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Abstract

Although genetics shapes our sense of taste to prefer some foods over others, taste sensation is 

plastic and changes with age, disease state, and nutrition. We have known for decades that diet 

composition can influence the way we perceive foods, but many questions remain unanswered, 

particularly regarding the effects of chemosensory plasticity on feeding behavior. Here, we review 

recent evidence on the effects of high-nutrient diets, especially high dietary sugar, on sweet taste in 

vinegar flies, rodents, and humans, and discuss open questions about molecular and neural 

mechanisms and research priorities. We also consider ways in which diet-dependent chemosensory 

plasticity may influence food intake and play a role in the etiology of obesity and metabolic 

disease. Understanding the interplay between nutrition, taste sensation, and feeding will help us 

define the role of the food environment in mediating chronic disease and design better public 

health strategies to combat it.

Introduction

‘…having bowed to the inevitability of the dictum that we must eat to live, we 

should ignore it and live to eat…’ – M.F.K. Fisher, An Alphabet for Gourmets

The chemosensory system is the key to unlock many of life’s daily pleasures: the complexity 

of chocolate, the nuttiness of aged cheese, or the sweetness of fruit. In particular, the sense 

of taste is critical to the detection of palatable qualities in food, which is why it plays such 

an important role in food intake and body weight. The preference for some taste qualities 

over others, such as sweetness over bitterness, is largely genetically encoded, likely the 

result of our ancestors’ adaptive association of taste cues with good experiences such as 

nutrient density, or bad ones, like malady and death [1]. However, many other taste 
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preferences, such as our liking for coffee or vegetables, are not innate, and are instead learnt 

through experience [2]. Thus, the taste sensations of animals exist in this narrow space 

between nature and nurture, shaping their likes, loves, and dislikes. Overlaid on this, is the 

fact that exposure to different foods can also reshape taste sensation. Studies in humans, 

rodents, and insects have found that the sensitivity (see Glossary) and intensity of taste 

sensation changes with diet composition [1]. For example, insects feeding on bitter food 

sources downregulate the perception of bitterness [3,4] and humans eating low-sodium diets 

over time show increased preference for lower concentrations of sodium [5]. Thus, the 

chemosensory system is plastic and able to tune its receptive properties to the dietary 

environment. This plasticity of the taste system – a property shared by many sensory 

apparatuses – allows animals to detect and select food sources in a range of ever changing 

dietary environments that may be quite different from the original ecological niche in which 

the sensory system developed and evolved.

Given the importance of taste in feeding behavior, a question that immediately arises is how 

this diet-dependent chemosensory plasticity influences food preference, choice, and overall 

energy intake. Indeed, changes in the sensation and perception of the orosensory properties 

of food could profoundly alter eating habits in ways that influence weight gain and the risk 

of metabolic disease. This question is particularly relevant in the current food environment, 

since manufactured and processed foods contain high amounts of salt, sugar, and fat that 

appeal to our preferences and also reshape the way we taste (and likely the way we feel) [6–

8]. What is then the interplay between diet exposure, chemosensory plasticity, and eating 

behavior? Here, we review the evidence for how diet exposure alters taste sensation and 

perception and discuss the potential molecular and neural mechanisms through which this 

occurs. Since the effects of dietary fat and salt on taste have been already reviewed [9,10], 

we primarily focus on the role of dietary sugar in sweetness perception. We report the 

findings from recent studies in humans, rodents, and invertebrates, discuss open questions 

and future directions, and propose ways in which diet-induced chemosensory plasticity 

could affect feeding behavior and impact the risk for metabolic disease.

Added Sugar

Sugar is a naturally occurring component of many foods, such as fruit, that increases their 

nutrient properties and provides pleasant sensory qualities. However, sugar is also added to 

foods in the forms of syrup or powder during their processing and preparation. Because 

sugar has Food and Drug Administration (FDA) generally recognized as safe (GRAS) status, 

there is no limitation for sugar content in foods, other than current good manufacturing 

practices (https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?

fr=184.1854). The lack of recognized standards for sugar content in food, together with the 

fact that flavor is the primary driver of eating choices in consumer surveys (https://

foodinsight.org/2020-food-and-health-survey), has led to high levels of added sugar in food. 

In the USA, ~80% of grocery store foods contain added sugar [11] and food deserts in rural 

and urban areas make access to unprocessed food challenging [12,13]. Worldwide, added 

sugar consumption is higher than that recommended both among adults and children 

[14,15], and even countries with food insecurity face the double burden of malnutrition, as 

many of the foods available are processed, nutrient poor, and high in added sugar and fat 
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[16,17]. Added sugar is associated with higher caloric intake [14,18–20,97], weight gain, 

obesity [21,22], and a whole host of metabolic-related diseases, from diabetes and heart 

diseases to cancer and neurodegeneration [14,23]. Given its prevalence in our food supply 

and its concerning effects on our bodies, understanding how high levels of sugar in our diets 

affect taste sensation and feeding behavior is paramount to design public health 

interventions to curb the spread of metabolic disease.

Diet and Chemosensory Plasticity

Studies from humans to insects have shown that diet can shape flavor preferences and 

potentially skew food choice. The best understood example of diet-induced taste plasticity in 

humans is that of salt, where a gradual reduction in the sodium content of the diet led to 

higher perceived intensity and preference for lower salt concentrations [5,24,25], while an 

increase in dietary salt intake shifted the concentrations for maximum pleasantness upward 

[26]. Similarly, consumption of a high-fat diet has been linked to a decrease in fat sensation 

and higher preference for fatty foods [10,27,98]. Thus, it is reasonable to hypothesize that 

the levels of dietary sugar may similarly influence sweet taste.

There are a few challenges with tackling this question in the context of human daily diets. 

First, it is hard to accurately quantify total amounts of dietary sugar in human diets. Sugar is 

a naturally occurring component of foods, but also a food product (added sugar) that is listed 

under dozens of different names and does not have a percent daily recommended dose in 

food labels [28,29] (although recently food labels carry the ‘added sugar’ line). Second, 

sweetness in food comes not only from sugar, but also from noncaloric sweeteners, so the 

sources of sweetness have both caloric and noncaloric value, which complicates the analysis. 

Third, studies that investigate the effects of high sugar exposure in the medium and long 

term in humans are potentially unethical, because high levels of caloric sweeteners 

contribute to severe metabolic consequences. Finally, the anatomy of the mammalian taste 

system is complex, and human studies are limited to measuring taste sensation and 

preference using psychophysical and hedonic scales (Boxes 1 and 2), which reveal little 

about the underlying neural and molecular mechanisms at play. Together, these points make 

assessing the overall impact of high sugar diet in humans difficult. Some of these challenges 

can be tackled in laboratory-based studies, where sugar types and levels can be controlled by 

researchers. Others, such as the questions of exposure and mechanisms, are better addressed 

with the use of different animal models which offer different approaches and advantages 

(Boxes 1 and 2). We review human and animal studies (Table 1), showing how addressing 

experimental points across organisms leads to an integrated understanding of diet and 

chemosensory plasticity.

Most laboratory studies in humans have studied the impact of sugar levels on taste by 

replacing it with other macronutrients, or decreasing overall calorie intake in the long or 

short term. In a hallmark study using a randomized clinical trial, Wise and colleagues [30] 

placed human subjects on a reduced-sugar diet for 2 months, substituting calories from sugar 

with fat, proteins, and complex carbohydrates. The authors found that these individuals had 

higher intensity ratings for sweetness by the general Labeled Magnitude Scale (gLMS), 

uncovering a negative association between sugar levels and sweetness intensity. Other 
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studies also support this idea, showing that sweet taste sensitivity increased when sugar 

levels were reduced by fasting and caloric restriction in lean [31] and obese adult subjects 

[32,33,99], but not in children with high BMI [34]. Thus, similar to salt, there appears to be 

a strong relationship between lower sugar levels in the diet and an increase in intensity and 

sensitivity for it.

Conversely, higher levels of dietary sugar may lead to a decrease in the perception of 

sweetness. Indeed, dietary intake studies indicate that higher consumption and frequency of 

sugar intake from baked goods, sweetened beverages, and convenience foods were 

associated with lower sweet taste intensity by gLMS [35,36] and sensitivity (recognition 

threshold) [37] (Box 2). A strong negative relationship between sweet taste intensity 

(measured by recalled ratings) and sweetened beverage consumption has also been described 

[38]. These findings are in line with a controlled dietary intervention study which found 

concentration-specific decreases in sweet taste intensity (by gLMS) and pleasantness when 

the subjects’ diet was supplemented with a sweetened soft drink for 1 month [39]. Research 

comparing sweetness taste thresholds in populations with different levels of sugar in the 

diets (i.e., rural vs urban) has also pointed to a generally inverse correlation between dietary 

sugar and sweet taste sensitivity [31–33]. Together, these studies have suggested that the 

sensation and preferred levels of sweetness may depend on a person’s diet.

Studies in animal models have helped substantiate this idea. First, as in human studies [30], 

consumption of a reduced-sugar diet led to an increase in sensitivity of the gustatory cells 

and higher proboscis extension response (PER; see Boxes 1 and 2 for anatomy and assays) 

to lower concentrations of sweet in Drosophila melanogaster flies [40]. Conversely, exposure 

to a high-sugar diet (10, 20, and 30% sucrose, glucose, or fructose) resulted in lower taste 

sensitivity and intensity (assayed by food detection tests and PER) after 3–7 days, and these 

changes in taste sensation were independent of weight gain [20,41]. A decrease in sweet 

taste responses was specific to caloric sugars and did not occur with dietary supplementation 

of the noncaloric sweetener sucralose [20]. These alterations in sweet taste were due to 

changes in the responsiveness of the sweet taste receptor neurons to sweet stimuli as 

measured via extracellular recordings of the sensilla stimulated with sucrose [20,40]. 

Moreover, in vivo imaging of the sweet taste neurons presynaptic terminals (which synapse 

in the brain) showed a decrease in calcium responses [20] and vesicular release [42] (for 

anatomy, see Box 1). Together, data from insects using behavioral assays of taste sensitivity 

and intensity, electrophysiological recordings, and in vivo imaging argues that dietary sugar 

content bidirectionally shapes the way animals taste sweet.

Although the dietary manipulations in rodent models are not limited to just increasing and 

decreasing sugars, they also support this idea. First, rats fed a high-sucrose liquid or dry diet 

(30% sucrose in addition to no-sucrose chow or a 66.6% kcal sucrose chow, respectively) for 

40 days had lower chorda tympani (CTs; Boxes 1 and 2) responses to 1 M sucrose [43]. 

Consistent with this, rats fed a high-fat and high-sugar diet (45% fat and 17% sugar) for 8 

weeks presented dulled nucleus tractus solitarius (NTS; Boxes 1 and 2) responses to taste 

that included lower magnitude and duration and longer latency to sweet solutions and 

naturalistic taste stimuli [44]. However, these changes seem to require an extended exposure 

to dietary sugar because previous work reported an increase in CT responses to sucrose and 
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no changes in the NTS responses following a short, 3-day access to a high-energy diet (45% 

fat and 17% sugar) [45] or to a 0.5 M sucrose solution [46], respectively. These findings are 

especially interesting when compared with those of two studies in which mice fed a high-fat 

diet (60% fat and 22% carbohydrates) for 8 weeks showed a decrease in the number of taste 

buds responsive to sweet stimuli (saccharin and Acesulfame K) and in the amplitude of their 

calcium responses measured ex vivo with calcium-sensitive dyes [47,100]. As shown in 

genetic studies in D. melanogaster [20], some of these changes in responsiveness occurred 

independently of diet-induced obesity [100]. Importantly, in rodents and flies, these 

physiological alterations were accompanied with behavioral changes in licks, feeding 

behavior, and food preference [20,47,48,44,100].

Together, evidence from flies and rodents suggest that the levels of sugar in diet can directly 

reshape the gustatory system and affect the detection, transduction, and processing of 

sweetness, impacting taste sensation and food preference. However, the amount of sugar in 

the diet, the content of other synergistic tastants like fat, and the length of exposure seem to 

be critical factors in the reshaping of sweet sensation. This may help explain conflicting 

evidence from previous work on changes in taste function with obesity in humans, where 

high body mass index (BMI) has been associated with an increase in sensitivity and 

intensity [49–51], a decrease [39,52–58], or no changes [59,60]; while in these studies diet 

was not investigated, it may have played a role in the results.

Mechanisms of Diet-Induced Chemosensory Plasticity

In the human salt studies, changes in salt concentration pleasantness and perceived intensity 

only occurred when subjects were given extra salt in their food, rather than supplemented 

with untasted salt tablets [26]. This line of evidence suggests that the taste system has to be 

engaged for the effects of diet to manifest. This question has not been addressed in animal 

studies, which have instead investigated changes in the expression of genes important for 

taste function [20,47,48,44,100] and changes in the anatomy of the taste system with diet. 

Several experiments found that the mRNA levels of α-gustducin and phospholipase C-β2 
(PLC-β2) were decreased in mice fed a high-fat diet [47,100,101]. This result is interesting 

when compared to human studies that measured lower expression of PLC-β2, transient 
receptor potential M5 (TRPM5) and the taste 1 receptor member 2 (TAS1R2) in the 

fungiform papillae of subjects with obesity [56], and an increase in DNA methylation at 

these genes from blood samples of people with high BMI [61]. However, the diet of humans 

was not monitored [56,61]). In terms of anatomical changes, three studies observed no 

changes in the number of taste buds and taste cell types in rats [43] fed sucrose or mice fed 

high-energy diets [47,100]; however, two studies from a separate group reported a decrease 

in the number of circumvallate and fungiform papillae and in the markers of taste receptor 

cell (TRC) proliferation in mice fed high-fat diets ([62], 2020), although the latter was 

attributed to inflammation due to obesity.

Research in D. melanogaster flies, where the genetic dissection of molecular mechanisms is 

more amenable, has uncovered several conserved avenues of investigation. Our group 

identified the hexosamine biosynthesis pathway – a signaling pathway involved in the 

pathophysiology of metabolic disease in mammals – as the molecular link between high 
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sugar intake and the responsiveness of the sweet gustatory neurons [20]. Specifically, we 

found that high levels of sugar enhance the activity of the enzyme O-GlcNAc transferase, 

which resulted in lower responses of the taste cells to sweet. Recently, our group also 

mapped the transcriptional and chromatin changes that occur with high levels of dietary 

sugar in the sweet taste cells. We discovered that the conserved gene silencing Polycomb 
repressive complex 2 mediates the effects of the dietary environment on taste function by 

decreasing the expression of developmental genes required to mature and wire the taste cells 

[41]. There were no changes in the number of sweet TRCs in flies [20]. Another group also 

identified transcription-based mechanisms based on the conserved peroxisome proliferator-
activated receptor γ coactivator 1α (PGC1α) regulators for sugar sensitivity in flies 

deprived of sugar [40].

Converging evidence from human, rodent, and insect molecular and cellular studies hints 

that sugar and high-energy diets shape taste function via changes in gene expression initiated 

by diet, and by decreases in taste stem cell division mediated by inflammation due to 

obesity.

Diet-Dependent Chemosensory Plasticity, Feeding Behavior, and Obesity

Data from animal models and humans suggest that dietary exposure to high sugar, salt, or fat 

shifts preference to higher concentrations [5,20,26,27,40,41,44,47,63], which could bias 

organisms towards the selection of foods with higher levels of these compounds (Figure 1, 

Key Figure). Because these foods are more calorically dense, this could promote weight gain 

and metabolic disease, which may further disrupt chemosensory and reward circuits to 

reinforce their selection. Two studies in flies also showed that preventing the diet-dependent 

dulling of taste protected animals from overfeeding and weight gain [20,41], showing that 

chemosensory plasticity causes changes in feeding behavior in this model organism.

In addition to a shift in preference, changes in responsivity of the gustatory system could 

play a role in food intake and obesity by disrupting sensory associations. Sensory signals 

function as cues that predict their filling power [64–66] and slow down the meal episode 

before nutrient signals consolidate satiety [67], a phenomenon known as sensory-enhanced 
satiety [64]. Sensory intensity is positively correlated with food-satiating power [66,68]. 

One way in which a decrease in the intensity of taste sensation could lead to higher feeding 

is an impairment in sensory satiety, which would occur if the prediction about the sensory 

cue is not updated. In this case, the sensory cue (sweetness) would predict a lower caloric 

density than it used to, prompting the animal to extend the meal episode to match its 

expected energy needs. Variations from expected taste signals activate reward (ventral 

striatum) and flavor processing areas (anterior dorsal insula) in the human brain [69], which 

typically results in updated predictions about the sensory cue value. However, reinforcement 

learning, and particularly the negative outcome learning that could occur when taste 

sensation changes, is impaired in humans with obesity [70] and rats fed a cafeteria diet [71], 

and these rodents show attenuated sensory satiety [42,71]. Daily consumption of ice cream 

is associated with lower activity of the striatum and insula to milkshake receipts in humans 

[72]: the dulling of the chemosensory system to sweet and/or fatty stimuli could contribute 

to this phenotype. To this point, a recent study from our laboratory found that in D. 
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melanogaster deficits in the transmission of the taste signal out of the TRCs led to decreased 

and delayed processing of sweetness by dopaminergic neurons, which impaired with satiety 

and caused higher food intake [42].

Finally, diet-dependent chemosensory plasticity could also influence food intake by falsely 

amplifying the energy reward from the food. Studies in humans [73], rodents [74], and flies 

[75] have shown that a mismatch between sensory cues about energy and the energy 

acquired from food alters the reinforcing properties of the food and promotes intake. A 

mismatch between a sensory cue, diminished by diet, and the predicted energy content, 

would result in the animal receiving a greater nutrient reward than expected. This higher 

expectation would increase the strength of the sensory cue in future meals (incentive 
sensitization) and sensitize animals to sugar, prompting increased food intake. This 

hypothesis is in line with a vast number of experimental results that show higher responses 

to cue presentation with high energy diet and obesity [70,76,77].

Concluding Remarks and Future Perspectives

Converging evidence suggests an inverse relationship between sugar levels in diets and 

sweet taste sensation. In particular, data from animal models argue that sugar, fat, and high-

energy diets remodel the chemosensory system at the level of the taste receptor cells, the 

sensory neurons, and the circuits processing taste in the brainstem and the central brain. In 

addition to their direct effects on the sensory system, high-energy diets (sugar, fat, or a 

combination of both) can also exacerbate taste dysfunction by promoting weight gain, 

obesity, and inflammation. While the mechanisms are still unclear, studies suggest this 

occurs via changes in gene expression initiated by diet, and by decreases in taste stem cell 

division mediated by inflammation due to the obese state (Outstanding Questions). Of note, 

our recent discovery that in flies sugar metabolites epigenetically reprogram the expression 

of neurodevelopmental pathways responsible for the wiring of the sensory cells and nerves 

provides an important starting point to study effects of diet on the mammalian taste system. 

Finally, apart from work in invertebrates in which a dulling of sweet taste causes lower 

satiation, higher food intake, and weight gain [20,41,42], we still know little about how diet-

dependent chemosensory plasticity influences food preference, choice, and intake in 

mammals. Studies that use neuro-, chemo-, and optogenetic tools, similar to those used in D. 
melanogaster, will allow researchers to directly assess the contribution of taste plasticity to 

feeding behavior and experimentally test the model proposed in Figure 1.

In conclusion, sugar content, and high-energy diets more broadly, can alter taste sensation at 

the molecular, neural, and behavioral levels, both directly and indirectly. However, the 

majority of these findings comes from animal models, and thus clinical studies that measure 

sweet taste plasticity in response to controlled dietary sugar levels in humans are essential. 

In particular, given the role taste plays in feeding behavior, research on the interplay between 

nutrition and sensory neuroscience will be a key foundation to design public health 

strategies [78] to reduce the levels of salt, sugar, and fats in our diets and curb the spread of 

metabolic disease.
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Glossary

Body mass index
an approximate measure of body fat that incorporates height as well as weight

Chemosensory plasticity
changes in the chemosensory (taste and smell) cells that may impact taste sensation and 

preference

Chorda tympani
nerve tract (part of CN VII) that carries taste information from the tongue

Diet composition
ratio of macromolecule components in ingested food

Incentive sensitization
increased drive, or wanting, for something following successive exposures to it; usually used 

in the context of drug abuse

Intensity
a perceived tastant quality; higher tastant concentrations correlate with greater perceived 

intensities

Nucleus of the tractus solitarius
located in the hindbrain, it is the site of the first synapse for taste information from the 

tongue

Perception
higher-order neuronal response to a tastant, often accompanied by conscious, qualitative 

recognition; can be inferred in nonhuman species

Peroxisome proliferator-activated receptor γ coactivator 1α
a conserved transcriptional coactivator that regulates metabolism in response to 

physiological stimuli

Phospholipase C-β2
key component of a signaling cascade downstream of the TAS1R2/TAS1R3 activation; 

induces an increase in cytosolic calcium levels to activate TRPM5

Polycomb repressive complex 2
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a conserved chromatin silencing complex that represses gene expression and writes stable 

epigenetic memories

Proboscis extension response
an assay that measures an insect’s innate response to stimulation of its taste organs by 

desirable compounds

Satiety
a physiological state lacking hunger drive; often achieved at the end of a meal

Sensation
a broad term that encompasses both the immediate sensory stimulation of the taste cells and 

the central processing of the taste information

Sensitivity
degree of sensation or perception in a taste system evoked by a tastant; a system with high 

sensitivity will respond to lower tastant concentrations

Sensory enhanced satiety
a modulation of satiety driven by sensory experience

Subesophageal zone
the region of the insect brain that receives peripheral taste inputs

Taste receptor 1 member 2
required in mammalian taste receptor cells for detection of sweet (heterodimer with 

TAS1R3) and umami (homodimer) compounds

Transient receptor potential channel M5
activated by PLCβ activity
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Highlights

Taste sensation varies with age, disease state, and environmental exposure. Emerging data 

from animal models suggest that diet composition, particularly the levels of sugar and fat, 

alter sweet taste sensation to influence feeding behavior and the risk of metabolic disease.

Diet composition and obesity contribute to different aspects of chemosensory plasticity.

Consumption of high sugar and/or high-fat diets reshapes the transcriptome and 

epigenome of the taste cells and nerves and dulls their responsiveness to stimuli.

Sugar levels in the diet also affect taste sensation in humans, but more research is needed 

to understand the impact of high sugar intake on taste and feeding.
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Outstanding Questions

How do sugary and high-energy diets change the expression of genes necessary for sweet 

sensation in TRCs? One possibility is that the levels of sugar and its byproducts are 

directly coupled to transcriptional mechanisms in the TRCs, since metabolites can 

influence chromatin state and gene expression and the levels of sugar modulate pathways 

that post-translationally modify histones and other cellular proteins with acetylation, 

methylation, and GlcNAcylation or directly methylate DNA or RNA. A second 

possibility is that the metabolic side effects of sugar and high-energy diets, such as 

endocrine dysregulation and inflammation, could also impact gene expression, signaling 

pathways, and stem cell renewal, and hormonal signals, which are known to influence 

taste function.

Are disruptions in taste temporary, or do they persist upon shifts in the dietary 

environment, as work from insects indicates? The recent discovery that dietary 

metabolites engage neurodevelopmental programs to rewrite and rewire the adult taste 

system provides a mechanism to induce lasting effects in the taste cells or sensory nerves.

What is the impact of alterations in the TRCs or the sensory nerves on the neural 

processing of taste, flavor, and reward in the brain? We do not know if the changes in the 

NTS of rats on high-energy diets are due to plasticity in the TRCs and the CT nerve, or 

the result of cell-autonomous effects of diet on this brain region. Other brain circuits, 

such those involved in reward, could also be affected by enhancements/deficits in 

sweetness processing. Specifically, distortion in the responsiveness and activation of 

dopaminergic circuits with diet and high BMI have been extensively documented in 

mammals. It is plausible that at least some of these alterations could occur because of 

diet-driven impairments in gustatory processing. Studies that tackle the network effects of 

chemosensory plasticity will help answer these questions.

Does plasticity in one taste modality influence taste and flavor perception more broadly? 

Since processed food is nutrient poor but has high content of salt, sugar, and fat, changes 

in the detection and processing of each of these modalities could have synergistic effects 

and impact the sensory perception of healthy foods that may have bitter qualities, like 

vegetables. Thus, understanding how distortions in one modality may alter to the 

perception of others will be an important aspect of future studies.
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Box 1.

Anatomy of Sweetness

Due to convergent evolution, the anatomy of sweetness is remarkably similar between 

insects and mammals [79,80]. Taste organs in or around the oral cavity express 

chemoreceptors for the detection of sweetness and other qualities (Figure IA-A′) [79,80]. 

In the mammalian tongue, taste buds contain different types of TRCs: type II taste cells 

detect sugars due to the [81] expression of the G-protein-coupled TAS1R2 and TAS1R3 

subunits (Figure IB). Binding of sugars to these receptors activates the second messenger 

PLC-β2, which triggers calcium release from intracellular stores [81] and opens TRPM4 

and TRPM5, leading to membrane depolarization and release of ATP through the 

CALHM1/CALHM3 channel onto the local nerve that innervates the taste bud [81–83]. 

In lieu of taste buds, insects have taste sensilla (hairs) outside and inside the proboscis as 

well as in other body parts, such as the legs [79,80]. Each sensillum contains 

chemosensory nerve endings for four taste neurons, including one sweet-sensitive neuron 

[79] (Figure IB′). In D. melanogaster each sweet taste neuron expresses a subset of the 

adult fly’s eight sweet taste receptors [79], which are thought to be ligand-gated ion 

channels based on the structure of a related olfactory receptor [84]; yet, G proteins are 

also required for the sensing of sweet [85].

From the oral cavity, sensory information travels into the brain [79,80] (Figure IC-C′). In 

mammals, the CT and glossopharyngeal nerves (cranial nerve IX) carry taste information 

to the NTS in the brainstem, with further relays into the parabrachial nuclei, the gustatory 

thalamus, and the primary gustatory cortex in the insula. Sweet taste signals also activate 

reward circuits in the ventral tegmental area [80] and are associated with dopamine 

release in the ventral striatum [86]. In insects, sweet taste neurons project to the 

subesophageal zone [79], and are then relayed via different neural tracks to parts of the 

brain involved in multisensory integration, reward, and energy balance. Like in mammals, 

the sweet signal activates a distinct subset of dopaminergic neurons [87,88].
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Box 2.

Assaying Taste

Humans

Sensitivity assays test detection and recognition threshold by giving subjects different 

concentrations of tastants. Intensity assays used semantic scales such as the Visual 

Analog Scale, the Labeled Magnitude Scale, and the gLMS to determine how strongly 

the subject perceives the stimulus. Hedonic measurements assess a person’s liking of a 

stimulus and their preference for different concentrations and are done with 

psychophysical assays, tests, or scales, including the Implicit Association Test (IAT) 

questionnaire and the Palatable Eating Motives Scale (PEMS). Food-intake measures 

occur inside and outside the laboratory; in the latter they use food frequency 

questionnaires or dietary recalls, although these may not accurately reflect diet 

composition or food intake [89]. Finally, imaging techniques like functional magnetic 

resonance imaging and positron emission tomography measure the activity of brain areas 

involved in taste processing and reward (e.g., NTS, insula, and striatum).

Animal Models

In rodents taste sensation is estimated with brief-access lick tests, which measure the 

number of licks an animal makes for short 5–30-s trials after a taste stimulus is presented 

[90], while in insects, the PER measures the magnitude of proboscis extension when the 

taste cells are stimulated with a tastant (sensitivity and intensity) [91]. In these animal 

models, taste responses are also assayed by recording the activity of the gustatory cells or 

sensory nerves, both ex vivo or in vivo, using electrophysiology and calcium imaging. 

These methods can also be applied to measure the activity of taste processing and reward 

circuits. To measure preference, choice assays are used, such as the two-bottle preference 

test in rodents and the flyPAD [92], FLIC [93], Expresso [94], and the CAFE/Arc [95] in 

insects; taste reactivity assays, which quantify facial expressions following presentation 

of a tastant [96] are also an hedonic measure. Food intake is assayed by keeping track of 

the amount of food consumed or by using feeding interactions measured by lick-o-meters 

as a proxy for feeding.
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Figure I. Comparative Anatomy of Taste in Mammals and Insects.
(A, A′) Dedicated organs for taste sensation are located on the tongues of mammals (A, 

rodents, left, and humans, right) and on the proboscis and other body parts, such as the legs, 

of insects (A′). (B, B′) Specialized cells express taste receptors in the taste organs. (B) In 

the mammalian tongue, three types of taste cell (light green, dark green, and blue) are 

organized into clusters called taste buds and contact nerve fibers projecting to the brain 

(magenta). In the insect, taste hair (sensilla) house three or four single-modality taste 

neurons (light green, dark green, blue, and yellow) that project to the SEZ. (C, C′) Brain 

structures for taste sensation, processing, and reward in mammals and insects, here shown is 

the Drosophila melanogaster brain. Abbreviations: AMMC, antennal mechanosensory and 

motor center; MB, mushroom body; NTS, nucleus of the solitary tract; PBN, parabrachial 

nucleus of the pons; SEZ, subesophageal zone; SLP/SIP/SMP, superior lateral/intermediate/

medial protocerebrum.
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Figure 1. 
Consumption of high-sugar and high-fat foods reshapes taste sensation and preference in 

rodents, humans, and insects, although the strength of the evidence differs across these 

organisms. These changes could alter different aspects of food intake, such as compromising 

the nutritional evaluation of food, inhibiting sensory enhance satiation, or creating a reward 

deficit. Together, these alterations could bias selection towards some types of foods over 

others and promote food intake, creating a vicious, reinforcing cycle that, over time, leads to 

weight gain and increases the risk of metabolic disease.
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