-
ples were analysed using a micro-focused monochromatic 
Al X-ray source (72 W) over an area of approximately 400 
microns. Data were recorded at pass energies of 150 eV for 

(2)

Turnover frequency(TOF) =
mol of N

2
O converted per second

total mol of Fe

survey scans and 40 eV for high resolution scan with 1 eV 
and 0.1 eV step sizes respectively. Charge neutralisation of 
the sample was achieved using a combination of both low 
energy electrons and argon ions. Data analysis was per-
formed in CasaXPS using a Shirley type background and 
Scofield cross sections, with an energy dependence of -0.6.

Nitrogen adsorption isotherms were collected on a Micro-
metrics 3Flex. Samples (0.050 g) were degassed (250 °C, 
9 h) prior to analysis. Analyses was carried out at − 196 °C 
with P0 measured continuously. Free space was measured 
post analysis with He. Pore size analysis was carried out 
using DFT (N2-Cylindrical Pores-Oxide surface) via the 
Micrometrics 3Flex software.

Inductively Coupled Plasma – Optical Emission Spec-
troscopy (ICP-OES) was performed by Exeter Analytical 
Services using HF digestion to get an accurate Fe loading. 
The sample was digested by Anton Paar Multiwave 3000 
microwave with nitric and HF acids—then the HF was neu-
tralised with the addition of boric acid. A reagent blank was 
carried out. An internal standard was added to the result-
ing solutions, and the blank and sample were run against 
Fe standards by ICP-OES using Thermo Fisher iCAP Duo 
7400.

3 � Results and Discussion

Although iron-containing zeolites catalyse N2O decompo-
sition, [24–27, 48–50, 72, 78] high reaction temperatures 
(> 450 °C) are typically required. The effect of varying the 
Si:Al ratio has been investigated previously [23, 29], the 
Fe:Al ratio is also an important parameter, as the maximum 
population of ɑ-Fe sites is directly proportional to the Al 
content of the zeolite [27, 50, 79]. Additionally, the presence 
of spectator or extraneous Fe species remains a challenge 
with respect to calculating real TOF values.

Fe–ZSM-5 Catalysts were prepared with Fe loadings of 
0.4 and 1.25 wt% with two different Si:Al ratios. It is clear 
that the lower Si:Al ratio exhibits higher relative activity 
(Table 1).The addition of propane enhances the decomposi-
tion of N2O by reducing the oxidised α-Fe sites that remain 
on the surface of the catalysts, preventing turnover of N2O 

Table 1   Influence of Fe:Al 
ratio on 0.4 wt% Fe and 
1.25 wt% Fe–ZSM-5 for N2O 
Decomposition both with and 
without propane present

Reaction Conditions: Total flow rate 100 mL min−1, 0.06 g catalyst, temperature range 400–600 °C, GHSV 
45,000 h−1, either 5 v/v% N2O in He or 5 v/v% N2O, 5 v/v% C3H8 in He

Catalyst Fe:Al ratio N2O conversion at 550 °C 
without propane (%)

N2O conversion at 
550 °C with propane 
(%)

0.4 wt% Fe–ZSM-5 (23) 0.072 20 90
0.4 wt% Fe–ZSM-5 (30) 0.092 12 81
1.25 wt% Fe–ZSM-5 (23) 0.224 35 81
1.25 wt% Fe–ZSM-5 (30) 0.288 29 68
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[27, 33–38]. Due to the higher activity of the Fe–ZSM-5 
(23) parent zeolite catalyst, further investigation was carried 
out on this Si:Al ratio zeolite [26].

In order to understand the effect of Si:Al ratio, UV/Vis 
spectroscopy of the various catalysts was performed (Fig. 1). 
When Fe is added to ZSM-5, four UV-active species can be 
differentiated. These absorb at: 200–250 nm (isolated Fe3+ in 
framework sites), 250–350 nm (isolated or oligomeric extra 
framework Fe species in zeolite channels), 350–450 nm (iron 
oxide clusters) and > 450 nm (large surface oxide species) 
[61, 80]. UV/Vis shows how higher Al content leads to high 
absorbance in the region 250–350 nm due to the presence of 
more extra-framework ɑ-Fe.

An additional Fe–ZSM-5 (23) catalyst was prepared with 
an Fe weight loading of 2.5% and contrasted to the 0.4 and 
1.25 wt% catalysts. Figure 2 (closed symbols) illustrates the 
conversion of N2O over the four Fe–ZSM-5 (23) catalysts 
across the temperature range of 400–600 °C. The increas-
ing weight loading of Fe in ZSM-5 increased the conver-
sion of N2O, up to ca. 70% conversion over the 1.25 wt% 
catalyst, compared to 40% conversion over the 0.4 wt% 
Fe–ZSM-5 catalyst. Increasing the Fe loading to 2.5 wt% 
did not increase the N2O conversion further (Fig. 2). The 
0.4% Fe catalyst exhibited limited activity despite the pres-
ence of active extra-framework ɑ-Fe species. Therefore, 
when N2O decomposition takes place at these sites oxygen 
recombination is limited due to the oxygen species proximity 

to combine to form molecular oxygen and, therefore, effec-
tively blocking active sites.

High loadings of Fe lead to a high proportion of active 
framework and extra-framework species and due to the 
increased density of these species, the rate of oxygen 
recombination is higher, leading to a higher conversion. 
UV/Vis spectroscopy (Fig. 3) shows that there are a number 
of distinct Fe species present in the high loaded catalysts, 
with both FexOy nanoparticle and cluster species present, 
indicating that not all the Fe is efficiently utilised. There-
fore, while a significant proportion of Fe is not necessarily 
active, there is a high concentration of extra-framework ɑ-Fe 
sites that can facilitate oxygen recombination and high N2O 
conversion.

When propane is added to the reaction feed-stream, the 
onset of activity shifts from 400 to 450 °C to a much lower 
temperature (Fig. 2 open symbols). In this context, propane 
acts as a reductant [26, 39, 40, 42, 81] and limits the forma-
tion of site blocking oxygen species on the surface of the 
catalyst. The rate-limiting step without propane is oxygen 
recombination. Propane can activate the oxidised α-Fe site 
forming CO and CO2, which regenerates the active site and 
allows the reaction to proceed [27, 33–36]. At lower tem-
peratures (< 500 °C) minor quantities of propene, ethene 
and ethane are produced, however, at higher temperatures 
the selectivity shifts to exclusively CO and CO2.

Comparing the reaction data (Fig. 2) to the UV/Vis 
spectroscopy (Fig. 3), it is possible to observe that the 
more active catalysts have a higher proportion of frame-
work and extra framework ɑ-Fe species. This is the case in 

Fig. 1   UV/Vis spectra of a series of Fe–ZSM-5 (23 or 30) catalysts 
and H-ZSM-5 support. Filled triangle framework Fe3+, filled dia-
mond extra framework species, filled circle FexOy clusters, filled 
square large FexOy species. a H-ZSM-5 (23), b H-ZSM-5 (30), c 
0.4 wt% Fe–ZSM-5 (23), d 0.4 wt% Fe–ZSM-5 (30), e 1.25 wt% Fe–
ZSM-5 (23), f 1.25 wt% Fe–ZSM-5 (30)

Fig. 2   The influence of Fe weight loading on N2O conversion over 
Fe–ZSM-5 catalysts. Closed symbols: N2O present 5  v/v% N2O in 
He, open symbols: N2O + Propane present: 5  v/v% N2O, 5  v/v% 
C3H8 in He, circle 0.4  wt% Fe–ZSM-5 (23), square 1.25  wt% Fe–
ZSM-5 (23), triangle 2.5 wt% Fe–ZSM-5 (23). Conditions; total flow 
rate 100 mL min−1, 0.06 g catalyst, temperature range 200–600  °C, 
GHSV 45,000 h−1
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the 0.4 wt% Fe–ZSM-5 catalyst, where UV/Vis spectros-
copy (Fig. 3) shows that framework and extra-framework 
species are present, with only a small absorbance due to 
FexOy nano-particles and clusters. By contrast, the poor 
activity of 1.25 wt% Fe–ZSM-5 correlates with the high 
proportion of nanoparticles and clusters of FexOy present, 

which limit the number of Fe ions available to form the 
active species.

Peneau et al. demonstrated that using dilute HNO3, it is 
possible to remove excess iron and spectator species from 
the catalyst, which was investigated for the selective oxi-
dation of ethane by H2O2 [59]. Here, 0.4 wt% Fe–ZSM-5 
(23) was identified as a suitable catalyst formulation for acid 
washing, due to the presence of extra-framework ɑ-Fe spe-
cies and minor levels of spectator FexOy nano-particulates 
and clusters. Previous work within the group has shown that 
it is difficult to distinguish between the Fe species present 
at higher weight loadings, therefore lower weight loadings 
were selected for acid washing to enable changes to be noted 
[82, 83]. After acid washing the calcined catalyst, ICP-OES 
analysis of the digested samples revealed that the weight 
loading had reduced to 0.16%. Figure 4a illustrates the 
activity of the as-prepared parent catalyst, the acid washed 
0.4 wt% Fe–ZSM-5 catalyst, a 0.16 wt% Fe–ZSM-5 (pre-
pared by CVI for comparison to the AW catalyst) as well as 
the analogous H-ZSM-5 catalysts, which were tested to con-
firm that the support alone was not active for the reaction. 
The 0.4 wt% Fe–ZSM-5 (23) sample has an N2O conversion 
of 40% at 600 °C, however, over the acid washed catalyst the 
conversion was lower at 600 °C at 25%.

UV/Vis Spectroscopy (Fig. 3) supports the hypothesis 
that the decrease in activity observed after acid washing 
was due to the removal of framework Fe3+ ions which are 
extracted and deposited onto the surface of the catalyst as 
nanoparticles of FexOy (270 nm). UV/Vis Spectroscopy 
of 0.16 wt% Fe–ZSM-5 suggests that the Fe is present as 
framework Fe3+ and extra-framework ɑ-Fe species only 

Fig. 3   UV/Vis spectra of a series of Fe–ZSM-5 (23) catalysts and 
H-ZSM-5 support. Filled circle framework Fe3+, filled diamond extra 
framework species, filled circle FexOy clusters, filled square Large 
FexOy species. a H-ZSM-5 (23), b H-ZSM-5 (23) AW, c 0.16  wt% 
Fe–ZSM-5 (23), d 0.4  wt% Fe–ZSM-5 (23), e 0.4  wt% Fe–ZSM-5 
(23) AW, f 1.25 wt% Fe–ZSM-5 (23), g 2.5 wt% Fe–ZSM-5 (23)

Fig. 4   a Influence of Fe loading and acid washing over Fe–ZSM-5 
catalysts for N2O conversion (closed symbols); Left pointed trian-
gle 0.16 wt% Fe–ZSM-5 (23), circle 0.4 wt% Fe–ZSM-5 (23), right 
pointed triangle 0.4  wt% Fe–ZSM-5 (23) acid washed, diamond 
H-ZSM-5 (23), inverted triangle H-ZSM-5 (23) acid washed. Con-

ditions: 5  v/v% N2O in He, total flow rate 100  mL  min−1, 0.06  g 
catalyst, temperature range 400–600  °C, GHSV 45,000  h−1. b N2O 
conversion with propane present; open symbols. Conditions: 5 v/v% 
N2O, 5 v/v% C3H8 in He total flow rate 100 mL min−1, 0.06 g cata-
lyst, temperature range 400–600 °C, GHSV 45,000 h−1
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(Fig. 3). The lower activity of this catalyst further suggests 
that the proximity of the Fe sites to each other is crucial to 
achieve high activity in N2O decomposition. When propane 
is present (Fig. 4b) however, the relative proximity of active 
sites does not affect activity as propane can abstract oxygen 
from a single oxidised Fe site.

UV/Vis Spectroscopy was further used to understand the 
contrasting influence of the Fe loading concentration on N2O 
decomposition with and without propane. The spectrum of 
H-ZSM-5 (23) shows that framework Fe3+ species are pre-
sent in the parent zeolite due to the absorbance at 220 nm 
(Fig. 3) and are likely to be impurities introduced during 
manufacture [84]. However, acid washing the H-ZSM-5 has 
the effect of re-dispersing the Fe species and forming Fe 
with extra-framework character. The 0.16 wt% Fe–ZSM-5 
catalyst appears to possess both framework (< 250 nm) 
and extra-framework Fe (280 nm) only. Both the 1.25 wt% 
Fe–ZSM-5 and 2.5 wt% Fe–ZSM-5 catalysts contains all 
species present, with framework (< 250 nm), extra-frame-
work Fe (280 nm), iron oxide nanoparticles (400 nm) and 
large clusters of iron oxide (> 450 nm). The spectrum of 
0.4 wt% Fe–ZSM-5 (23) shows that there are three species 
of Fe present, framework Fe3+, extra-framework ɑ-Fe and 
large FexOy clusters. In contrast, the spectrum of 0.4 wt% 
Fe–ZSM-5 (23) acid washed sample shows that there are all 
four species of Fe present. Most notably, a reduced absorb-
ance due to extra- framework ɑ-Fe being extracted and an 
increased absorbance from deposited FexOy nanoparticles 
and clusters.

Further characterisation was performed on the 0.4 wt% 
Fe–ZSM-5 and acid washed samples with XPS (Table 2). 
XPS measurements revealed a significant loss of Fe from 
the surface of the catalyst following acid washing, as the 
atomic % of Fe dropped from 2.02 to 0.28%, in addition to a 
decrease in the intensity of the Fe peak (Fig. 5). Considera-
tion of the surface and bulk Fe content, as determined using 
XPS and ICP-OES showed a drop in the surface:bulk Fe 
ratio after acid washing (5.05 and 1.75 for the as-prepared 
and acid washed 0.4 wt% Fe–ZSM-5 catalysts, respectively). 
This confirmed that Fe was preferentially removed from the 

surface of the catalyst rather than within the micro-porous 
channels. Furthermore, XPS showed that the binding energy 
of Fe is 711 eV in the calcined and acid washed catalysts, 
this alongside the satellite at 719 eV indicates that there is 
Fe3+ species present [85, 86]. After the addition of iron to 
the ZSM-5 the binding energy of both the Al and Si shift to 
slightly higher binding energies. Shifts in the Al spectrum 
from 102.9 eV in ZSM-5 to 103.4 eV in the calcined and 
acid washed catalyst, with Si shifting from 74.1 to 74.9 eV 
were observed in both catalysts. This shift to a higher bind-
ing energy indicates that Fe has substituted into the lattice, 
[87–89] and corresponds with the UV/Vis spectroscopy as 
there is a larger absorption in the framework Fe3+ region 
indicating that Fe has substituted into the framework.

Surface area measurements for all catalysts remained 
constant at around 430 m2 g−1. This is consistent with the 
parent zeolite, which has a surface area of 423 m2 g−1. The 
micropore volume of H-ZSM-5 (23) is 0.167 cm3 g−1, this 
varies by ± 0.003 cm3 g−1 when iron is added and calcined 

Table 2   Surface composition, Fe binding energies, surface area and micropore volume of a series of 0.4  wt% Fe–ZSM-5 (23) catalysts and 
H-ZSM-5 (23) support as reported by XPS analysis. Degas conditions—9 h at 250 °C prior to analysis

Catalyst Al 2p (at.%) Na 1s (at.%) O 1s (at.%) Si 2p (at.%) Fe 3p (at.%) Fe binding 
energy (eV)

Fe satellite 
binding energy 
(eV)

Surface 
area 
(m2 g−1)

Micropore 
volume 
(cm3 g−1)

H-ZSM-5 (23) 3.17 0.41 62.52 33.90 – – – 423 0.167
0.4 wt% Fe–

ZSM-5 (23)
3.77 0.12 49.35 44.74 2.02 711.2 719 437 0.169

0.4 wt% Fe–
ZSM-5 (23) 
AW

3.22 0.28 49.87 46.63 0.28 711.0 719 428 0.164

Fig. 5   XPS data of the Fe region of 0.4 wt% Fe–ZSM-5 (23) calcined 
and acid washed
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and then acid washed, (Table 2). The consistency of surface 
area and micropore volume during the catalyst preparation, 
calcination, and acid washing indicates that H-ZSM-5 (23) 
is stable under the pre-treatment conditions.

Due to the complexity in resolving the active Fe species, 
the TOF over the catalysts samples was calculated for N2O 
decomposition (Fig. 6a) using the total moles of Fe pre-
sent in the sample. The low loaded Fe–ZSM-5 sample with 
0.16 wt% Fe achieved a TOF of ca. 3.99 × 103 s−1 at 600 °C. 
The TOF of the acid washed H-ZSM-5 catalyst at 600 °C 
is an order of magnitude greater than the Fe based catalyst, 
when propane is present at 600 °C (Fig. 6b). This is due 
to the zeolite achieving 52% conversion (Fig. 6b) and only 
having trace amounts of iron present (245 ppm) typically 
in framework positions. This results in an extremely high 
TOF based on the ppm of iron present, however in reality 
a very low yield of nitrogen was observed. The activity of 
the H-ZSM-5 after acid washing is due to the formation of 
active extra-framework ɑ-Fe from Fe that has been removed 
from the framework [63, 64, 90]. The TOF of the acid 
washed catalyst was calculated to be 0.94 × 103 s−1, which 
compares to 0.69 × 103 s−1 achieved over the parent catalyst 
at 600 °C (Fig. 6a). When comparing the activity of the 
parent and acid washed catalyst in the presence of propane, 
the difference in activity is less significant and at higher 
temperatures (> 550 °C) the activity is comparable: both 
catalysts achieved 95% N2O conversion at 600 °C (Fig. 4b). 
In terms of TOF, the activity of the acid washed Fe–ZSM-5 
catalyst was two and a half times that of the calcined equiva-
lent catalyst (Fig. 6b). However, the TOF over the 0.16 wt% 
Fe–ZSM-5 catalyst is ca. 8.5 × 103 s−1 at > 550 °C, with 

propane present. Park et al. reported a TOF of 1.8 × 103 s−1 
for N2O decomposition at 550 °C using 1.96 wt% Fe–ZSM-5 
(27) [50] compared to 2.59 × 103 s−1 achieved by 0.16% 
Fe–ZSM-5 (23) at 550 °C under similar conditions, demon-
strating the superior activity of the catalyst prepared herein.

4 � Conclusions

At low Fe loadings, Fe–ZSM-5 (23) catalysts prepared 
by CVI have two species of Fe present, Framework Fe3+ 
and isolated extra-framework FexOy in the pores, as shown 
by UV/Vis spectroscopy. However, when high-loading 
Fe–ZSM-5 is prepared by this method there are two addi-
tional species of Fe present: FexOy nanoparticles and large 
clusters. The species of iron present in low loaded catalysts, 
framework and extra-framework Fe, are the active species 
for N2O decomposition, which lead to high conversion when 
propane is present, however without propane the activity of 
these catalysts is limited by slow oxygen desorption, due 
to the low proximity of active Fe sites. Therefore, the oxy-
gen desorption step becomes rate limiting. At higher weight 
loadings with only N2O present the activity of the catalyst 
is increased as the density of the active sites increase, there-
fore, increasing the rate of oxygen desorption. When acid 
washing is performed it is not possible to selectively remove 
the FexOy nanoparticles and clusters, but instead extra-
framework Fe is extracted from the pores and deposited on 
the surface, leading to a decrease in conversion, but increase 
in TOF.

Fig. 6   a TOF of N2O decomposition over a series of Fe–ZSM-5 cat-
alysts that have been calcined or acid washed, closed symbols. Left 
pointed triangle 0.16 wt% Fe–ZSM-5 (23), circle 0.4 wt% Fe–ZSM-5 
(23), square 1.25 wt% Fe–ZSM-5 (23), triangle 2.5 wt% Fe–ZSM-5 
(23) right pointed triangle 0.4  wt% Fe–ZSM-5 (23) AW. Condi-

tions: 5 v/v% N2O in He, total flow rate 100 mL min−1, 0.06 g cat-
alyst, temperature range 400–600  °C, GHSV 45,000  h−1. b TOF of 
N2O decomposition with propane present, open symbols; Conditions: 
5 v/v% N2O, 5 v/v% C3H8 in He, total flow rate 100 mL min−1, 0.06 g 
catalyst, temperature range 400–600 °C, GHSV 45,000 h−1
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