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A B S T R A C T

The microenvironment of the endometrial immune system is crucial to the success of placental implantation and
healthy pregnancy. However, the functionalities of immune cells across various stages of the reproductive cycle
have yet to be fully comprehended. To address this, we conducted advanced bioinformatic analysis on 230,049
high-quality single-cell transcriptomes from healthy endometrial samples obtained during the proliferative,
secretory, early pregnancy, and late pregnancy stages. Our investigation has unveiled that proliferative natural
killer (NK) cells, a potential source of endometrial NK cells, exhibit the most robust proliferative and differen-
tiation potential during non-pregnant stages. We have also identified similar differentiation trajectories of NK
cells originating from proliferative NK cells across four stages. Notably, during early pregnancy, NK cells
demonstrate the highest oxidative phosphorylation metabolism activity, and, in conjunction with macrophages
and T cells, exhibit the strongest type II interferon response. With spatial transcriptome data, we have discerned
that the most robust immune-non-immune interactions are associated with the promotion and inhibition of cell
proliferation, differentiation and migration during four stages. Furthermore, we have compiled lists of stage-
specific risk genes implicated in reproductive diseases, which hold promise as potential disease biomarkers.
Our study provides insights into the dynamics of the endometrial immune microenvironment during different
reproductive cycle stages, thus serving as a reference for detecting pathological changes during pregnancy.

1. Introduction

The reproductive cycle can be broadly classified into the menstrual
cycle, which encompasses the proliferative and secretory stages [1], and
the stages of pregnancy, including the early, mid-, and late pregnancy
[2]. Many significant occurrences in the reproductive process are closely
linked with the endometrium, including embryo implantation, preg-
nancy, and labor. Such instances are accompanied by a dynamic process
involving shedding, regeneration, and differentiation of the endometrial
tissue [3]. A comprehensive characterization of the endometrium in
healthy individuals throughout the reproductive cycle can facilitate the

understanding of the normal transitions and variations in the endome-
trial microenvironment during different stages of the reproductive cycle,
and serve as a foundation for exploring pathological changes in repro-
ductive processes.

The immune microenvironment of the endometrium significantly
influences the success of pregnancy [4,5]. Previous research indicates a
notable increase in endometrial immune cell proportion from 8.2 %
during the proliferative stage to 31.7 % during early pregnancy [6],
among which the most predominant are NK cells, macrophages, and T
cells [7]. Single-cell RNA sequencing (scRNA-seq) has been increasingly
used to characterize the endometrial microenvironment at various
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stages of the reproductive cycle [8], including identifying new subsets of
cell types and studying cell development [1,9–12]. During early preg-
nancy, decidual NK cells were observed to comprise three distinct sub-
sets, including dNK1-3 [9]. dNK1 cells are noted for expressing high
levels of killer immunoglobulin-like receptors (KIRs) capable of binding
to HLA-C. During early pregnancy, both dNK1 and dNK2 cells are
believed to interact with EVTs, with the presence of LILRB1 and NKG2A
which encode proteins binding to HLA-G and HLA-E. Meanwhile, dNK3
and dNK2 cells are observed to produce more cytokines than dNK1 cells
[13]. However, a comprehensive understanding of the dynamic changes
in the endometrial immune environment spanning the reproductive
cycle is still lacking.

Recent studies on single-cell transcriptome and peripheral blood
transcriptome have provided valuable insights into uterine endometrial
diseases such as recurrent pregnancy loss (RPL) [5,14–16], endometri-
osis [17,18], and preeclampsia [19,20], proposing potential new ther-
apeutic targets and diagnostic approaches. These studies have
uncovered intricate cellular and molecular landscapes underlying
reproductive diseases and physiological processes, elucidating dysre-
gulated immune responses, altered cell-cell interactions, and disrupted
tissue homeostasis. Furthermore, they have identified potential thera-
peutic targets for modulating immune responses, apoptosis, inflamma-
tion, and tissue regeneration. For instance, Li Qian and colleagues found
that various genes regulated by NK cells in EVTs are dysregulated in
preeclampsia. They also discovered that these genes may indicate
increased risk in other pregnancy diseases [19]. Preeclampsia typically
occurs after 20 weeks of gestation. However, Mira N. Moufarrej and
colleagues identified peripheral blood transcriptome genes that can
predict the risk of preeclampsia in early pregnancy (5–12 weeks) [20].
Endometrial diseases are often associated with dysregulation of gene
expression. Concurrently, transcriptomic characteristics within the
endometrium undergo significant changes across different stages of the
reproductive cycle. However, the relationship between these alterations
and the risk of endometrial diseases remains unclear.

In this study, we conducted an advanced bioinformatic analysis of
large-scale public scRNA-seq datasets obtained from endometrial cells of
healthy women across four stages of the reproductive cycle. We identi-
fied the stage-specific transcriptomic characteristics of major endome-
trial immune cells (including NK cells, macrophages, and T cells) during
different stages. Subsequently, we explored the relationship between
cell-cell interactions based on stage-specific differentially expressed
genes and maternal events across different stages. We found the stron-
gest immune-stromal interactions in late pregnancy which may be
associated with the shaping of the microenvironment leading to labor.
Finally, we identified some stage-specific risk genes by using the above
stage-specific genes and the risk genes of common reproductive diseases.
This study provides a relatively comprehensive perspective of the dy-
namic landscape in the endometrial immune microenvironment
throughout the reproductive cycle, which can facilitate studies investi-
gating pathological changes to improve the diagnosis and treatment of
endometrium-related ailments.

2. Materials and methods

2.1. Sample information

For the scRNA-seq data we collected, 4 stages of the reproductive
cycle were examined: proliferative (n = 4), secretory (n = 11), early
pregnancy (n= 28), and late pregnancy (n= 9). For sample sources, 1 of
proliferative donors and 1 of secretory donors are deceased organ do-
nors (within 1 h of circulatory arrest) from Garcia-Alonso, L. et al. (Nat.
Genet., 2021), and the other 13 of non-pregnant donors are live donors;
Decidual tissue of Vento-Tormo et al. (Nature, 2018) was obtained from
elective terminations of normal pregnancies between 6 and 14 gesta-
tional weeks. In the other 3 datasets of early pregnancy, Guo et al. (Cell
Discov., 2021), Wang et al. (Genomics Proteomics Bioinformatics, 2021),

and Chen et al. (Front. Immunol., 2021), decidual tissues were obtained
from elective terminations of apparently normal pregnancies and CD45+

cells were sorted for further sequencing analysis. Tissues of late preg-
nancy were obtained immediately after delivery. scRNA-seq data used in
our study was obtained with 10x Genomics libraries. More information
of cohorts could be found in Table S1.

2.2. Single-cell RNA-seq quality control

For the raw sequencing SRA files provided by the articles, fastq-
dump (v2.8.0) was used here to download and convert to FASTQ.GZ
files, and then Cell Ranger (v4.0.0) and the GRCh38 human reference
genome provided by it were used for sequence comparison. For data
quality control, in this study, six scRNA-seq datasets were first merged
and retained 36,601 standard genes using the Merge function of Seurat
(v4.0.5) [21], and the data were subsequently partitioned into smaller
datasets using the difference in the samples to which they belonged.
After preprocessing with Seurat’s NormalizeData and ScaleData func-
tions, this study used DoubletFinder (v2.0.3) [22] to screen out double
cells with a default setting of 7.5 %. Subsequently, cells with detected
gene counts between 500 and 6000 and with less than 25 % mito-
chondrial gene expression were retained in this study. In addition, we
retained genes expressed in at least 10 cells and simultaneously removed
mitochondrial genes.

2.3. Single-cell RNA-seq integration

Due to severe batch effects in direct follow-up analysis, different
integration approaches were applied here, including Seurat, Harmony
(v0.1.0) [23] and scVI (v0.13.0) [24]. We first run these packages based
on their default parameters. We observed that scVI exhibited poor batch
effect removal in our data, while Harmony showed relatively better
performance in batch effect correction (Fig. S1C). However, we noticed
an abnormal connection between immune and non-immune cells in the
UMAP space, such as uterine smooth muscle cells (uSMCs) and NK cells
(Fig. S1C), which finally prompted us to choose Seurat. The full-step
integration process included splitting the dataset (SplitObject),
normalizing the data (NormalizeData), obtaining highly expressed genes
(FindVariableFeatures), obtaining highly expressed genes with a high
number of replicates based on the splitting results (SelectInte-
grationFeatures), determining integration anchors (FindInte-
grationAnchors), and integrating (IntegrateData), while adjusting the
split.by parameter of the SplitObject() function in the Seurat standard
integration process, the nfeatures parameter in the FindVaria-
bleFeatures and SelectIntegrationFeatures functions, the anchor.fea-
tures parameter in the FindIntegrationAnchors function, and the
IntegrateData function’s sample.tree parameter in the FindInte-
grationAnchors function and sample.tree parameter in the IntegrateData
function to further optimize the integration results. The integration also
included Seurat’s standard process for scRNA-seq downstream data
processing and analysis, and this study used the integrated data matrix
for normalization (ScaleData), PCA principal component analysis
(RunPCA), UMAP downscaling (RunUMAP), calculation of neighbor-
hoods (FindNeighbors), and cell clustering (FindClusters, resolution =

1.0).

2.4. Single-cell RNA-seq annotation

In this study, the cell types were broadly classified mainly based on
the cell type characteristic genes in the Extended Data provided in the
article [9]. Here we did not regress out with Cell Cycle genes in inte-
gration step, which leaded to identify our proliferative cell types.
Additionally, using the Jaccard index (Ratio of the intersection size of
two sets to the size of the concatenated set), our study calculated the
similarity between the natural clusters and the original annotations of
the datasets to confirm the cluster-cell type correspondence. When batch
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effect appeared in the further detailed annotation, we still used Seurat to
integrate before dimensionality reduction. For clusters hard to be an-
notated with existing markers, we used the FindMarkers of Seurat to
obtain the DEGs of the cluster. After cell annotation was completed, we
removed some cells that included (a) NK cells with high expression of
HSP genes, which may be due to experimental manipulation causing
cellular stress; (b) clusters of cells expressing both T cells and Mac
signature genes; and (c) clusters of T cells with high expression of
antibody-related proteins.

2.5. Macrophage inflammatory score

Pro- and anti-inflammatory gene signatures were obtained from
Leader A.M. et al. [25] (Table S4). Pro- and anti-inflammatory score
were then calculated for all macrophages using the AddModuleScore
function in Seurat. The M1-like and M2-like signatures consistently
aligned with phenotypes of endometrial macrophage subsets across all
four stages (Fig. S4A). For further comparison and visualization, we
normalized the pro- and anti-inflammatory scores of these cells to a 0–1
scale.

2.6. Gene expression module analysis

Gene module (GM) analysis is a common strategy for studying
transcriptomic heterogeneity from single-cell data [26,27]. We gener-
ated gene modules based on cNMF and hierarchical clustering, referring
to these studies. The analysis steps are listed as follows.

(1) Input of NMF analysis. To obtain NMF programs associated with
celltypes and stages, we identified differentially expressed genes
(DEGs) of each cell subset across stages and DEGs of each stage
across cell subsets, excluding mitochondrial (MT) and heat shock
protein (HSP) genes.

(2) Gene program analysis. We then input the expression matrix
containing the aforementioned DEGs and all cells into cNMF
(v1.3.2) analysis, setting the K parameter to obtain NMF gene
programs according to the number of DEGs (10–20 for NK cells,
7–12 for macrophages and T cells). To minimize overlap between
NMF gene programs, we selected the top n genes based on NMF
coefficients (top 50 for NK cells, top 20 for macrophages and T
cells). We identified 20 gene programs in NK cells, 12 gene pro-
grams in macrophages and 10 gene programs in T cells.

(3) Gene module analysis. To group gene programs with similar
expression patterns, we calculated the average expression value
of each gene program in individual cells (NK cells or Macro-
phages or T cells) and computed the Pearson correlation co-
efficients (PCC) between different gene programs. Based on PCC,
we performed hierarchical clustering to obtain GMs. Initially, we
identified 10 GMs in NK cells, 7 GMs in macrophages, and 6 GMs
in T cells. After filtering out GMs that did not show significantly
differences between cell types or stages (Fold change ≥1.1, P <

0.05), we finally obtained 8 GMs in NK cells, 5 GMs in macro-
phages and 4 GMs in T cells (Tables S5, S6, and S7). Each GM
contains all genes of each NMF gene program cluster. Further
functional enrichment analysis of these GMs was performed using
ClusterProfiler (v3.14.3) [28].

2.7. Single-cell metabolism analysis

Respiratory metabolic activity of proliferating NK cells was calcu-
lated using scMetabolism [29]. Activity of Glycolysis/Gluconeogenesis,
Citrate cycle (TCA cycle), and Oxidative phosphorylation could be
calculated with sc.metabolism.Seurat() function. We use recommended
parameters, method for ‘AUCell’, metabolism.type for ‘KEGG’.

2.8. Single-cell trajectory analysis

The differentiation potential of NK cells at each of the four stages was
calculated using CytoTRACE (v0.3.3) [30], respectively. CytoTRACE
outperformed previous methods and nearly 19,000 annotated gene sets
for resolving 52 experimentally determined developmental trajectories.
We run CytoTRACE with raw count matrix. The graphs of predicted
order were created by plotCytoTRACE function with UMAP coordinates.
In contrast to many other pseudotime analysis tools, CytoTRACE does
not require an artificial definition of the differentiation starting point.
Specially, we calculated CytoTRACE score of NK cells in all stages in
Fig. 2E and F, each stage in Fig. S8, and only NKp cells of all stages in
Fig. 2G. Then we used PAGA [31] and DPT [32] as another trajectory
evidence with Scanpy (v1.9.1) under Python (v3.7.11). PAGA graph was
calculated based on the seurat integrated pca matrix produced in Fig. 1.

2.9. Cytokine signaling activity prediction

In our study, CytoSig [33] was used for the prediction of multiple
cytokine signaling activities. The single-cell raw matrices of NK cells,
macrophages and T cells were first normalized by the required log2
(TPM/10 + 1), and then the processed matrices were output as.txt files,
which were converted to.txt.gz files using the gzip command at the
command line. In this study, we used.txt.gz files as the standard inputs to
perform the signal activity prediction of 51 cytokines in the CytoSig
database in the command line, and finally, we selected the.Zscore
(regression coefficient/standard error) files as the result for subsequent
usage.

2.10. Cell-cell interaction analysis

We first obtained a well-known gene list of cytokines [34] and then
performed a preliminary screening and retained them if their average
expression after normalization in single or multiple stages was greater
than 0.5. We obtained stage-specific cytokines with significantly higher
expression in one stage than in other stages and a fold change more than
or equal to 1.05. We then performed hierarchical cluster on expression
of cytokine ligand genes using ComplexHeatmap (v2.11.1) and obtained
4 clusters. We used the CellTalkDB [35] to obtain the receptors corre-
sponding to these cytokine ligand genes. One gene was believed to be
expressed in one cell type when it was expressed in at least 50 % of the
cell type. Then, the potential receptor/ligand and cell type pairs were
defined when cell type A expressed ligand gene X and cell type B
expressing the corresponding receptor gene Y in the same stage. Finally,
we showed all potential cell-cell interactions we predicted here with
igraph (v1.3.1). We further predicted interaction pairs between immune
and non-immune cells in another way by using CellPhoneDB (v3.0.0)9

with a combined interaction pairs database which includes CellPhoneDB
database and CellTalkDB database [35].

2.11. Spatial transcriptomics data analysis

To better investigate cell-cell interactions at different stages, we
collected spatial transcriptomics data corresponding to the stages of
single-cell data. Cohort information of the spatial transcriptomic data
can be found in Table S2. Pathological annotation information for the
slides was obtained from the original research. The visualization of
spatial gene expression was based on log-normalized data. The spatial
correlation of ligand and receptor genes was calculated in a smoothed
gene expression matrix using the PCC. In the smoothed gene expression
matrix, each gene expression value for each index cell was the mean
gene expression taken from the cells in the respective index cell’s
neighborhood (a circle of cells adjacent to the index cell). The decidu-
alization score was calculated using the decidualization gene set (GO:
0046697) with the AddModuleScore function.
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2.12. Disease risk correlation analysis

In analysis part of disease risk genes correlation with stage-specific
genes, we used Fisher’s exact test. Risk gene sets were obtained from
Harmonizome database [36]. Compared to other tests, Fisher’s exact test
is a more appropriate exact test method for our small sample size
(number of genes) [37]. In addition, Fisher’s exact test is usually used to
calculate the relative enrichment score [38]. The function for Fisher’s
exact test is fisher.test in R.

2.13. Statistical analysis

Statistical significance in this study was primarily determined using
the two-sided Wilcoxon rank sum test. The Benjamini-Hochberg method
was applied to adjust for multiple comparisons. The Chi-Squared test
and Fisher’s exact test were utilized for disease association analysis.

3. Results

3.1. An atlas of endometrial cells throughout the reproductive cycle in
healthy women

To investigate the changes in the composition and transcriptome of
endometrial immune cell populations throughout the reproductive
cycle, we collected seven publicly available scRNA-seq datasets obtained
from the endometrial samples of 52 total healthy women [1,5,9,11,12,
14,15]. Specifically, samples from the proliferative (n= 4) and secretory
(n = 11) stages were obtained on days 1–14 and 15–28 of the menstrual
cycle, respectively. The average pregnancy duration of early pregnancy
samples (n = 28) varied from 6 to 14 gestational weeks. Likewise, the
pregnancy duration of late pregnancy samples (n= 9) ranged from 33 to
40 gestational weeks (Fig. 1A).

After removing cell doublets and filtering out low-quality cells, we
applied Seurat to integrate the scRNA-seq datasets of endometrial
samples from different stages of the human female reproductive cycle.
This process resulted in a combined total set of 230,049 single-cell
transcriptomes, including 22,115 cells obtained in the proliferative
stage, 67,098 cells from the secretory stage, 83,111 cells from early
pregnancy, and 57,725 cells from late pregnancy. The resulting gene
expression matrix was normalized, and a subsequent hierarchical clus-
tering analysis revealed the presence of 47 distinct clusters, which were
visualized using uniform manifold approximation and projection
(UMAP) plots. Cell lineages were identified based on predominant
markers (Table S3) [9], including three NK cell subsets (NK1, NK2, and
NK3 cells), two macrophage subsets (Mac1 and Mac2 cells), three T-cell
subsets (CD4+ T, CD8+ T, and Treg cells), dendritic cells (DCs), plasma
cells, granulocytes, and nonimmune cells (including stromal cells,
endothelial cells, fibroblasts, epithelial cells, perivascular cells, and
trophoblasts) (Fig. 1B–D, and Figs. S1A and B). In addition, this analysis
also detected proliferative cell subsets, such as proliferative NK cells
(NKp), proliferative macrophages (Mpro), and proliferative T cells
(Tpro).

Comparison with cell types previously annotated in the literature
showed remarkable consistency with the cell identities of populations in
these datasets, thus confirming the validity of our cluster annotations [1,
5,9] (Figs. S2A–C). In addition, stage-specific subsets of cells in our atlas
were preserved through the cell-typing process. For example, endome-
trial stromal (eS) cells largely appeared in the proliferative stage, while
decidual stromal (dS) cells only appeared in the secretory stage, early
pregnancy, and late pregnancy (Fig. 1B, C and S3A), which aligns well
with the known time of differentiation from eS cells to dS cells [39].
Trophoblasts were also detected only in early and late pregnancy since
they develop to initiate the invasion process after embryo implantation
(Fig. 1B, C and Fig. S3A). These collective results indicated that the
single-cell transcriptome atlas of human endometrial cells from different
stages of the reproductive cycle was reliable for further analysis of

changes in immune cell composition, transcriptome, and intercellular
interactions.

3.2. Dynamics in the proportion of immune cells across different
reproductive cycle stages

The immune cells found in the endometrium play crucial roles in
facilitating a successful pregnancy, including maintaining immune
tolerance, regulating trophoblast invasion, promoting fetal growth, and
fighting infections [7,40–42]. Thus, we next investigated the distribu-
tion of major immune cell subsets (NK cells, macrophages, and T cells)
throughout the reproductive cycle. Notably, during early pregnancy,
these cell subsets all increased significantly (Fig. S3B), indicating their
importance in facilitating normal pregnancy, particularly implantation.

We further investigated the compositional changes in specific cell
subsets within each major immune cell subset. We found that the pro-
portion of NK1 cells significantly increase during early pregnancy, while
NK3 cells, which secrete high levels of cytokines, significantly increase
in late pregnancy and maintain a high proportion with NK2 cells
(Fig. 1E–S3C), both of which were corroborated in Whettlock’s study
using flow cytometry [43]. Additionally, CD4+ T and CD8+ T cells were
observed to increase significantly during late pregnancy (Fig. S3D).
Regarding the macrophage population, Mac1 with pro-inflammatory
characteristics predominates during the secretory stage, while the
anti-inflammatory Mac2 accounted for a higher proportion in early
pregnancy (Figs. S4A and B). Therefore, these results reflect that the
anti-inflammatory environment which aids in the placenta formation in
early pregnancy [3,44] comes from the contribution of multiple cells,
such as an increase in anti-inflammatory macrophages and a decrease in
pro-inflammatory lymphocytes such as NK3 and CD8+ T cells.

3.3. Gene module analysis reveals the functional states and cell origin of
NK cells at different stages

As the most abundant immune cells in pregnancy, NK cells are the
primary subject of our investigation into functional changes throughout
the reproductive cycle [3]. To determine the gene expression differences
between NK cell subsets across stages, we utilized consensus nonnega-
tive matrix factorization (cNMF) and hierarchical clustering strategies,
resulting in the identification of 8 distinct stage-specific gene modules
(GMs) (Fig. 2A) (see Methods).

Functional enrichment analysis revealed that GM1, associated with
ATP metabolism, and GM2, linked to interferon response, were highly
expressed in early pregnancy (Fig. 2C). GM3, involved in cell prolifer-
ation, was notably expressed in NKp cells. Beyond this, GM4, related to
immunity and actin activity, was enriched in secretory stage, which
GM5, associated with protein synthesis, was enriched in late pregnancy.
GM6, linked to immune migration, show enrichment in non-pregnant
stages. Therefore, GM4 and GM6 in NK cells may be involved in cell
migration during tissue reconstruction in non-pregnant stages, particu-
larly in NKp and NK3 cells (Fig. 2B, and S5). Moreover, the significant
increase in protein synthesis during late pregnancy suggests enhanced
cytokine secretion by NK cells.

Within GM1, genes involved in Glycolysis (TPI1, GAPDH), ATP
synthesis and catabolism (ATP5PF, ATP5MF, ATP5MC2, ATP5MG), and
Aerobic respiration (UQCRQ, COX7A2) were highly expressed in NK
cells during early pregnancy (Fig. S7A). Our findings thus support pre-
vious work which characterized the active glycolytic metabolism
amongst NK1 cells within early pregnancy and furthermore, reveal that
oxidative phosphorylation activity of NK cells is more active in early
pregnancy than in other stages. This was further confirmed by single-cell
metabolism analysis (Fig. S7B).

The origin of NK cells remains unclear [7], leading us to focus on NKp
cell-related GM3 of cell proliferation (MKI67, TOP2A). We found that
NKp cells show the strongest proliferative capacity in the non-pregnant
stages, which was further confirmed with the highest G2M phase ratio of
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cell cycle phases (Fig. 2D). Our previous work demonstrated that NKp
cells have the potential to differentiate into other NK cell subsets in early
pregnancy [5]. To further elucidate this phenomenon, we applied
widely used trajectory tools CytoTRACE (Differentiated activities),
PAGA (Connectivities) and DPT (Pseudotime) to NK cells of four stages.
We found that NK cells of all four stages showed similar differentiation

programs, from NKp cells to NK1 to NK2 to NK3 cells (Fig. 2E and F),
which was also found in each of these four stages (Fig. S8). Furthermore,
we found that NKp of non-pregnant stages had a higher differentiation
potential compared to NKp of pregnancy (Fig. 2G). Meanwhile, the
proportion of NKp decreased gradually as the pregnancy progresses
(Fig. 1E). These results suggest that NKp cells of non-pregnant stages

Fig. 1. Single-cell transcriptional landscape of four stages of the reproductive cycle. A. A schematic outline depicting the workflow for data collection from
published literature and subsequent integrated analysis. The number of samples and the number of single-cell transcriptomes collected in each stage (proliferative,
secretory, early pregnancy, and late pregnancy stages) are indicated. B. Uniform manifold approximation and projection (UMAP) embeddings of integrated single-
cell transcriptomes of four stages of samples (dataset batches shown in right bottom). Cells are colored by cell subsets, and dashed circles indicate the major cell
types. NK, natural killer cells; ILC, innate lymphocyte cells; p/pro, proliferative; Mac, macrophages; Mac3, maternal macrophages; HB, Hofbauer cells; DC, dendritic
cells; T, T cells; Teff, effector T cells; Tex, exhausted T cells; MAIT, Mucosal-associated invariant T cells; dS, decidual stromal cells; eS, endometrial stromal cells; PV,
perivascular cells; Epi, epithelial cells; Endo, endothelial cells; Fibro, fibroblasts; uSMC, uterine smooth muscle cells; SCT, syncytiotrophoblast; VCT, villous cyto-
trophoblast; EVT, extravillous trophoblast. C. UMAP embeddings of different stages illustrating no obvious batch effect in this integrated atlas. D. Violin plots of
canonical markers (columns) for major cell types (rows). E. Bar plots of the cell subset composition of NK cells in four stages.
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may have a greater proliferative and differentiation capacity than that of
pregnancy.

Given the possibility that peripheral blood NK (pbNK) cells may act
as a source of endometrial NK cells [45], we assessed the expression
levels of GM6 (Leukocyte migration: CCL5, CXCR4) in endometrial NK
cells. We discovered that the NK3 subset exhibited high gene expression
related to chemotactic properties, such as CXCR4. For annotated pbNK
cells obtained from Vento-Tormo R. et al., GM6 is highly expressed by
CD16+ pbNK cells (Figs. S9A and B). Moreover, CXCL12 (one ligand of

CXCR4) was found to have high expression levels in eS cells and fibro-
blasts during non-pregnant stages (Fig. S9C), thereby suggesting that
NK3 cells could be recruited by these cells.

3.4. Endometrial immune cells display a strong IFN-γ response in early
pregnancy

We also conducted GM analysis on both macrophages and T cells. We
discovered that similar to GM2 of NK cells, both macrophages and T cells

Fig. 2. Transcriptome changes in NK cells in four stages. A. Pearson correlation coefficients (PCC) of the average gene expression of NMF gene programs in all NK
cells. Each row or column is a NMF gene program. Example genes for each gene module are shown on the right side of the heatmap. B. The average gene expression of
GM1, GM3, and GM6 in different NK cell subsets in four stages. C. Gene Ontology (GO) analysis of gene modules in NK cells. D. The G2M phase ratio of cell cycle in
NK cells during four stages. E. Trajectory analysis of NK cells from all four stages based on CytoTRACE. ’Less diff.’ indicates greater differentiation potential. F. Box
plots of NK cell differentiation potential calculated by CytoTRACE of all four stages. G. Box plots of NKp differentiation potential calculated by CytoTRACE in four
stages. Statistical significance between different stages was evaluated with the two-sided Wilcoxon rank sum test. In B), E) and G), the median and interquartile range
(IQR), with whiskers extending to 1.5 × IQR, are shown in the plots. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, ns ≥ 0.05.
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exhibit the strongest type II interferon (IFN-γ) response in early preg-
nancy (macrophage: GM5, T cell: GM1) (Figs. S10 and 11). By using
CytoSig to predict cytokine signaling activity, we further substantiated
this observation (Fig. 3A). Further investigation on the genes contained
in these interferon-associated GMs, we discovered that during early
pregnancy, Mac1 and Mac2 cells express chemokines such as CCL3 and
CCL4 (Fig. 3B). Additionally, NK cells and T cells display elevated levels
of MHC class I molecules, while macrophages display increased levels of
MHC class II molecules. These findings suggest that immune cells
exhibited an activated state and potential antiviral functions during
early pregnancy.

In late pregnancy, we observed that NK cells exhibit robust protein
synthesis capacity (GM5) and primarily consist of NK2 and NK3 cells,
which demonstrate heightened cytokine secretion capabilities (Figs. 1E
and 2C, and Fig. S5). Mac1 cells demonstrate an increase during late
pregnancy and exhibit a strong immune chemotaxis capacity (GM4)
(Figs. S4C and S10). T cells, serving as the predominant immune cell
type in late pregnancy, express genes associated with interleukin
response (GM3) and cell matrix adhesion (GM4) (Figs. S3B and S11).
These findings suggest that late pregnancy fosters an actively immuno-
regulatory microenvironment.

3.5. Stage-specific cell-cell interactions in the reproductive cycle

Cell-cell interactions between immune cells and non-immune cells at
the maternal-fetal interface play a vital role in pregnancy success [9,46,
47], we next explored the correlation between cell-cell interactions and
the maternal events during different stages of reproductive cycle.
Initially, we generated a set of stage-specific cytokines, with approxi-
mately 93 % of them encoding secreted proteins. Potential stage-specific
receptor/ligand pairs were then predicted in different cell subsets during
different stages with CellTalkDB (see Methods). Among the four stages,
the late pregnancy exhibited the highest diversity of ligand-receptor
pairs (n = 20 receptor/ligand pairs) as predicted, followed by early
pregnancy (n = 19) and the proliferative stage (n = 12), while the
secretory stage had the fewest predicted pairs (n = 5) (Fig. 4A, and
Figs. S13A and B).

Next, we utilized CellPhoneDB [9], a tool developed on the context of
endometrial microenvironment, to explore the specific cell-cell in-
teractions between non-immune and immune cell during each stage.
These specific cell-cell interactions were then categorized into func-
tionally related signaling pathways, highlighting enriched pathways for
cellular interaction pairs at each stage (Table S8). For instance, the
HMGB1 and CXCL pathway were prominent in the proliferative stage,

Fig. 3. Type II interferon response of major immune cell subsets. A. Box plots predicting the type II interferon signaling activity of major immune cell subsets in
four stages. B. Dot plots of the expression of type II interferon response genes of major immune cell subsets in four stages. Statistical significance between different
stages was evaluated with the two-sided Wilcoxon rank sum test. In A), the median and interquartile range (IQR), with whiskers extending to 1.5 × IQR, are shown in
box plots. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, ns ≥ 0.05.
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the LIFR pathway in the secretory stage, the CCL pathway in early
pregnancy, and the TGFb pathway in late pregnancy (Fig. 4B). Notably,
various chemokine-related interactions during early pregnancy specif-
ically involved immune cells and EVTs, such as CCL3-CCR1 and
CCL4-CCR1 (Fig. 4C). Previous studies have indicated that immune cells
regulate EVT migration through the chemokine-CCR1 pathway in early
pregnancy [48,49], thereby validating the reliability of our cell-cell

interaction analysis.
In the proliferative stage, we found that the ligand HMGB1, associ-

ated with cell proliferation andmigration, is primarily expressed in NK2,
NK3, and CD4+ T cells, while its receptor SDC1 is expressed in fibro-
blasts and eS cells (Fig. 4C). To validate this stage-specific interaction,
we utilized spatial transcriptomic (ST) data across four stages and found
that the HMGB1-SDC1 pair exhibits strongest interaction in the

Fig. 4. Cell-cell interactions of the endometrium in four stages. A. Circos plots of the receptor/ligand pairs between different cell subsets in four stages. B. The
number of top three signaling pathway-related LR pairs in each stage. C. Dot plots of the expression of ligand-receptor pairs between different cell type pairs. D.
Spatial correlation of ligand and receptor expression during four stages. Mean correlation value of each ligand-receptor pair during each stage was calculated with
pearson correlation coefficient (PCC) in ST data (2 slides for proliferative stage, 2 slides for secretory stage, 8 slides for early pregnancy, and 3 slides for
late pregnancy).
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proliferative stage (Fig. 4D), with co-localization observed between NK
cells and eS cells (Fig. S14A). Additionally, we observed that regions
with HMGB1-SDC1 interaction exhibit stronger proliferation signals,
characterized by high expression of MKI67 and TOP2A (Figs. S14B and
C). In the secretory stage, we identified the LIF-IL6ST pair specifically
between NK2 cells and stromal cells (Fig. 4C and D). LIF is believed to
promote decidualization [50], and we found that regions enriched for
the LIF-IL6ST pair were associated with high expression of
decidualization-related genes, such as IGFBP1 (Figs. S14D–G). During
late pregnancy, we identified stage-specific ligand-receptor pairs
including TGFB1-TGFBR1, MIF-EGFR, and TIMP3-CD44 in both
single-cell and ST data (Fig. 4C, D, and S15), which are associated with
inhibiting cell migration and growth [51–53].

3.6. Association analysis with disease risk genes reveals the potential
clinical significance of stage-specific genes in preeclampsia

Given that various reproductive diseases occur at specific stages,
such as recurrent pregnancy loss (RPL) in early pregnancy [5] and
preeclampsia in late pregnancy [20], we assessed the clinical relevance
of stage-specific gene expression profiles in immune cells. We collected
risk gene sets of five reproductive diseases from the Harmonizome
database [36], including endometriosis, implantation failure,

gestational diabetes (GD), RPL, and preeclampsia (Table S9). With
stage-specific genes of each cell type, we obtained stage-specific risk
genes and then calculated enrichment scores of each cell type during
each stage with Fisher’s exact test, which measured the association
between the risk genes and the stage-specific genes. Notably, Mac1 in
early pregnancy was associated with the high expression of multiple risk
genes for various diseases, such as GD, RPL, and preeclampsia (Fig. 5A).

We found that in early pregnancy, all presented immune cell types
showed a high correlation with the RPL risk gene set (Fig. 5B), which is
consistent with the occurrence of RPL typically in early pregnancy. To
investigate the relationship between stage-specific risk genes and dis-
ease onset, we utilized additional single-cell data from RPL patients
collected during early pregnancy from a previous study [5]. Differential
expression analysis revealed that majority of the risk DEGs were
stage-specific (Fig. S16A). Compared to non-stage-specific risk genes, all
stage-specific risk genes were significantly upregulated in RPL patients
(Fig. S16B), indicating a potential association between the upregulation
of stage-specific risk genes and RPL. Additionally, we identified
stage-specific risk genes associated with endometriosis and implantation
failure during the menstrual cycle, as well as with GD and preeclampsia
during pregnancy (Fig. 5A and B). Further investigation into
stage-specific risk genes revealed genes related to interferon response
and stage-specific interactions (Fig. 5C). We also assessed the clinical

Fig. 5. Clinical relevance between reproductive diseases and immune cells across reproductive stages. A. The enrichment score of disease risk genes within
stage-specific genes of immune cell subsets. Statistical significance calculated by Fisher’s exact test shows clinical relevance with stage-specific genes of each cell
type. -log10 (P value) was defined as the enrichment score. * means P < 0.05. B. The Enrichment score of immune cell subsets in different reproductive cycle stages.
C. The number of stage-specific risk genes in immune cell subsets during different reproductive cycle stages.
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relevance of stage-specific gene expression profiles in non-immune cells.
Notably, genes that are considered pivotal for the appearance of endo-
metriosis, for instance, CDKN1B, HOXA10, and WNT4 [54–56], are
found to be enriched in the secretory stage (Fig. S17A).

To further facilitate researchers in exploring potential disease pre-
dictive biomarkers and therapeutic targets, we have compiled lists of
disease-associated stage-specific risk genes for all cell types across stages
(Table S10).

4. Discussion

Immune cell infiltration of the endometrium has been proposed as an
essential step for promoting a successful pregnancy and immune ho-
meostasis [4]. The large majority of published studies have used
scRNA-seq to examine endometrial cell heterogeneity exclusively in
pregnancy or nonpregnancy stages. In this study, we compiled
scRNA-seq datasets from several cohorts obtained at four distinct stages
of the reproductive cycle, including the proliferative, secretory, early

pregnancy, and late pregnancy stages. Through advanced bioinformatic
analysis, we characterized the immune landscape at each stage to
identify changes in the composition, function, and cell-cell interactions
of endometrial cell populations (Fig. 6). Analysis of proportions revealed
changes in the proportions of NK1 and NK2 subsets during four stages of
reproductive cycle differ from those observed in NK3 cells. Identification
of stage-specific GMs revealed that these immune cells have a strong
type II interferon response in early pregnancy. Additionally, we found
cell-cell interactions related to proliferation promotion in the prolifer-
ative stage and tissue remodeling in early pregnancy. Our integrative
analysis of immune cell subsets during the reproductive cycle provided
insights into the advancement of reproductive processes.

Decidual NK cells have been thought to be derived from CD34+ he-
matopoietic stem cells, mature from immature endometrial NK cells, or
to migrate from peripheral blood NK cells [7,45,46,57,58]. We found
that NKp cells have a strong proliferative capacity and differentiation
potential during non-pregnant stages, and this signal diminishes during
pregnancy. The uterus maintains a low oxygen concentration in the

Fig. 6. Graph abstract of integrated single-cell and spatial transcriptomics data analysis in healthy endometrium across reproductive cycle. ▴ represents a
significant increase in the proportion of this cell type at the indicated stage, while * indicates a significant association of this cell type with reproductive disease risk at
the indicated stage. Created with BioGDP.com.

K. Chen et al.

http://BioGDP.com


Biochemistry and Biophysics Reports 39 (2024) 101802

11

early stages of implantation, while appearing to rise in early and
mid-pregnancy [59]. We speculate that low oxygen concentrations
during non-pregnant stages favor glycolytic metabolism and prolifera-
tion of NKp [60], whereas oxygen concentrations during early preg-
nancy favor a strong oxidative phosphorylation metabolism and
functions of NK cells. We also observed that the relative proportions of
NK1 and NK2 cells showed an increase in early pregnancy and a
decrease in late pregnancy. Both existing studies [5,9,14] and our results
show that NK1 and NK2 cells have similar transcriptome profiles
compared with NKp cells. In contrast, NK3 cells have the least tran-
scriptome similarity to NKp cells, while they exhibit a chemokine
pattern similar to that of pbNK cells. Several studies of decidua in mid-
and late pregnancy failed to separate uterine leukocytes from maternal
or fetal blood leukocytes [61], indicating that uterine leukocytes are
similar to peripheral blood leukocytes at this time, which may be asso-
ciated with an increase in the proportion of NK3 in late pregnancy. Thus,
we speculate that NK cells may derive from NKp and pbNK cells, while
NK1/2 and NK3 may arise from different precursor cells.

During the process of placentation, EVT migrates into the maternal
uterus to remodel spiral arteries [9]. We identified the cytokines CCL3,
CCL4, CCL5, ICAM1, and SPP1 during early pregnancy, which may help
to promote EVT invasion. SPP1 was previously reported to be produced
by NK cells and macrophages [9,61], and its expression was higher in
macrophages than in NK cells. Excessive invasion of EVT is harmful, and
the rate of EVT invasion decreases during pregnancy [62]. TGFB1 and
TIMP3 were identified during late pregnancy in our results, which are
both reported to regulate EVT invasion [62]. Immune cells (NK cells,
macrophages, T cells, and DCs) and non-immune cells (fibroblasts,
endothelial cells, stromal cells, and other trophoblast cells) appear to be
involved in this process. Mast cells and neutrophils may also regulate
EVT invasion [62].

By integrating our data with risk gene sets associated with common
reproductive diseases, we elucidated the clinical relevance of stage-
enriched gene expression profiles. For instance, risk genes for RPL
preferentially expressed in early pregnancy were significantly upregu-
lated in RPL patients. In a recent study [20], maternal blood samples
were utilized to identify and verify cfRNA transcriptomic changes that
are linked to preeclampsia. Genes that can differentiate between pa-
tients with preeclampsia and healthy individuals in early pregnancy
were identified. By examining intersections of stage-specific risk genes
and cfRNA genes, two candidate risk genes (CLU and TGFBR1) were
identified, especially TGFBR1, which was highly expressed in both im-
mune cells and non-immune cells during the secretory stage (Figs. S17B
and C). Thus, our integrated analysis underscores the potential clinical
significance of profiling stage-specific gene sets.

Our work has some limitations and room for improvement. Our study
included a relatively small size in certain stages, such as the proliferative
stage and late pregnancy, necessitating further validation with larger
cohorts to enhance the credibility of our findings. Since the late preg-
nancy samples were obtained immediately after delivery, we cannot rule
out the possibility that delivery may have introduced unknown changes
to the transcriptomic profiles of endometrial cell types. Although we
visualized the co-localization of stage-specific pairs of ligands and re-
ceptors using spatial transcriptomic data, further validation at the pro-
tein level (e.g., multiplex immunofluorescence) is still required.

In summary, our new findings in this study provide a reference for
further investigation of the multifaceted changes in immune cells in
different stages of the healthy female reproductive cycle and provide
clues for the prediction and treatment of pregnancy-related diseases.

5. Conclusion

To elucidate the changes that endometrial immune cells undergo
throughout the reproductive cycle, we constructed an integrated single-
cell transcriptomic atlas spanning various stages. This revealed the
composition of immune cell types in the endometrium at each stage,

such as a significant increase in NK1 cells during early pregnancy and a
marked rise in T cells during late pregnancy. Utilizing NMF analysis, we
identified stage-specific immune cell gene modules, including prolifer-
ation and chemotaxis modules during the menstrual cycle, glucose
metabolism and interferon response modules in early pregnancy, and
protein synthesis modules in late pregnancy. Additionally, we uncov-
ered a potential NK cell differentiation trajectory that remains stable
across the four stages. When exploring the relationship between stage-
specific changes and immune-non-immune cell-cell interactions, we
discovered interactions linked to the promotion and inhibition of cell
proliferation, migration, and decidualization, which we further vali-
dated using spatial transcriptomic data. Finally, we collected risk genes
associated with reproductive diseases and identified stage-specific risk
genes (Fig. 6). These findings may provide a good reference and po-
tential biomarkers for future research on endometrial diseases.
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