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Trade-offs between traits are present across different levels of biological systems and ultimately reflect
constraints imposed by physicochemical laws and the structure of underlying biochemical networks.
Yet, mechanistic explanation of how trade-offs between molecular traits arise and how they relate to
optimization of fitness-related traits remains elusive. Here, we introduce the concept of relative flux
trade-offs and propose a constraint-based approach, termed FluTOr, to identify metabolic reactions
whose fluxes are in relative trade-off with respect to an optimized fitness-related cellular task, like
growth. We then employed FluTOr to identify relative flux trade-offs in the genome-scale metabolic net-
works of Escherichia coli, Saccharomyces cerevisiae, and Arabidopsis thaliana. For the metabolic models of
E. coli and S. cerevisiae we showed that: (i) the identified relative flux trade-offs depend on the carbon
source used and that (ii) reactions that participated in relative trade-offs in both species were implicated
in cofactor biosynthesis. In contrast to the two microorganisms, the relative flux trade-offs for the meta-
bolic model of A. thaliana did not depend on the available nitrogen sources, reflecting the differences in
the underlying metabolic network as well as the considered environments. Lastly, the established con-
nection between relative flux trade-offs allowed us to identify overexpression targets that can be used
to optimize fitness-related traits. Altogether, our computational approach and findings demonstrate
how relative flux trade-offs can shape optimization of metabolic tasks, important in biotechnological
applications.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction Classically, trade-offs have been explained by the resource
Trade-offs between traits arise in situations when one of the
traits can only be increased at the cost of decreasing at least one
of the others [1]. Trade-offs are ubiquitous in nature and can be
analyzed at and across different levels of biological organization,
from the molecular and physiological level to the level of an entire
organism and their interactions in eco-systems. For instance, at the
molecular level, trade-offs have been reported between expression
levels of genes [1], metabolite levels [2], and, recently, reaction
fluxes [3]. Examples of trade-offs for focal traits at the level of an
entire organism include those between growth rate and yield [4]
or growth rate and adaptability [5] in microbes as well as growth
and defense in plants [6]. While there is mounting evidence that
trade-offs constrain the phenotypes attainable through evolution
[7], there is little understanding of how they arise due to the
underlying molecular networks that shape different focal traits.
acquisition-allocation model, also called Y-model [8,9]. According
to the Y-model two traits, X1 and X2, in trade-offs are shaped by a
common resource, Y , that constrains their values in different envi-
ronments. More specifically, the Y-model states that X1 þ X2 ¼ Y ,
and as a result cov X1;X2ð Þ ¼ 1

2 ðvar Yð Þ � ðvar X1ð Þ þ varðX2ÞÞ. Intu-
itively, two traits are said to be in trade-off if there are negatively
correlated. In the context of the Y-model, a fixed, invariant value
(varðYÞ ¼ 0) for the common resource over different environments
implies that its partial allocation to one trait limits the allocation to
the other. This then indeed yields a negative correlation between
the two traits, and such trade-offs were recently denoted as abso-
lute [3]. In addition, in the scenario when the common resource is
invariant, the manifestation of absolute trade-offs necessitates that
the involved traits exhibit phenotypic plasticity, i.e. their values
must vary with the environment, so that the trade-off can be
observed [10]. However, using the Y-model, it has also been shown
that identifying trade-offs based on covariation can be misleading,
since the sign of the correlation between traits is not sufficient to
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indicate their involvement in a trade-off. For instance, positive cor-
relation is expectedwhenever the variance of the common resource
Y exceeds the sum of variances of the two traits over a set of envi-
ronments. I Thus, in the case when the common resource in the Y-
model exhibits phenotypic plasticity (i.e. varðYÞ–0), the traits in
trade-off can also show positive correlation [11,12]. We will refer
to such trade-off situations in which the common resource may
vary as relative trade-offs.

To overcome the challenge of determining traits in trade-off
without relying on covariation, we have recently shown that sys-
tematic identification of absolute trade-offs can be achieved by
determining a weighted sum of metabolic traits (i.e. fluxes), with
non-negative coefficients, that is invariant with the environment.
This can be seen as an extension of the Y-model to n traits, whereby
Y ¼ a1X1 þ a2X2 þ � � � þ anXn, with all ai > 0. From this formulation,
it is clear that in case when Y is fixed (i.e. var Yð Þ ¼ 0), due to ai > 0,
increase of any trait is accompanied by a decrease of at least one
other trait. It is also worth pointing out that, in contrast to the clas-
sical Y-model with two traits, here two traits can show positive cor-
relation and still be in trade-off, as described, even when Y is fixed.
The reasoning of the Y-modelwithmore than two traits was used as
the basis for a constraint-based modeling approach termed FluTO
to identify and enumerate absolute flux trade-offs in a given meta-
bolic network under boundary conditions, specifying the environ-
ment [3]. By applying flux variability analysis, FluTO first
determines reactions with invariant fluxes with the considered
boundary conditions. FluTO then identifies weighted sum of fluxes
that amounts to an invariant flux, corresponding to the Y resource
in the Y-model. FluTO was used with large-scale metabolic net-
works of Escherichia coli and Saccharomyces cerevisiae to show that
the absolute flux trade-offs are specific to carbon sources and that
absolute flux trade-offs in Arabidopsis thaliana are dependent on
the condition-specific biomass reaction used. However, due to the
formulation of FluTO, these results: (i) do not hold in the scenario
when the weighted sum of traits is environment-dependent, since
the weighted sum equals an invariant flux, and (ii) do not provide
insights on how the identified absolute flux trade-offs are related
to the optimized fitness-related trait, like growth, since the trade-
off was not determined at fixed flux through the biomass reaction.

Here, we formulate a constraint-based approach, termed Flu-
TOr, that allowed us to identify and enumerate relative flux
trade-offs with respect to growth simulated by a given metabolic
network. More specifically, we are looking for relations of the form
vbio ¼ a1v1 þ a2v2 þ � � � þ anvn, with ai > 0 for at least two fluxes
different than the flux of the biomass reaction. The general formu-
lation of FluTOr allows to also enumerate relative trade-offs with
respect to other fluxes (e.g. production of a metabolite of interest).
This provides larger versatility of FluTOr in comparison to the
FluTO used to identify absolute flux trade-offs.

Further, we note that if a relative flux trade-off expresses
growth as a weighted sum of reaction fluxes, as stated above, then
overexpression of the reactions in trade-off provides a direct way
to further increase growth. In other words, if vbio is not at its opti-
mum, then an increase of any flux v i, with ai > 0, does not have to
be compensated by decrease in other fluxes and can lead to
increase in vbio. This holds in the cases when the reactions with
ai > 0, implicated in the relative trade-off, show variable flux at
higher growth. In contrast to this idea, the existing approaches to
enumerate overexpression reaction candidates either rely on time
intensive identification of covariation of candidate fluxes with
growth, as applied in flux scanning based on enforced objective
flux (FSEOF) [13] and its variants [14], or require a reference flux
distribution, like in OptReg [15] and GeneReg [16]. In contrast to
these approaches, relative flux trade-offs with respect to growth
provide new means to identify overexpression targets based on
the relation between relative flux trade-offs and growth.
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By using FluTOr we then examine the extent to which the iden-
tified relative flux trade-offs differ from other seminal concepts in
metabolic modeling, namely directional and partial coupling. In
addition, we apply FluTOr to large-scale metabolic networks of
Escherichia coli, Saccharomyces cerevisiae, and Arabidopsis thaliana
to determine relative flux trade-offs with respect to growth and
investigate the dependence of the findings on the simulated condi-
tions. As a result, we show that FluTOr provides versatile means to
enumerate trade-offs and use them in the identification of overex-
pression targets to optimize growth. Due to the constraint-based
modelling formulation, FluTOr can be readily applied to study
and compare trade-offs with respect to other cellular tasks, opti-
mized by evolution, that can be modelled in the context of meta-
bolic networks.
2. Methods

2.1. Metabolic network models

We apply FluTOr to constraint-based metabolic models of three
model organisms, namely the bacterium E. coli, the unicellular
eukaryote S. cerevisiae and the model plant A. thaliana. More specif-
ically, we analysed the genome-scale metabolic model iJO1366 of
E. coli str. K-12 substrain MG1655. This network consists of 1805
metabolites and 2583 reactions [16]. The model has the ‘‘core”
and ‘‘wild-type” biomass reactions. In the simulations of this
model we used the ‘‘wild-type” biomass reaction [17]. The simula-
tions in yeast relied on the genome-scale metabolic network,
yeastGEM v8.3.3, of S. cerevisiae with 2691 metabolites and 3963
reactions [18], using the biomass reaction to simulate growth.
We used the AraCore model as a representative metabolic network
of A. thaliana, with 407 metabolites and 549 reactions [19]. The
model has three different active biomass reactions: carbon-
limiting, nitrogen-limiting, and light-limiting biomass. In the sim-
ulations with A. thaliana we used one of the three biomass reac-
tions, as detailed in the results.

In all models, we consider different environments, as described
in the Results section, by activating a particular carbon and/or
nitrogen nutrient. We also considered different lower boundary
to modelled growth of 90%, 95%, and 99% of that obtained by flux
balance analysis (FBA) [20].

2.2. Flux coupling analysis

Two unblocked reactions ri and rj are considered coupled if
they are directionally, partially, or fully coupled. For completeness,
we provide the definitions of the three coupling types: (i) if for all
v 2 F;v i–0 implies v j–0 then ri is directionally coupled to rj, (ii) if
for all v 2 F;v i–0 implies v j–0 and vice versa, then ri and rj are
partially coupled; (iii) if ri and rj are partially coupled, and addi-
tionally there exists a constant c–0 such that for all v 2 F; v i–0
implies v i=v j ¼ c, then ri and rj are fully coupled. In any other case,
reactions are uncoupled.

2.3. Enrichment analysis

Fisher’s exact test is a statistical significant test used to deter-
mine if there are nonrandom association between categorical vari-
ables. Here, proteins are first divided into two categories based on
whether they catalyze only one reaction or more than one reac-
tions. Further, proteins are divided into three categories based on
their involvement in trade-offs, namely: proteins for which all
reactions are in trade-off, all reactions are not in trade-off, and
some reactions are in trade-off. Then the p-value is calculated
based on the resulting 2x3 contingency table. More specifically,
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p ¼
aþb
að Þ cþd

cð Þ eþf
eð Þ

n
aþcþeð Þ , where a; b; c; d; e and f are the number of observa-

tions in each cell, n is the total sample size. This test allows us to
test the hypothesis that trade-offs are underpinned by promiscu-
ous proteins, catalyzing multiple reactions.

2.4. Implementation

FluTOr is implemented in MATLAB and is fully available at
https://github.com/seirana/FluTOr.
3. Results and discussion

3.1. Formulation of FluTOr – A constraint-based approach to identify
and enumerate relative flux trade-offs

Here, we aim to identify relative trade-offs between reaction
fluxes with respect to growth. More specifically, given a metabolic
network with n reactions, we seek to determine a weighted sum of

non-negative fluxes,
Pn�1

i¼1 aiv i ¼ vbio, with ai � 0, 1 � i � n� 1. The
approach that we describe in this section can in principle be used
to specify relative trade-offs with respect to any specified reaction
or a subset of reactions. We represent the network by a stoichio-
metric matrix, N, with m metabolites and n reactions and assume
that it operates at a steady-state, whereby Nv ¼ 0. The identifica-
tion of relative trade-offs proceeds in three steps (Fig. 1).

First, we rely on flux variability analysis (FVA) [21,22] to catego-
rize the reactions based on the variability in the set of feasible
steady-state flux distribution, F ¼ vf jNv ¼ 0; 0 � v � vmaxg. A
reaction is considered blocked if it does not carry flux in any flux
distribution in F. A reaction is considered reversible over the flux
distributions in F if it takes flux values with different signs. As a
result, an irreversible reaction can carry only non-negative fluxes.
For instance, a simplified model of the Calvin-Benson cycle—the
key subsystem underlying photosynthesis [23]—includes five
metabolites and seven irreversible reactions, of which reactions
r6 and r7 are exchange reactions, while the remaining are internal
reactions (Fig. 2a). Upon performing FVA, we remove the blocked
reactions and dead-end metabolites, and split all identified reversi-
ble reactions into two irreversible reactions.

Second, we rely on simplifying the metabolic network by iden-
tifying and merging fully coupled reactions based on flux coupling
analysis (FCA) [24]. The reaction couplings can be identified by
applying quantitative flux coupling analysis (QFCA) [25] and flux
coupling analysis (FCA), as implemented in F2C2 [26], both based
on solving linear programming problems. Two unblocked reactions
ri and rj are considered coupled if they are directionally, partially,
Fig. 1. Illustration of FluTOr. The approach determines a weighted sum of non-negativ
and seven reactions, of which one is considered a reaction of interest (in our implement
relative trade-off with respect to rbio .
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or fully coupled (see Methods); otherwise, they are uncoupled. The
groups of fully coupled reactions, referred to as reaction coupling
sets, can be merged into single reactions. For instance, for the net-
work in Fig. 2a, the three reactions r1, r2, and r3 are fully coupled
and so are the reactions r4 and r5; these can be merged in reactions
rA and rB, respectively. The two export reactions named r6 and r7
are uncoupled to any other reactions. The merging of fully coupled
reactions speeds up the identification of the relative flux trade-offs.
For instance, if aiv i þ ajv j ¼ vk represents a relative trade-off, with
respect to vk and the reaction ri if fully coupled to reaction rl, i.e.
v i=v l ¼ c > 0, then calv l þ ajv j ¼ vk also represents a relative
trade-off. For instance, a relative trade-off between reactions r1
and r7 with respect to rB leads to a relative trade-off between reac-
tions r2 and r7 as well as r3 and r7 with respect to rB (see Fig. 2b).

As a third step, provided a metabolic network, we formulate a
constraint-based approach, FluTOr, to identify relative flux trade-
offs with respect to the flux through a specified reaction rj (here,
rbio). Let the coefficients of the linear combination of fluxes, a; over
F be determined by a vector k, such that kN ¼ a. From the formu-
lation, it follows that the coefficient in the linear combination of
fluxes, specified by a, corresponds to a weighted combination of
the rows of the stoichiometric matrix, given by kN. To determine
a, FluTOr minimizes the number of non-zero entries of kN, such
that the flux of reaction rj amounts to the weighted sum of at least
two irreversible variable reactions different from rj with positive
coefficients. This is captured mathematically by the conditions that
aj < 0,

P
i–jai � 0, and there are at least three reactions with non-

zero values for ai, given by supp að Þj j � 3. Since minimizing the sup-
port is an NP-hard problem [27,28], we approximate it by minimiz-
ing the first norm of kN, i.e. kkNk1, resulting in the following
convex optimization problem:

min
X

kkNk1
s.t. Nv ¼ 0,

kN ¼ a;aj < 0;
X

i–j

ai � 0; supp að Þj j � 3:
vmax � v � vmax;

Since we aim to enumerate all trade-offs, the formulation above
can be readily modified to exclude all previously found solutions
(i.e., trade-offs); this is achieved by using integer cuts [29]. The
objective function uses the absolute value function, which can be
cast as a linear function [30], resulting in a mixed-integer LP (MILP)
formulation of FluTOr (see Supplementary Note). In the rest of the
manuscript, we present the findings from our analyses of relative
flux trade-offs with rj corresponding to the biomass reaction, rbio.
e fluxes,
P6

i¼1aiv i ¼ vbio , with ai � 0, 1 � i � 6. Here the model has five metabolites
ation rbioÞ. From the resulting vector a, it is follows that reactions r5 and r6 are in a

https://github.com/seirana/FluTOr


Fig. 2. Illustration of a metabolic network and relative trade-offs. (a) The metabolic network of the Calvin-Benson cycle is composed of five metabolites (blue nodes),
glyceraldehyde 3-phosphate (GAP), ribulose 5-phosphate (Ru5P), ribulose 1,5-bisphosphare (RuBP), diphosphoglycerate (DPGA), and phosphoglycerate (PGA), and seven
reactions, denoted by r1 to r7. The three reactions r1, r2, and r3, represented by green arrows, are fully coupled and are merged in the reaction denoted by rA; similarly, the two
reactions r4 and r5 are fully coupled and merged in the reaction rB . We assume that the reactions are irreversible, i.e., the lower bound of are reactions is zero. The upper
bound of reactions r1 to r7 are 600,1000,1000,1000, 600, 200 and 166.7 mmol/gDW/h, respectively. (b) There are six relative trade-offs in the Calvin-Benson cycle that can be
identified by solving three MILPs after identifying and merging the fully coupled reactions. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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3.2. Relative flux trade-offs in E. Coli and S. Cerevisiae are specific to
carbon sources

Next, we applied FluTOr to investigate relative flux trade-offs
with respect to growth simulated from curated and extensively
used large-scale models of E. coli and S. cerevisiae. Since growth of
these microorganisms depends on the carbon source provided, we
wanted to examine the extent to which relative flux trade-offs
may differ between these environments. In the case of E. coli we
identified and enumerated the relative trade-offs with respect to
growth under 21 carbon sources with ammonium as the sole nitro-
gen source. For each carbon source we considered three scenarios,
corresponding to lower bounds to growth set to 90%, 95%, and
99% of the respective optimum, determined by flux balance analysis
(FBA) [20]. While the number of reactions in the identified relative
trade-offs varied between 20 and 118 over the carbon source, we
found that the maximum number of reactions participating in rela-
tive trade-offs was twelve, irrespective of the carbon source.
Increasing the lower bound on growth led to an increase in the
number of reactions in relative trade-off for 52% of the carbon
sources. In contrast, for 20% of the carbon sources this led to a
decrease in the number of reactions in relative trade-offs. Last, for
10% of carbon sources, increasing the lower bound on growth
resulted in no change in the reactions in trade-off. For the remain-
ing carbon sources, there was no obvious pattern of response. These
findings can be explained by blocking of one direction of reversible
reactions as the lower bound on growth is increased (Table S1).

The metabolic network of E. coli includes 2583 reactions, of
which sixteen (<1%, all from the cofactor and prosthetic group
biosynthesis subsystem) appeared in all relative trade-offs. This
is in line with the essential role of cofactors for cell growth. In addi-
tion, almost two thirds (i.e. 1659) of reactions did not appear in any
relative trade-offs, while the rest (31%) were blocked (Table S2).

We will consider a metabolic subsystem to be always in trade-
off if at least one of its reactions participates in all of the identified
relative trade-offs; it is considered sometimes in trade-off if at least
one of its reactions participates in some, but not all relative trade-
offs. Lastly, a metabolic subsystem is considered never in trade-off if
none of its reactions participates in any of the identified relative
trade-offs. We found three subsystems, namely folate metabolism,
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inorganic ion transport and metabolism as well as outer membrane
porin and transport subsystems to be sometimes in trade-off, while
the rest (i.e. 90%) of the subsystems were never in relative trade-
offs (Table S3, Fig. 3a). This finding indicates that the alternative
(sub)optimal space with respect to growth in E. coli show little flex-
ibility, and is targeted at few reactions which may be used to
increase growth.

Looking at the proteins associated with the reactions in trade-
offs, we categorized them into those that catalyzed only reactions
in trade-offs and those that, in addition, catalyze some reactions
that did not participate in any trade-offs. The number of proteins
that were associated with reactions that did not appear in relative
trade-offs decreased from 73% to 65% by increasing the lower
bound imposed on growth from 90% to 99%. There were few pro-
teins that were associated simultaneously with reactions that take
part in some or were not involved in any trade-offs, and these pro-
teins were dependent on the available carbon source. For instance,
with D-manose as a carbon source, nine proteins catalyze only
reactions that appeared in trade-offs and two proteins that, in
addition, catalyze reactions that did not participate in any trade-
offs. On the other hand, with L-arabinose as a carbon source, 12
proteins catalyze only reactions that were in trade-offs, while 61
(84%) were associated to some reactions that did not participate
in any trade-offs (Table S4). To determine the statistical signifi-
cance of these findings, we divided the proteins into those that cat-
alyze only one or multiple reactions; in addition, we also divided
the proteins into those that catalyze only reactions in trade-off,
only reactions not in trade-off, or both types of reactions. Using
the Fisher exact test, we found, in line with expectations, that
trade-offs are underpinned by promiscuous proteins that catalyze
multiple reactions, indicated by the enrichment analysis
(Table S5, Subsection 2.2).

Next, we asked if the identified relative trade-offs are species-
specific. To answer this question we repeated the analysis with
the metabolic model of S. cerevisiae with 3963 reactions. We found
that in S. cerevisiae, the identified trade-offs for the thirteen differ-
ent carbon sources resulted in, on average, 47 (1.7% of non-
blocked) reactions in relative trade-offs. Further, the minimum
and maximum of reactions in relative trade-offs over the thirteen
carbon sources were 11 and 89, respectively. Almost 30% of reac-



Fig. 3. Subsystems connectivity based on pair of reactions in a relative trade-off under different carbon sources. Nodes denote metabolic the subsystems and weight of
the edges indicate the number of pairs of reactions in relative trade-offs belong to the two connected subsystems in the metabolic models of (a) E. coli and (b) S. cerevisiae.
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tions were blocked for all carbon sources. Interestingly, we found
that there was no reaction in trade-off for all simulated carbon
sources, but 3% (117 of 3963) of reactions were in trade-off in at
least one carbon source (Table S6).

The reactions that took part in trade-offs participated in 13% (11
of 87) of subsystems (Table S7). Interestingly, none of the meta-
bolic subsystems was found to be in trade-offs across all carbon
sources, i.e. the involvement of metabolic subsystems in trade-
offs depended on the provided carbon source. Like in E. coli, the
metabolic subsystems that harbored reactions in flux trade-offs
included folate metabolism as well as biosynthesis of cofactors
and prosthetic groups, including riboflavin and thiamine metabo-
lism (Table S8). However, reactions in relative trade-offs in S. cere-
visiae were also found in metabolism of amino acids, e.g. glycine,
serine, and threonine metabolism as well as tryptophan metabo-
lism. As a result, reactions involved in biosynthesis of secondary
metabolites were also included in relative trade-offs. The sharing
of reactions between the eleven metabolic subsystems that harbor
trade-offs is depicted in Fig. 3b.

In addition, we found that about 7% of proteins were associated
to reactions that are in trade-off for some of the carbon sources.
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We found that the proteins that are associated with reactions in
relative trade-offs are invariant to the change in the lower bound
imposed on growth. The exception include: (i) malate dehydroge-
nase (E.C. 1.1.1.37) which, for lower bounds of 95% or 99% of the
optimum growth, was found to be associated to some reactions
in relative trade-off; however, it is not involved in any trade-offs
at the lower bound of 90%, and (ii) L-lysine:tRNALys ligase (AMP-
forming) (E.C. 6.1.1.6), that is associated to reactions in trade-off
only at a lower bound of 90% of the optimal growth (Table S9).
These findings indicate that different trade-offs become apparent
as an organism approaches growth optimum. Lastly, like in
E. coli, we found that reactions in trade-offs tend to be catalyzed
by promiscuous enzymes (Table S5).

3.3. Relative flux trade-offs in Arabidopsis thaliana do not depend on
key nutrients and the ratio of nitrate to ammonium

Next, we asked if the change in relative flux trade-offs with the
environment can also be identified in metabolic models of other
eukaryotes, like plants. It is known that the model plant A. thaliana
can use different nitrogen sources (e.g. nitrate or ammonium) dur-
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ing autotrophic growth on the single carbon source CO2, and that
the reference genotype Col-0 prefers nitrate over ammonium. To
determine if the relative flux trade-offs depend on the different
nitrogen sources, we employed the AraCore model, of A. thaliana
metabolism, with three biomass reactions corresponding to opti-
mal nitrogen (light-limiting), limiting nitrogen, and limiting car-
bon growth conditions [19]. In addition, for each of the three
biomass reactions, we also considered three different nitrogen
availability scenarios, namely only from nitrate, only from ammo-
nium, or in equal proportion of nitrate and ammonium (50:50)
[31]. We also investigated three sets of steady-state flux distribu-
tions, determined by a lower bound on growth given by 90%,
95%, and 99% of the optimum, determined by FBA [20]. Altogether,
these variations in boundary conditions resulted in the investiga-
tion of relative trade-offs with respect to growth for 27 cases of
the A. thaliana model.

Intriguingly, by applying FluTOr, we found that the set of 42
reactions participating in relative flux trade-offs was invariant
with the change in the lower bound on growth between 90% and
99% of the optimum, irrespective of the biomass reaction used
and of the nitrogen source used (Table S10). Altogether, 99% of
all reactions were not blocked in all cases, and that 7.7% (i.e. 42)
of reactions were in a relative trade-off (see Tables S10 and S11).
This result indicate that the used model has a relatively small flex-
ibility in achieving (sub)optimal growth, whereby the presence of
only few alternative pathways leads to invariance of the identified
relative trade-offs in the different test cases.

We found that altogether three and six of the 63 metabolic sub-
system in the A. thaliana metabolic model were always and some-
times in trade-offs (see definitions in Section 3.2). Interestingly, the
amino acid synthesis subsystems as well as the export subsystems
were never in trade-off. This is in line with the expectation that a
diversion of flux away from amino acids, as basic building blocks
of biomass, or via export would lead to decreased growth. Three
metabolic subsystems, including: cytidine triphosphate (CTP) syn-
thesis, guanosine monophosphate (GMP) synthesis, and thioredox-
ins (THF) recycling, were always in trade-offs. However, some
reactions in the subsystems related to nucleotide metabolism,
tetrahydrofolic acid (TRX) recycling, inosine monophosphate
(IMP) synthesis, and uridine monophosphate (UMP) synthesis,
import, and transport were sometimes in trade-offs (Table S12
and Fig. S1). This result implies that an increase of the flux through
any of the 42 reactions in trade-offs in the case of suboptimal
growth would lead to increase in growth until the optimum (from
FBA) is reached. At the optimum, the identified relative flux trade-
offs either cannot be identified or become absolute trade-offs.
Therefore, the concepts of absolute and relative trade-offs provide
the means to better understand the space of alternative (sub)opti-
mal flux distributions.

Comparison of the reactions in relative trade-offs with respect
to growth based on the metabolic network of A. thaliana
(Table S13) with published phenotypes on growth indicated that:
(1) guanylate kinase 3, chloroplastic is required for optimal growth
[32] and is also required for acclimation to nitrogen limitations
[33], (2) overexpression of the genes encoding nucleoside diphos-
phate kinase leads to enhanced growth in poplar [34] and alfalfa
[35], overexpression of the bifunctional dihydrofolate reductase-
thymidylate synthase 1 leads to delayed development, without dif-
ferences in biomass and rosette size at the compared times with
wild-type, suggesting larger final biomass [36]. These findings
demonstrate that the predictions of the approach for Arabidopsis
are partly in line with the existing experimental evidence.

Further, We found that 11% (i.e. 26) of the 225 proteins appear-
ing in gene-protein-reaction rules were associated with reactions
that were in trade-offs. In addition, only two proteins, nucleoside
diphosphate kinase and adenylosuccinate lyase catalyzed reactions
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that were not in any trade-off (Table S13). Altogether, the findings
from the analysis of the A. thaliana model suggested that the rela-
tive trade-offs reflect the specifics of the modeled reactions and
pathways. In contrast to the scenarios with different carbon
sources, that impose larger flux redistributions, the availability of
ammonium or nitrate are restricted to specific pathways and, thus,
result in universal trade-offs over all nitrogen availabilities scenar-
ios considered.
3.4. Relations to relative trade-offs to partially and directionally
coupled reactions

The proposed concept of relative flux trade-offs appears to be
related to the concepts of directional and partial reaction cou-
plings. Therefore, in the following we aimed to determine the
extent to which relative trade-offs provide new insights in compar-
ison to directionally and partially coupled reactions. From the for-
mulation of FluTOr, it is clear that reactions in relative trade-off

with respect to growth, must satisfy that
Pn�1

i¼1 aiv i ¼ vbio. There-
fore, non-zero flux through any of the reactions in a relative
trade-off implies non-zero flux through the biomass reaction;
moreover, non-zero flux through the biomass reaction may imply
non-zero flux through some of the reactions in the relative trade-
off. As a result, reactions in relative trade-offs are partially or direc-
tionally coupled to growth. However, the converse does not apply,
i.e. not all reactions that are directionally or partially coupled to
the biomass reaction need to be in a relative trade-off. This is the
case since reactions that are in relative trade-offs with respect to
growth need to satisfy additional conditions imposed in the formu-
lation of FluTOr.

To compare relative trade-offs with findings from QFCA, we
relied on the notion of a directionally coupled equation (DCE). To
illustrate a DCE, suppose there is a metabolite m1 with a reaction
r1 producing it, and three reactions, r2; r3, and r4, consuming this
metabolite with molarity a2;a3, and a4, respectively (Fig. 4a). If
all four reactions are of variable flux, then at steady state it must
hold that v1 ¼ a2v2 þ a3v3 þ a4v4, which represented a relative
trade-off. This relation forms a directionally coupled equation
(DCE), since non-zero fluxes through any of the reactions r2; r3,
and r4 implies non-zero flux through reaction r1, rendering all
three reactions directionally coupled to r1. In contrast to QFCA, to
adequately model relative trade-offs, here we allowed only for irre-
versible reactions (carrying non-zero flux) to appear in a DCE. In
addition, we note that this equation can be extended by finding
more relative trade-offs by merging other metabolites. For
instance, if there is a secondmetabolitem2 with two incoming irre-
versible reactions r2 and r5 and two outgoing irreversible reactions
r1 and r6 , then the equation a2v2 þ v5 ¼ a1v1 þ a6v6 holding at
steady-state (Fig. 4b) . By summation of the two equation we a
new relative trade-off a3v3 þ a4v4 þ a6v6 ¼ v5 (Fig. 4c), leading
to a merged DCE.

To determine the degree to which the findings from FluTOr
coincide with those obtained from FCA, we compared the findings
with those from QFCA and F2C2 under the same constraint on
growth imposed in FluTOr. As illustrated on Fig. 5, for the model
of E. coli only 17% and 10% of directionally or partially coupled
reactions to biomass were in the identified relative trade-offs, as
determined by QFCA and F2C2, respectively. Further, the reactions
in relative trade-offs represented only 15% and 13% of partially or
directionally coupled reactions. For the model of S. cerevisiae, on
average only 0.18% and 1% of partially/directionally coupled reac-
tions, determined by QFCA and F2C2, respectively, took part in rel-
ative trade-offs. As a result, FluTOr resulted in more partially or
directionally coupled reactions in comparison to QFCA and F2C2
with the same imposed constraints. Further, among the reactions



Fig. 4. Relative flux trade-offs and QFCA. (a) Directionally coupled equation. The figure shows a relative trade-off between irreversible reactions r2; r3, and r4 due to the
directionally coupled equation v1 ¼ a2v2 þ a3 v3 þ a4 v4 . (b) Two reactions r2 and r5 produce metabolite m2 and two reactions r1 and r6 consume it. (c) The summation of
the stoichiometric matrix rows corresponding to m1 and m2 results in the equation a3v3 þ a4v4 þ a6v6 ¼ v5 , yielding a relative trade-off. The latter is referred to as a
merged directionally coupled equation.

Fig. 5. Partially or directionally coupled reactions in trade-off in the models. Shown is the percentage of reaction that are in relative trade-off and whether or not they are
partially (P) or direction (D) coupled to the biomass reaction. It also shows the percentage of P/D reactions to the biomass reaction that (do not) participate in relative trade-
offs.
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that were in relative trade-off, on average 1.6% and 77% were par-
tially or directionally coupled detected per QFCA and F2C2 method
(Fig. 5).

Applying QFCA with the same constraints in the case of A. thali-
ana models identified 6.4% of reactions to be partially or direction-
ally coupled to the biomass reactions, and all of them were
identified by FluTOr. In addition, by applying FluTOr we found 7%
more partially or directionally coupled reactions to biomass. The
results based on the F2C2 method differed substantially; over the
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considered test cases, on average, 7.2% of reaction were found to
be partially or directionally coupled to the biomass reactions. Flu-
TOr found only 35% of them in the identified relative trade-offs. In
addition, FluTOr also identified 61% partially or directionally cou-
pled reactions to the biomass reaction that were not identified by
F2C2 (Table S14, Fig. 5). Altogether, our findings demonstrate that
the concept of relative trade-offs shows subtle difference to par-
tially and directionally coupled reactions, and adds to better under-
standing of operational constraints on metabolic functionalities.
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4. Conclusion

While there is growing evidence that trade-offs affect the phe-
notypes attainable through evolution, there is little understanding
of the biochemical constraints that contribute to the emergence of
molecular trade-offs. Since biochemical components do not exist in
isolation, but are integrated in various cellular networks, it is
expected that aspects of the network structure, given by the set
of all interactions in which the components take place, along with
principles of network operation can determine the presence of par-
ticular trade-offs.

Large-scale metabolic models gather the entirety of known
metabolic reactions and their function can be systematically ana-
lyzed and by approaches from the constraint-based modeling
framework. Here, we expand this framework by proposing FluTOr,
a constraint-based modeling approach that identifies relative
trade-offs between fluxes with respect to a flux of a specified reac-
tion. FluTOr is more versatile than FluTO, the approach for identi-
fication of absolute flux trade-offs, since it does not express a non-
negative linear combination of fluxes in terms of a flux that is
invariant with respect to the environment. Further, since relative
trade-offs are given by non-negative linear combinations of fluxes
that amount to the flux of the specified reaction, FluTOr also pro-
vide (upon mild assumptions) the means to specify overexpression
targets aimed at optimization of the objective. As a result, the iden-
tified relative trade-offs provide insights in the relation between
constraints that shape trade-offs and optimization of cellular tasks.
For the case of A. thaliana our prediction for overexpression based
on the identified relative trade-offs are mostly in line with the lim-
ited evidence available on overexpression lines.

By applying the proposed approach to three large-scale meta-
bolic models in simulations of different environments, we demon-
strated that relative trade-offs with respect to growth (modeled as
the flux through the biomass reaction) are often condition-
dependent, having important implications for optimization of fit-
ness. Our findings corroborate that the coordinated activation of
central metabolic processes underlie the relative flux trade-offs
that we also found are species-specific. Future applications of Flu-
TOr will examine the extent of interlinking between relative trade-
offs due to optimization of multiple cellular tasks as well as con-
nections to resource allocation in the context of protein-
constrained metabolic models.
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