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Abstract

Background: The rapid advancement of radiomics and artificial intelligence (Al) technology
has provided novel tools for the diagnosis of esophageal cancer. This study innovatively
combines muscle imaging features with conventional esophageal imaging features to
construct deep learning diagnostic models. Methods: This retrospective study included
1066 patients undergoing radical esophagectomy. Preoperative computed tomography
(CT) images covering esophageal, stomach, and muscle (bilateral iliopsoas and erector
spinae) regions were segmented automatically with manual adjustments. Diagnostic
models were developed using deep learning (2D and 3D neural networks) and traditional
machine learning (11 algorithms with PyRadiomics-derived features). Multimodal features
underwent Principal Component Analysis (PCA) for dimension reduction and were fused
for final analysis. Results: Comparative analysis of 1066 patients’ CT imaging revealed the
muscle-based model outperformed the esophageal plus stomach model in predicting N2
staging (0.63 = 0.11 vs. 0.52 = 0.11, p = 0.03). Subsequently, multimodal fusion models were
established for predicting pathological subtypes, T staging, and N staging. The logistic
regression (LR) fusion model showed optimal performance in predicting pathological
subtypes, achieving accuracy (ACC) of 0.919 in the training set and 0.884 in the validation
set. For predicting T staging, the support vector machine (SVM) model demonstrated the
highest accuracy, with training and validation accuracies of 0.909 and 0.907, respectively.
The multilayer perceptron (MLP) fusion model achieved the best performance among
all models tested for N staging prediction, although the accuracy remained moderate
(ACC = 0.704 in the training set and 0.685 in the validation set), indicating potential for
further optimization. Fusion models significantly outperformed single-modality models.
Conclusions: Based on CT imaging data from 1066 patients, this study systematically
constructed predictive models for pathological subtypes, T staging, and N staging of
esophageal cancer. Comparative analysis of models using esophageal, esophageal plus
stomach, and muscle modalities demonstrated that muscle imaging features contribute to
diagnostic accuracy. Multimodal fusion models consistently showed superior performance.

Keywords: esophageal cancer; radiomics; machine learning; deep learning; multimodal
imaging
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1. Introduction

Esophageal cancer represents a significant global health challenge and ranks among the
leading causes of cancer-related deaths worldwide. It primarily consists of two histological
subtypes: esophageal squamous cell carcinoma, prevalent in East Asia and parts of Africa,
and esophageal adenocarcinoma, whose incidence has been rising in Western countries [1,2].
Recent advancements in diagnostic techniques have significantly improved early detection
rates and staging accuracy for esophageal cancer. Currently, innovations in minimally
invasive surgery and optimized neoadjuvant chemoradiotherapy protocols have notably
enhanced surgical outcomes and patient survival rates [3]. Nevertheless, due to its subtle
or atypical early symptoms, esophageal cancer is often diagnosed at advanced stages
when patients experience dysphagia or obstructive symptoms, making early diagnosis an
ongoing clinical challenge [4].

In recent years, significant progress has been made in computed tomography
(CT)-based radiomics. This technology involves extracting and analyzing high-dimensional
quantitative features from conventional CT images, uncovering tumor phenotypic charac-
teristics that are otherwise visually undetectable [5]. Rapid advances in machine learning
algorithms and artificial intelligence (AI) have enabled the integration of radiomics data
and clinical information, successfully creating accurate predictive models for various malig-
nancies including lung, colorectal, and breast cancers [6,7]. Clinical studies have confirmed
that CT-based radiomics not only effectively differentiates between benign and malig-
nant lesions but also provides valuable references for individualized treatment strategies,
playing an increasingly important role in clinical decision making [8,9].

Previous studies have widely applied radiomics techniques for classification and
staging prediction in esophageal cancer [10,11]. Although relatively stable predictive
models have been established, several limitations persist. First, the limited number of
surgical cases included in studies may compromise model generalizability. Second, most
existing models rely on conventional machine learning algorithms. Most importantly,
these studies have exclusively focused on imaging features derived from the tumor region,
potentially overlooking the broader physiological status of patients.

Muscle loss, particularly sarcopenia, has been increasingly recognized as a negative
prognostic factor in various malignancies, including esophageal cancer [12,13]. Several
studies have demonstrated that reduced skeletal muscle mass is associated with poor
tolerance to neoadjuvant therapy, higher rates of postoperative complications, and infe-
rior survival outcomes [14,15]. Postoperative esophageal cancer patients are particularly
susceptible to muscle mass loss due to impaired nutritional intake [10,11]. Therefore, in-
corporating muscle-related imaging biomarkers—such as those extracted from the erector
spinae and iliopsoas muscles—may provide additional prognostic insights beyond the
tumor-centric features. These imaging indicators reflect systemic physiological conditions,
including nutritional and functional status, which are critical to patient recovery and often
influence treatment outcomes. By integrating these muscle features with conventional
tumor features, we aim to enhance model performance and support more comprehensive,
individualized clinical decision making.

This retrospective study included preoperative CT imaging data from 1066 patients un-
dergoing surgery for esophageal cancer. Three sets of imaging features were systematically
extracted: features from the esophageal region alone, combined esophageal and stomach
regions, and the iliopsoas and erector spinae regions. Using traditional machine learning,
deep learning, and multimodal fusion techniques, we constructed predictive models for
postoperative pathological classification, T staging, and N staging. This paper is orga-
nized as follows: Section 2 includes clinical cohort establishment, image processing, and
model construction; Section 3 includes the experimental results and model performance
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across different imaging modalities; Section 4 compares our findings with previous studies;
and Section 5 offers a summary of key contributions and future research directions. This
study particularly emphasizes the contribution of muscle imaging features and proposes a
novel, integrative modeling framework for improving diagnostic accuracy and robustness
in esophageal cancer. This study introduces a novel modeling strategy that integrates
both tumor-specific and muscle-derived imaging features, an approach that has not been
systematically investigated in previous radiomics research on esophageal cancer.

2. Methods and Materials

This section describes the data collection procedures, imaging processing workflow,
and modeling strategies used to develop and evaluate the predictive models in this study.

2.1. Clinical Cohort Establishment

This study was formally approved by the Ethics Committee of the First Affiliated
Hospital of Anhui Medical University (14 December 2023). We retrospectively enrolled
1066 patients who underwent radical esophagectomy for esophageal cancer at our center
between December 2019 and December 2021. The detailed patient selection and enroll-
ment processes are illustrated in Figure 1, while specific inclusion and exclusion criteria
are provided in Supplementary Table S1. All included patients completed preoperative
non-contrast CT scans and postoperative pathological assessments. The research team
systematically collected imaging data, clinical baseline information, and pathological out-
comes from each patient to construct a dedicated database. All endoscopic images in this
study were obtained from the digestive endoscopy center of the First Affiliated Hospital
of Anhui Medical University and were collected between 2019 and 2021. All cases of
esophageal cancer were confirmed by postoperative pathological diagnosis, constituting a
retrospective single-center study.

2023 patients with esophageal
cancer who underwent surgical
treatment at our center from
January 2019 to December 2021

imaging in the center,
N=516

(C omplete pre-operative

N=1507

Postoperative pathologic
diagnosis of squamous
or adenocarcinoma,

N=406

N=1101

( Others not meeting

inclusion criteria, N=35

Ultimately, 1066 patients
diagnosed with esophageal
cancer were included in this

study

Figure 1. Clinical cohort establishment flowchart.
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To develop predictive models, three critical pathological indicators of esophageal
cancer were selected based on clinical significance and current research trends: pathological
type (squamous cell carcinoma or adenocarcinoma), T-stage, and N-stage (lymph node
metastasis number). Both T-stage and N-stage significantly impact treatment planning, as
the T-stage reflects the tumor invasion depth, influencing surgical approaches and postop-
erative therapy, while the N-stage indicates lymph node metastasis extent, affecting the
surgical scope and thoroughness of lymphadenectomy. Both indicators directly influence
patient prognosis and therapeutic outcomes.

Notably, only patients with squamous cell carcinoma or adenocarcinoma were in-
cluded in this study, excluding other rare cancer types. Accurate preoperative identification
of pathological types, T-stage, and N-stage is essential for guiding perioperative chemother-
apy and radiotherapy strategies. Improved preoperative prediction accuracy could facilitate
more precise adjuvant therapy, thereby enhancing patient outcomes.

2.2. Imaging Data Collection and Processing

CT datasets used in this study were acquired preoperatively using a Philips Brilliance
i CT 256 scanner (Philips Medical Systems Inc, Cleveland, OH, USA) as part of routine
patient management. Images had a matrix resolution of 512 x 512 pixels and focused on
thoracoabdominal regions, including the esophagus. To ensure comprehensive bilateral
iliopsoas muscle imaging, preference was given to thoracoabdominal CT scans, with
isolated chest CT scans utilized only if thoracoabdominal scans were unavailable.

Original image slice thicknesses varied between 1.25 mm and 5 mm. To standardize im-
age quality, voxel resolution was uniformly resampled to 3 mm, with window width (WW)
set at 2000 and window level (WL) at —1000. Region of interest (ROI) segmentation was
performed automatically using TotalSegmentation (V2.) software to create 3D ROI models
of the esophagus, esophagus plus stomach, and associated muscle regions. Automated
segmentations (V2.) were meticulously reviewed and manually corrected by two senior
radiologists to meet the study’s stringent quality standards. All imaging data conformed
to relevant European standards, detailed further in Supplementary Tables S2 and S3. Al-
though a formal quantitative assessment of information loss was not performed, the
resampling protocol was selected based on widely adopted standards in radiomics studies
and visually confirmed to retain anatomical integrity during radiologist review. Figure 2
provides a detailed illustration of the image processing and segmentation workflow.

2.3. Radiomics Workflow

The radiomics analysis workflow used in this study is depicted in Figure 3. Two
technical approaches were employed to construct radiomics diagnostic models: a deep
learning approach using both 2D and 3D neural networks and a traditional machine
learning approach involving feature extraction and various algorithms [16]. Model training
and data processing were executed under a CUDA environment.

For traditional machine learning, the PyRadiomics (3.1.0) package in Python (3.9)
was used for feature extraction from CT images covering the esophageal, esophageal plus
stomach, and bilateral iliopsoas and erector spinae muscles [17,18]. Extracted features
underwent rigorous screening using Least Absolute Shrinkage and Selection Operator
(LASSO) regression to reduce redundancy and Spearman correlation analysis to eliminate
highly correlated features (r > 0.9). The optimal feature subset was selected based on 5-fold
cross-validation performance in the training set, with AUC serving as the primary evalua-
tion metric. Data were randomly split into training (80%) and testing (20%) sets, balancing
class distributions. Due to the notable class imbalance in the original dataset, especially
for pathological subtypes and advanced staging categories, we manually balanced the
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validation set to ensure reliable performance assessment across all classes. The training set
retained the original distribution to preserve real-world data characteristics. To mitigate
the risk of overfitting, data augmentation techniques were applied during the training
process. Eleven machine learning algorithms, logistic regression (LR), Naive Bayes, sup-
port vector machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), ExtraTrees,
XGBoost, LightGBM, GradientBoosting, AdaBoost, and multilayer perceptron (MLP), were
applied [19-21]. Model performance was evaluated using 5-fold cross-validation, focusing
on accuracy and AUC metrics.
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Figure 2. Image data processing and outlining process.

The deep learning path employed 2D neural networks analyzing maximal cross-
sectional ROI images and 3D neural networks using volumetric ROI data. Training lasted
100 epochs, utilizing 5-fold cross-validation with accuracy and AUC as primary metrics.
Nine models from four neural network families (DenseNet121, DenseNet201, ResNet18,
ResNet50, ResNet152, VGG13_bn, VGG19_bn, ViT, and SimpleViT) were evaluated, with
the best-performing model selected per modality [22-25].

To compare diagnostic performance between esophageal, esophageal plus stom-
ach, and muscle regions comprehensively, traditional machine learning and deep learn-
ing models underwent systematic comparative analysis. Statistical analyses of differ-
ences in AUC and accuracy were conducted to assess the predictive value of various
imaging regions.
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For radiomics feature fusion, multimodal features from traditional machine learning
(models with accuracy and AUC > 0.5), 2D deep learning, and 3D deep learning were
integrated. Deep learning features extracted from the final pooling layers were dimen-
sionally reduced to 32 channels via Principal Component Analysis (PCA). Multimodal
fusion models were developed for each pathological indicator with the imaging modalities

included in Table 1.
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Table 1. Statistical table of multimodal fusion models.

Machine Learning

2D Deep Learning 3D Deep Learning

Algorithm

Pathological

Esophageal features
Esophageal plus stomach

Esophageal_densenet201

Esophageal plus

classification features stomach_densenet201 . LR
Muscle feature Muscle_densenet201
Esophageal_resnet152

. Esophageal plus Esophageal_resnet152
T staging Esophageal features stomach_densenet201 Muscle_resnet152 SVM
Muscle_resnet152
Esophageal plus stomach Esophageal plus Esophageal plus
N staging phagea’ p stomach_resnet50 phagea’ p MLP

features stomach_resnet152

Muscle_resnet50

2.4. Statistical Analysis and Machine Learning Tools

Statistical analyses were performed using SPSS 27.0. Continuous variables were
presented as mean = standard deviation (Mean £ SD), while categorical variables were
described as frequency (1) and percentage (%). Chi-square tests were applied to categorical
data, and independent sample t-tests or Mann—Whitney U-tests were selected for con-
tinuous variables according to data distribution. Univariate logistic regression assessed
relationships between clinical variables and outcomes, followed by stepwise multivariate
regression for significant variables.

Data preprocessing, feature extraction, and machine learning algorithm implementa-
tion were conducted using Python (3.9) libraries including NumPy, Pandas, Scikit-learn,
and PyRadiomics. Deep learning models were developed and trained using the PyTorch
(2.7.0) framework with GPU acceleration via CUDA. Computations were performed on
high-performance hardware (Intel Core i9 processor, Intel Corporation, Santa Clara, CA,
USA and NVIDIA GeForce RTX 4090 GPU, NVIDIA Corporation, Santa Clara, CA, USA).

Deep learning training employed mixed precision to optimize memory usage and
distributed DataLoader for accelerated data input. Training utilized dynamic learning rate
scheduling, Adam optimizer, data augmentation techniques, early stopping, and recorded
training losses and validation metrics to identify optimal models.

3. Results

This section shows the experimental results and model performance across different
imaging modalities.

3.1. Clinical Cohort Characteristics

This study enrolled 1066 patients who underwent surgical treatment for esophageal
cancer. Clinical parameters collected included age, sex, height, weight, BMI, smoking
history, and drinking history. The primary outcome variables analyzed were pathological
type (squamous cell carcinoma or adenocarcinoma), T-stage, and N-stage (number of lymph
node metastases). Detailed baseline clinical characteristics are presented in Table 2. Patient
age ranged from 40 to 92 years, and BMI ranged from 14.88 to 39.13 kg/m?. Univariate and
multivariate logistic regression analyses were conducted to examine relationships between
clinical parameters and outcome variables. A stepwise regression model was applied in
the multivariate analysis, with statistical significance defined as p < 0.05.

Regarding pathological types, univariate and multivariate analyses revealed signif-
icant correlations with T-stage and N-stage. Multivariate analysis demonstrated an OR
of 2.827 (CI: 1.279-6.250, p = 0.01) for pathological type with T3-T4 stages and an OR of
2.894 (CI: 1.726-4.850, p < 0.001) with N2-stage. No significant relationships were identified
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between pathological types and age, sex, height, weight, BMI, or smoking or drinking
history (p > 0.05). When analyzing the T-stage, significant correlations were found with
smoking history, pathological type, and N-stage. Multivariate analysis indicated an OR
of 0.622 (CI: 0.411-0.942, p = 0.025) for T2-stage with smoking history and an OR of 0.296
(CI: 0.135-0.647, p = 0.002) for T3-T4 stages with pathological type. T-stage and N-stage
showed a statistically significant correlation (p < 0.05), reflecting clinical experience. How-
ever, age, sex, height, weight, BMI, and drinking history did not significantly correlate
with T-stage (p > 0.05). For the N-stage, significant associations were observed with patho-
logical type and T-stage. Multivariate analysis indicated an OR of 0.384 (CI: 0.231-0.639,
p < 0.001) for N2-N3 stages with pathological type. Similarly, the T-stage demonstrated
statistically significant correlations with the N-stage (p < 0.001). No significant associations
were identified between the N-stage and other clinical characteristics (p > 0.05).

Table 2. Characteristics of the clinical population.

Characteristics All Mean + SD/n (%)
Age 1066 66.58 + 8.08
BMI 1066 22.33 £+ 3.08
Sex 1066

Male 871 (81.71%)
Female 195 (18.29%)
Smoking status 1066

No 681 (63.88%)
Yes 385 (36.12%)
Drinking status 1066

No 749 (70.26%)
Yes 317 (29.74%)
Pathological classification 1066

Squamous carcinoma 956 (89.68%)
Adenocarcinoma 110 (10.32%)
T staging 1066

Tis 30 (2.81%)
T1 210 (19.70%)
T2 260 (24.39%)
T3 552 (51.78%)
T4 14 (1.31%)
N staging 1066

NO 610 (57.22%)
N1 263 (24.67%)
N2 149 (13.98%)
N3 44 (4.13%)

Overall, the results indicated significant relationships among pathological type,
T-stage, and N-stage of esophageal cancer, with limited influence from basic clinical charac-
teristics (such as age, sex, and BMI). Smoking history affected T-stage moderately but was
insignificant in subsequent multimodal fusion analyses. Detailed univariate and multivari-
ate logistic regression results are provided in Supplementary Tables S4-5S9, respectively.

3.2. Differential Diagnostic Models for Squamous Cell Carcinoma and Adenocarcinoma

Based on imaging modalities from the esophageal phase, esophageal plus stomach
phase, and muscle phase, 33 diagnostic models were constructed using 11 machine learn-
ing algorithms. Comparative analysis revealed no significant differences in diagnostic
performance or stability between the models based on muscle image features and those
based on esophageal or esophageal plus stomach features (p > 0.05). The results highlight
the importance of muscle features in distinguishing esophageal squamous cell carcinoma
from adenocarcinoma. Detailed comparative results are summarized in Tables 3-5, with
additional performance metrics available in Supplementary Table S10.
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Table 3. Comparative analysis of the predictive efficacy of esophageal phase versus muscle phase
when constructing a predictive model for pathological classification of esophageal cancer.

Model Classification Esophageal Phase Muscle Phase p-Value
Training Set

ACC 0.63 + 0.21 0.61 £+ 0.25 0.72
AUC 0.78 £ 0.09 0.67 £0.14 0.06
Test Set

ACC 0.63 + 0.21 0.55 +0.21 0.42
AUC 0.66 £ 0.05 0.62 £0.12 0.84

Table 4. Comparative analysis of the predictive efficacy of esophageal phase versus esophageal
plus stomach phase when constructing a pathological classification prediction model for
esophageal cancer.

Esophagus Plus

Model Classification Esophageal Phase Stomach Phase p-Value
Training Set
ACC 0.63 +0.21 0.59 +0.25 0.92
AUC 0.78 £ 0.09 0.70 +0.21 0.26
Test Set
ACC 0.63 +0.21 0.68 +0.15 0.53
AUC 0.66 £ 0.05 0.60 £+ 0.10 0.12

Table 5. Comparative analysis of the predictive efficacy of esophageal plus stomach phases versus
muscle phases in constructing a predictive model for pathological classification of esophageal cancer.

Model Classification ];Stzﬂ;iiu;}f::; Muscle Phase p-Value
Training Set

ACC 0.59 +0.25 0.61 +0.25 0.89
AUC 0.70 £0.21 0.67 £0.14 0.77
Test Set

ACC 0.68 +0.15 0.55+0.21 0.14
AUC 0.60 £ 0.10 0.62 £0.12 0.31

Although no statistically significant differences were observed among the three imag-
ing modalities in terms of accuracy and AUC (all p > 0.05), several trends can be noted.
First, radiomics models based on esophageal-phase features achieved the highest AUC
(0.78 £ 0.09) in the training set, suggesting better discriminatory power for histological
classification. However, in the test set, performance metrics declined across all modalities,
possibly due to data imbalance or generalization limitations. Interestingly, the muscle-
phase models yielded comparable AUCs despite not directly targeting tumor morphology,
indicating their potential as complementary features. The absence of statistical significance
(e.g., p = 0.06 in Table 3 AUC comparison) may be attributed to sample imbalance, especially
between squamous cell carcinoma and adenocarcinoma. These findings support the utility
of both tumor-specific and systemic muscle features for differential diagnosis, though
further validation in balanced or prospective datasets is warranted.

In the 2D deep learning pathway, 2D slices from each imaging modality were analyzed
using nine neural network models with transfer learning. For features from the esophageal
phase, DenseNet201 achieved the highest performance, with accuracy (ACC) and area
under the curve (AUC) of 0.753 and 0.763 in the training set and 0.700 and 0.626 in the
test set, respectively. For the esophagus plus stomach phase, DenseNet201 again showed
optimal performance, reaching an ACC of 0.855 and AUC of 0.828 in the training set and
0.856 and 0.802 in the test set. Muscle-phase features using DenseNet201 resulted in training
ACC and AUC of 0.737 and 0.843 and test ACC and AUC of 0.755 and 0.607, respectively.
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Sensitivity

Sensitivity

Several models demonstrated excellent predictive abilities, with ACC and AUC values
above 0.8. Detailed 2D deep learning results are provided in Supplementary Table S11,
with ROC curves for the optimal models presented in Figure 4A-C.
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Figure 4. ROC curve of the optimal modality in 2D deep learning. (A) AUC curve of the optimal
model for predicting esophageal cancer pathological classification based on esophageal imaging data.
(B) AUC curve of the optimal model for predicting esophageal cancer pathological classification
based on esophageal plus stomach imaging data. (C) AUC curve of the optimal model for predicting
esophageal cancer pathological classification based on muscle imaging data. (D) AUC curve of
the optimal model for predicting esophageal cancer T staging based on esophageal imaging data.
(E) AUC curve of the optimal model for predicting esophageal cancer T staging based on esophageal
plus stomach imaging data. (F) AUC curve of the optimal model for predicting esophageal cancer T
staging based on muscle imaging data. (G) AUC curve of the optimal model for predicting esophageal
cancer N staging based on esophageal plus stomach imaging data. (H) AUC curve of the optimal
model for predicting esophageal cancer N staging based on muscle imaging data.
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In contrast, the performance of the 3D deep learning models was below expectations.
When 3D volumetric data from each imaging modality were input into two neural network
models, the results showed limited diagnostic capability, with many ACC and AUC values
below 0.5. Consequently, 3D deep learning models were excluded from subsequent multi-
modal fusion analyses. Other 3D models are shown in Figure 5. Detailed 3D deep learning
results are documented in Supplementary Table 512.

Muscle_T Staging C Esophageal pus Stomach_N Staging

0.8+

Sensitivity
2

.
&
1

ol n
024 J-»~
i 100.70)

h 0 train
i ——  AUC:0.95 (95%C1 0.91
100.89)
1 trai
AUC:0.66 (35%C1 0.63
)

2 train
——  AUC:0.69 (95%C1 0.66
t00.72)

1.0 # 1.

174
________________________ H i
H b

0.8-| v 2s ek

14
@
1

¥ N3 train
o\ —  AUCi0.55 (85%C1

rain
—  AUC:0.81 (95%CI 2
0.4 04510 0.68)

0.7810.0.84)

Sensitivity
Sensitivity

: train
1= | —  AUCI0.58 (95%C!
7o 0.55 0 0.62)

e
a
1

NO val
- AUC:0.58 (35%C1
04716 0.68)

Toval
- AUCO.93 (96%CI
087 100.99)

val
=+ AUC:0.T0 (95%C!
0.46 10.0.95) 0 train 1= NO train
——  AUC:0.62 (95%C1 0.63 val - / ——  AUC:0.51 (95%C1 0.47
100.72) AUC:0.64 (35%C1 = z 100.54)

vai
AUC:0.57 (95%C!
043100.79) ]

T val
AUC:0.56 (95%CI
0.40100.73) 1 train N1 train 043100.70)
0.2 AUC:0.57 (95%C1 0.53 AUC:0.51 (85%C1 0.47 al
062) 100.66) = AUC0.53 (85%CI
0.3610.0.69)

T2val
“ec AUCD.61 (98%CI

T2val i A
i - =+ AUCA0S3 (95%CI =175
0.46100.76) o o t

2 train 03810 069)
Taval ——  AUC:0.54 (95%C1 0.50

- AUCOS2 (95%CI ! t0088) :

0.39 to 0.66) 7, At

N2 train
——  AUC:051 (95%C1 0.46 N3val
100.56) == AUCI0.59 (95%CI

0.3110.0.86)

=+ AUC:0.53 (95%C1
0,40 to 0.66)

T
0.0 0.2 0.4 06

1 - Specificity

o] i
T T T T T T T T
0.8 1.0 0.0 0.2 0.4 06 0.8 10 0.0 02 0.4 0.6 08 1.0

1 - Specificity 1 - Specificity
Figure 5. ROC curve of the optimal modality in 3D deep learning. (A) AUC curve of the optimal
model for predicting esophageal cancer T staging based on esophageal imaging data. (B) AUC curve
of the optimal model for predicting esophageal cancer T staging based on muscle imaging data.
(C) AUC curve of the optimal model for predicting esophageal cancer N staging based on esophageal
plus stomach imaging data.

In multimodal fusion analyses, features from six imaging modalities (traditional ma-
chine learning and 2D deep learning for the esophageal, esophageal plus stomach, and
muscle phases) were integrated and evaluated using 11 machine learning algorithms. Sev-
eral fusion models exhibited exceptional performance, achieving ACC and AUC values
above 0.9 in both training and test sets. LR consistently showed the highest performance,
achieving an AUC of 0.98 (95% CI: 0.97-1.00) in the training set and 0.97 (95% CI: 0.95-0.99)
in the validation set over 20 rounds of 5-fold cross-validation (Figure 6E). The box diagram
is shown in Figure 6F. Decision curve analysis (DCA) further confirmed the clinical applica-
bility and superior classification capabilities of the model for distinguishing esophageal
squamous cell carcinoma from adenocarcinoma (Figure 6A-D).

3.3. Construction of T-Stage Diagnostic Models Based on Radiomics

To establish T-stage diagnostic models for esophageal cancer, initial analysis using tra-
ditional machine learning showed no significant correlation between muscle-phase imaging
features and T-stage. The esophageal plus stomach phase models also failed to demonstrate
meaningful classification performance. Thus, only esophageal-phase imaging features
were retained for the traditional machine learning analysis. However, models based solely
on esophageal-phase features exhibited limited overall performance, with accuracy and
AUC rarely exceeding 0.7 consistently. For instance, the RandomForest model reached an
accuracy of 0.988 in the training set but decreased sharply to 0.611 in the validation set,
indicating potential overfitting. Comparative analysis of the three modalities revealed that
for T1-stage prediction, models based on esophageal features significantly outperformed
those based on the esophageal plus stomach modality (0.78 & 0.08 vs. 0.58 £ 0.05, p < 0.01),
while no significant differences were observed between other modalities (p > 0.05). Com-
prehensive results are summarized in Table 6, with detailed accuracy and AUC statistics
provided in Supplementary Table S10.
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Table 6. Comparative analysis of the predictive efficacy of esophageal phase versus esophageal plus
stomach phase when constructing a predictive model for T staging of esophageal cancer.

Model Classification Esophageal Phase = Esophagus Plus Stomach Phase p-Value

T Staging

Train ACC 0.714+0.19 0.64 +0.19 0.31
Test ACC 0.56 & 0.06 0.53 £0.02 0.12
AUC

TO 0.48 +£0.19 0.45+0.13 0.65
T1 0.78 £ 0.08 0.58 & 0.05 <0.01
T2 0.61 £ 0.07 0.62 £ 0.05 0.79
T3 0.64 4 0.03 0.63 +0.07 0.89
T4 0.32 £0.28 0.40 £+ 0.35 0.56

In the 2D deep learning pathway, ROI data from each modality were input into nine
neural network models across four model families. The best-performing model using
esophageal-phase features was ResNet152, achieving an ACC and AUC of 0.591 and
0.697 in the training set and 0.514 and 0.574 in the test set, respectively. Using esophagus
plus stomach features, DenseNet201 showed superior performance, with training ACC and
AUC of 0.673 and 0.838 and test ACC and AUC of 0.676 and 0.705. Muscle-phase features
analyzed by ResNet152 resulted in ACC and AUC values of 0.706 and 0.842 for training
and 0.784 and 0.597 for testing. Models based on esophagus plus stomach and muscle-
phase features demonstrated relatively stronger diagnostic capabilities compared with the
esophageal-phase model. Detailed 2D deep learning results are provided in Supplementary
Table S11, and ROC curves for optimal models are shown in Figure 4D-F.

In the 3D deep learning analysis using ResNet152, diagnostically valuable models
were constructed for esophageal and muscle-phase modalities. For the esophageal phase,
ResNet152 achieved ACC and AUC values of 0.82 and 0.926 in training and 0.743 and
0.577 in testing. For muscle-phase features, ACC and AUC were 0.59 and 0.571 (training),
and 0.622 and 0.641 (testing), respectively. Although 3D models displayed limited overall
stability and predictive accuracy, some demonstrated potential utility in specific scenarios.
ROC curves for these models are presented in Figure 5A,B, with further details provided in
Supplementary Table S512.

During multimodal fusion analysis, seven-dimensional imaging features were com-
bined, incorporating traditional machine learning esophageal-phase features, 2D deep
learning features (ResNet152 for esophageal phase, DenseNet201 for esophagus plus stom-
ach phase, and ResNet152 for muscle phase), and 3D deep learning features (ResNet152 for
esophageal and muscle phases). Smoking history was initially considered but was excluded
after regression analyses showed no significant correlation with T-stage. Multimodal fea-
tures were evaluated using ten machine learning algorithms, several of which exhibited
robust performance with ACC and AUC consistently above 0.7. Specifically, predictions
for Tis-, T1-, T2-, and T3-stages achieved notable AUCs in both training and validation
sets, with the highest performance observed in T3-stage predictions (training AUC = 0.80,
validation AUC = 0.71). After 20 rounds of cross-validation, SVM models demonstrated
the highest accuracy and stability (training ACC = 0.909, validation ACC = 0.907). How-
ever, due to limited data availability, T4-stage predictions remained inadequate, and ROC
curves were not plotted. ROC curves for the final fusion diagnostic model are provided in
Figure 7K, with DCA results detailed in Figure 7A-].
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Figure 7. Detailed results of the fusion model for predicting esophageal cancer T staging. (A) DCA
curve of the model predicting esophageal cancer Tis staging in the training set. (B) DCA curve of the
model predicting esophageal cancer Tis staging in the validation set. (C) DCA curve of the model

predicting esophageal cancer T1 staging in the training set. (D) DCA curve of the model predicting
esophageal cancer T1 staging in the validation set. (E) DCA curve of the model predicting esophageal
cancer T2 staging in the training set. (F) DCA curve of the model predicting esophageal cancer T2
staging in the validation set. (G) DCA curve of the model predicting esophageal cancer T3 staging
in the training set. (H) DCA curve of the model predicting esophageal cancer T3 staging in the
validation set. (I) DCA curve of the model predicting esophageal cancer T4 staging in the training set.
(J) DCA curve of the model predicting esophageal cancer T4 staging in the validation set. (K) ROC
curve of the fusion model for predicting esophageal cancer T staging. (L) ACC of each fusion model
in the validation set.
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3.4. Construction of N-Stage Diagnostic Models Based on Radiomics

Preoperative CT images of esophageal cancer patients were analyzed to construct
diagnostic N-stage classification models. In traditional machine learning analysis, the
KNN model based on esophageal plus stomach imaging features demonstrated the best
performance, achieving accuracy rates of 0.614 and 0.648 in the training and validation sets,
respectively. Comparative analysis among the three modalities (esophageal, esophageal
plus stomach, and muscle) revealed modality-specific advantages: the esophageal modality
outperformed muscle modality for predicting NO (0.66 £ 0.09 vs. 0.54 & 0.08, p = 0.005);
esophageal plus stomach modality was superior for N1-stage prediction compared with
esophageal modality (0.59 = 0.13 vs. 0.46 £ 0.12, p = 0.02); muscle modality outperformed
esophageal plus stomach modality for N2-stage prediction (0.63 & 0.11 vs. 0.52 £+ 0.11,
p = 0.03); and esophageal modality performed better than esophageal plus stomach modal-
ity for N3-stage prediction (0.51 & 0.15 vs. 0.31 £ 0.17, p = 0.01). Detailed comparative
results are presented in Tables 7-9, with further accuracy and AUC statistics provided in
Supplementary Table S10.

Table 7. Comparative analysis of the predictive efficacy of esophageal phase versus muscle phase
when constructing a predictive model for N staging esophageal cancer.

Model Classification Esophageal Phase Muscle Phase p-Value
N Staging

Train ACC 0.69 + 0.17 0.68 £0.17 0.7
Test ACC 0.59 £+ 0.03 0.56 & 0.04 0.53
AUC

NO 0.66 + 0.09 0.54 £ 0.08 0.005
N1 0.46 £0.12 0.51 £+ 0.07 0.231
N2 0.59 £ 0.12 0.63 £ 0.11 0.380
N3 0.51 + 0.15 0.39 £0.13 0.08

Table 8. Comparative analysis of the predictive efficacy of esophageal phase versus esophageal plus
stomach phase when constructing a predictive model for N staging of esophageal cancer.

Esophagus Plus

Model Classification Esophageal Phase Stomach Phase p-Value
N Staging

Train ACC 0.69 + 0.17 0.68 + 0.17 0.64
Test ACC 0.59 £ 0.03 0.58 & 0.02 0.29
AUC

NO 0.66 + 0.09 0.59 £ 0.09 0.09
N1 0.46 £0.12 0.59 £0.13 0.02
N2 0.59 £ 0.12 0.52 £ 0.11 0.20
N3 0.51 £+ 0.15 0.31 £0.17 0.01

Table 9. Comparative analysis of predictive efficacy of esophageal plus stomach versus muscle phases
in constructing predictive models for N staging of esophageal cancer.

Model Classification ESSt?)I;iaciuIs’lfal:: Muscle Phase p-Value
N Staging

Train ACC 0.68 £ 0.17 0.68 =0.17 0.96
Test ACC 0.59 £ 0.03 0.56 £ 0.04 0.09
AUC

NO 0.59 £ 0.09 0.54 £ 0.08 0.20
N1 0.59 £0.13 0.51 £0.07 0.10
N2 052 £0.11 0.63 £0.11 0.03

N3 0.31 £ 0.17 0.39 £ 0.13 0.26
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In the 2D deep learning pathway, both esophageal plus stomach and muscle modali-
ties exhibited limited but meaningful diagnostic potential, particularly with the ResNet50
model. When utilizing esophageal-phase features, none of the nine models reached satisfac-
tory accuracy or AUC. The best-performing model for the esophageal plus stomach phase
(ResNet50) achieved ACC and AUC of 0.675 and 0.644 in the training set and 0.505 and
0.536 in the test set, respectively. For the muscle phase, ResNet50 reached an ACC and AUC
of 0.584 and 0.583 in the training set and 0.581 and 0.517 in the test set. Detailed training
outcomes and ROC curves for optimal 2D models are provided in Supplementary Table S11
and Figure 4G-H.

In the 3D deep learning analysis, the ResNet152 model displayed some diagnostic
capability in the esophageal plus stomach modality, although accuracy and AUC remained
moderate. For esophageal-phase features, ResNet152 showed training ACC and AUC of
0.51 and 0.523 with test ACC and AUC of 0.752 and 0.47. For the esophageal plus stomach
phase, ResNet152 reached ACC and AUC of 0.511 and 0.512 in training and 0.724 and
0.568 in testing, respectively. Muscle-phase results were less impressive. Detailed results
and ROC curves are available in Supplementary Table S12 and Figure 5C.

In multimodal fusion analysis, imaging features from traditional machine learning
(esophageal plus stomach), 2D deep learning (ResNet50 from esophageal plus stomach
and muscle modalities), and 3D deep learning (ResNet152 from esophageal plus stomach
modality) were integrated. Evaluations of these fused features using ten machine learning
algorithms resulted in improved overall performance, consistently achieving ACC and AUC
values around 0.6. Specifically, AUC values for predicting NO-, N1-, N2-, and N3-stages
demonstrated significant improvements, with the highest performance seen in predicting
the N3-stage (training AUC = 0.92, validation AUC = 0.99). However, caution regarding
potential overfitting in N3-stage predictions is advised and further discussed in subsequent
sections. Comparative analysis (Figure 8]) indicated that the MLP algorithm yielded
optimal fusion model performance, with training and validation accuracies of 0.704 and
0.685, respectively. Detailed accuracy results post-fusion for the validation set are presented
in Figure 8I, and DCA results are shown in Figure 8A—H. Finally, heatmaps are provided to
visualize the key regions identified by the model, enhancing its interpretability in Figure 9.
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Figure 8. Detailed results of the fusion model for predicting esophageal cancer N staging. (A) DCA
curve of the model predicting esophageal cancer NO staging in the training set. (B) DCA curve of the
model predicting esophageal cancer NO staging in the validation set. (C) DCA curve of the model
predicting esophageal cancer N1 staging in the training set. (D) DCA curve of the model predicting
esophageal cancer N1 staging in the validation set. (E) DCA curve of the model predicting esophageal
cancer N2 staging in the training set. (F) DCA curve of the model predicting esophageal cancer N2
staging in the validation set. (G) DCA curve of the model predicting esophageal cancer N3 staging
in the training set. (H) DCA curve of the model predicting esophageal cancer N3 staging in the
validation set. (I) ROC curve of the fusion model for predicting esophageal cancer N staging. (J) ACC
of each fusion model in the validation set.
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Figure 9. Heatmaps of the key regions identified by the AI model. (A) Esophageal phases.
(B) Esophageal plus stomach phases. (C) Muscle phases.
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4. Discussion

This section compares our findings with previous studies and discusses the research
implications and limitations.
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In recent years, radiomics analysis has become a powerful tool for predicting patho-
logical types and staging in esophageal cancer. By extracting high-dimensional quantitative
features from imaging data such as CT, radiomics comprehensively reveals tumor het-
erogeneity, morphology, and metabolic activity [11]. In this study, predictive models for
esophageal cancer pathology type and staging were developed based on CT imaging
features of the esophageal, esophageal plus stomach, and bilateral iliopsoas and erector
spinae muscles, employing traditional machine learning, deep learning, and multimodal
fusion techniques. Importantly, this study is the first to incorporate imaging features of
the iliopsoas and erector spinae muscles into the predictive analysis of esophageal cancer
pathology and staging. Previous research has demonstrated the prognostic significance of
muscle quality in cancer outcomes, and our findings further support this perspective [10].

Radiomics using CT imaging has shown considerable potential for diagnosing and
classifying esophageal cancer. By extracting extensive quantitative features from CT images
and applying machine learning algorithms, radiomics effectively distinguishes between
esophageal squamous cell carcinoma and adenocarcinoma. Previous studies have re-
ported that CT-based radiomics models achieve high accuracy and stability in diagnosing
esophageal cancer subtypes Table 10. For example, Du, K.P. et al. constructed classification
models using multi-level imaging features, achieving an AUC exceeding 90%, significantly
outperforming conventional diagnostic methods [10]. Other studies have also validated
the value of radiomics features in predicting tumor staging and prognosis, enhancing
their clinical applicability [26]. In the study, a high-accuracy diagnostic model for distin-
guishing squamous cell carcinoma from adenocarcinoma was developed by integrating
multimodal features from traditional machine learning and deep learning analyses of CT
images. This model achieved an AUC of 0.99 (95% CI: 0.99-1.00) in the training set and
0.90 (95% CI: 0.83-0.98) in the validation set, surpassing previous studies. Overall, our CT-
based radiomics diagnostic model significantly improves the efficiency of esophageal
cancer subtype identification and provides critical imaging support for personalized
treatment planning.

Table 10. Comparative results between this study and previous studies.

Research Number of Population Target AUC Accuracy Sensitivity  Specificity
Du, K.P. et al. [10] 260 Pathological Subtype 0.904 0.841 0.802 0.879
Lei, X. et al. [27] 100 T-stage 0.850 - -

Yang, M. et al. [28] 116 T-stage 0.860 - 0.77 0.87

Jannatdoust, P. et al. [29] - N-stage 0.870 - 0.787 0.818
This study 1066 Pathological Subtype 0.980 0.900 - -
T-stage 0.800 0.900 - -
N-stage 0.920 - - -

Accurate T-stage assessment plays a pivotal role in esophageal cancer treatment deci-
sions, as it directly affects treatment strategies. For instance, Tis (carcinoma in situ) and
T1 tumors are typically managed by endoscopic resection or local surgical procedures,
while T2 or more advanced tumors may require combined chemoradiotherapy or radical
surgery. T3 tumors often necessitate neoadjuvant treatments (e.g., chemoradiotherapy)
to improve resectability and survival due to potential infiltration into adjacent tissues.
T4 tumors, which invade neighboring organs or structures, are generally deemed unre-
sectable, with treatment focused primarily on palliative care. CT-based radiomics holds
significant promise in this context. By extracting quantitative imaging features combined
with advanced machine learning techniques, radiomics provides novel opportunities for
precise T-stage prediction in esophageal cancer. Prior studies have demonstrated high
accuracy and consistency of radiomics-based predictive models for T-stage evaluation.
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For example, Lei, X. et al. and Yang, M. et al. developed models using multidimensional
imaging features achieving AUC values up to 0.85, significantly outperforming traditional
radiological assessment [27,28]. Multicenter studies have further validated the robustness
of radiomics features, laying a solid foundation for clinical translation [30]. In this study,
we utilized multimodal fusion methods to construct T-stage prediction models aimed at
improving staging accuracy and supporting personalized therapeutic decisions. While the
models demonstrated high predictive performance for the T2- and T3-stages, predictions
for the T1- and T4-stages were less accurate, somewhat reducing overall performance. This
discrepancy may result from limited sample sizes in the T1- and T4-stages, highlighting
critical challenges in applying pathology classification models in real clinical settings. Over-
all, our research confirms the potential of radiomics for T-stage prediction in esophageal
cancer while emphasizing the importance of model generalization and clinical applicability
during model development.

The N-stage significantly impacts therapeutic decisions in patients with esophageal
cancer, and accurately predicting lymph node metastasis is crucial for personalized cancer
treatment. Radiomics technology provides novel tools for predicting lymph node metasta-
sis by extracting high-dimensional quantitative features from medical images. Numerous
studies have developed radiomics-based models for predicting lymph node metastasis in
esophageal cancer, some demonstrating exceptional performance and potential for clinical
implementation. A meta-analysis incorporating 12 radiomics studies showed average
training and validation set AUCs of 0.87 and 0.85, respectively, underscoring the strong
diagnostic efficacy of radiomics [29]. However, previous studies have certain limitations.
First, most studies had small sample sizes, typically including around 200 patients or
fewer, limiting model optimization and generalizability. Additionally, many simplified
data by merging N1- and N2-stages or treating lymph node status as a binary classification,
thus neglecting independent prediction capabilities for each N-stage, diminishing clinical
relevance. In this study, we developed diagnostic models for esophageal cancer N staging
using a large sample cohort and thoroughly assessed predictive performance for each
N-stage. Our models achieved excellent predictive performance (AUC > 0.85) across most
stages, except N1. Notably, high predictive performance for N3 in validation could reflect
limited sample sizes within this group. Additionally, our study uniquely incorporated mus-
cle imaging features into the N-stage prediction for esophageal cancer, further enhancing
diagnostic efficacy through multimodal fusion. Compared with pathological subtypes and
T staging, the prediction of N staging remains more challenging. This may be attributed
to the limited spatial resolution of CT images in identifying metastatic lymph nodes and
the subtle imaging manifestations of N2-stage involvement. In addition, the annotation
of nodal staging is often subject to interobserver variability and lacks precise radiologic
correlations, which may affect model training. Therefore, despite the integration of multi-
modal features, the MLP model achieved moderate accuracy. Further studies incorporating
functional imaging (e.g., PET-CT), radiogenomic data, or attention-based neural networks
may help improve N staging prediction performance.

To the best of our knowledge, prior studies have not incorporated muscle imaging
features into radiomics models for esophageal cancer. One possible reason is that tradi-
tional radiomics research has primarily focused on tumor-centric analysis, where only the
primary lesion and its immediate surroundings are considered informative. Additionally,
muscle imaging features require precise segmentation of regions beyond the tumor itself,
which introduces technical complexity and necessitates standardized protocols for feature
extraction. The potential prognostic role of skeletal muscle in oncology has only recently
gained attention, with emerging evidence linking sarcopenia to adverse outcomes in var-
ious malignancies. Our study is among the first to translate this concept into radiomics
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modeling for esophageal cancer, highlighting the value of systemic physiological indicators
beyond local tumor characteristics.

Overall, this research affirms radiomics’s potential for predicting N-stage in esophageal
cancer and identifies key areas for improving model performance. Incorporating muscle
imaging features not only expands radiomics applications but also provides new insights
into intrinsic physiological correlations. This study achieved several breakthroughs in
radiomics and medical imaging by integrating multimodal imaging data, including fea-
tures from the esophagus, esophagus plus stomach, and bilateral iliopsoas and erector
spinae muscles, significantly improving diagnostic accuracy. Compared with traditional
radiomics research, our study provided deeper insights into the imaging data, offering new
perspectives for quantifying tumor heterogeneity. Importantly, our innovative inclusion of
muscle imaging features addresses a critical research gap. By combining features from mus-
cles, esophagus, and esophagus plus stomach, our multimodal fusion models significantly
enhanced accuracy in predicting pathological type and stage. The results confirmed the
value of muscle imaging features in predicting pathological outcomes, revealing potential
associations between muscle characteristics, tumor staging, and lymph node metastasis.
These findings provide additional evidence linking muscle quality to cancer prognosis,
broadening radiomics’s scope in oncological research. Leveraging CT imaging and ad-
vanced machine learning, our models improved diagnostic accuracy, facilitating early
detection and potentially improving patient outcomes. The innovative methods applied in
feature selection and validation set new standards for future studies, promoting precision
medicine’s personalized approach.

Despite significant achievements, our study has limitations. First, we relied on auto-
mated segmentation tools for quantifying muscle quality, which, despite rigorous quality
control checks and radiologist consensus, may introduce variability. Future research should
validate these automated methods’ accuracy and reliability in clinical settings. Second,
our data derived from a single center, which, despite encompassing a large esophageal
cancer database, may limit generalizability due to a lack of multicenter validation. To
address this, future studies should integrate radiomics with molecular mechanisms and
incorporate multicenter clinical datasets to comprehensively explore diagnostic and prog-
nostic challenges in esophageal cancer, thereby providing stronger scientific evidence for
clinical treatment. At this stage, our study has undergone only internal validation (in-
cluding cross-validation and an independent test set) and lacks external validation. And
this is a single-center retrospective study with the following limitations: no multicenter
external validation, potentially limiting generalizability; variable image quality that may
affect model performance; and lack of human—-AI comparison, leaving clinical relevance
unassessed. To enhance the model’s generalizability and clinical applicability, future work
will involve multicenter data and clinician comparison.

5. Conclusions

This study established predictive models for pathological classification, T staging, and
N staging of esophageal cancer based on CT imaging data from 1066 patients. Comparative
analyses of machine learning models constructed from esophageal, esophageal plus stom-
ach, and muscle imaging modalities revealed that muscle imaging features contributed
similarly to diagnostic accuracy as esophageal-phase imaging. The multimodal fusion mod-
els consistently demonstrated superior performance across all three pathological outcomes
compared with single-modality models. Despite limitations related to single-center data
potentially affecting model generalizability and the accuracy of automatic segmentation
impacting feature extraction precision, our multimodal fusion radiomics model showed
promising clinical application potential through extensive data training and validation. Fu-
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ture research should focus on multicenter clinical studies to validate model generalizability
and optimize automatic segmentation algorithms to enhance feature extraction accuracy.
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EC Esophageal cancer

Al Artificial intelligence

CT Computed tomography

SVM Support vector machine

MLP Multilayer perceptron

BMI Body mass index

ROC Receiver Operating Characteristic Curve
AUC Area under the curve

DCA Decision curve analysis

CNN Convolutional Neural Network
ROI Region of interest

ResNet Residual Network

DenseNet Densely Connected Convolutional Network
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VGG Visual Geometry Group

RF Random Forest

KNN K-Nearest Neighbors

XGBoost eXtreme Gradient Boosting
LightGBM Light Gradient Boosting Machine
PCA Principal Component Analysis
LR Logistic regression
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