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The MyoD experiment already demonstrated that differentiated 
cells do not have to be pushed up all the way the “Waddington 
canal”8 to a completely undifferentiated cell type before subsequent 
re‑specification to an alternative cell fate. Instead, the MyoD conversion 
of fibroblasts directly to muscle indicates that direct transdifferentiation 
can be accomplished without a pluripotent intermediate. Yet, analogous 
to the MyoD example, lineage conversion was initially only reported 
between cell types originating from a similar developmental trajectory 
such as the interconversion of two immune cell types, B cells (lymphoid 
cells) to macrophages (myeloid cells),9 exocrine to endocrine pancreatic 
cells,10 glial cells to neurons,11 brown fat to muscle cells12 and fibroblasts 
to cardiomyocytes.13 All of these transdifferentiation events are within 
the same germ layer (i.e. mesoderm to mesoderm or neurectoderm 
to neurectoderm). Eventually, conversions between cells originating 
from different germ layers could also be achieved as fibroblast as well 
as hepatocytes could be directly converted into functional neurons with 
defined TF cocktails.14–16 Apparently, even pronounced reprogramming 
barriers separating very distant cellular states can be crossed with 
small sets of lineage specifying TF proteins. The appreciation of this 
astonishing developmental plasticity sparked a plethora of studies 
attempting to re‑direct cell fates. For example, blood cells,17 endothelial 
cells,18 hepatocytes,19–21 sertoli cells22 and thymic epithelial cells23 could 
be successfully generated with TF cocktails. Readers are referred to 
excellent reviews that discuss the progress of cellular reprogramming 
and lineage conversions in more detail.24–33 Remarkably, particularly 
potent reprogramming factors such as Oct4 were found to be able to 

SWITCHING CELL FATES WITH TRANSCRIPTION FACTOR 
PROTEINS
The notion that organismic development does not stubbornly follow a 
predetermined path but is a rather plastic process has been made long 
before DNA was recognized as the carrier of inheritable information.1 
Nearly 100 years later, cellular reprogramming was first demonstrated 
when live tadpoles arose after transferring the nuclei of frog intestine 
derived somatic cells into oocytes.2 This observation led to the 
realization that even fully differentiated cells must still contain the 
complete genetic blueprint required to build a whole organism. That 
transcription factors (TFs) are remarkably powerful to drive cellular 
reprogramming, that is to convert one cell type into another, was first 
demonstrated by turning a mouse fibroblast into a muscle cell with a 
cDNA encoding a single TF, MyoD (Myod1).3 Subsequently, a cocktail 
of four TFs, Krüppel‑like factor 4 (Klf4), c‑Myc, Sry (sex determining 
region y) box2  (Sox2) and octamer binding protein 4  (Oct4), was 
discovered to induce pluripotent stem cells  (iPSCs) when forcibly 
expressed in fibroblasts of mouse4 and human.5,6 Since this seminal 
work, cellular reprogramming has become a mainstream research 
activity. Like embryonic stem cells derived from the blastocyst, iPSCs 
can be passaged in culture for indefinite periods and given appropriate 
growth conditions, can be differentiated into all cell types of the body.7 
The latter can straightforwardly be demonstrated by transplanting 
iPSCs back into blastocysts, but it is a challenge to recapitulate this 
process in vitro.
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demonstrated that cell fates are not fixed and that cellular differentiation can be a two‑way street with many intersections. These 
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from chimeric TFs with added transactivation domains, designer transcription activator‑like effectors to activate endogenous TFs 
to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein 
design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from 
reprogramming technologies.
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induce reprogramming alone in certain cell types and other cell types 
with small molecule supplementation.34–36 Moreover, a few studies have 
reported that TFs can be omitted altogether as induced pluripotent 
or neuronal cells could be produced solely with small molecules.37,38 
However, efficiency of chemical reprogramming is considerably lower 
than TF based approaches and applications currently remain limited 
to mice. Hence, TF based cell lineage conversions continue to be the 
most effective and versatile approach. Therefore, we will focus our 
discussion on efforts to enhance TF based cell lineage conversions 
through protein engineering.

ROADBLOCKS ON THE WAY TO FUNCTIONAL CELLS
The excitement sparked by cellular reprogramming is catalyzed by its 
promise to lead to new clinical applications. One strategy is to conduct 
“in vitro clinical trials.”26,39 That is, cells obtained from patients through 
biopsies, blood or urine samples are differentiated into disease‑relevant 
cell types. Next, preselected drugs or drug libraries can be assessed 
for their toxicity and potential to exert curative effects on those cells. 
It is hoped that this approach will accelerate personalized therapies, 
facilitate drug discovery and avoid the prescription of drugs that 
are toxic or ineffective to certain patient populations. Moreover, 
reprogramming technologies can be used to model human diseases in 
a dish. Here, the behavior of cells derived from patients is compared to 
cells from healthy donors. If disease‑causing mutations are known, the 
mutation can be engineered using genome editing technologies and 
genetically matched isogenic cell lines can be studied. This way, diseases 
can be understood at an unprecedented depth, cellular pathways can 
be mapped, biomarkers can be discovered and therapeutic strategies 
can be developed. Lastly, the holy grail of stem cell research is to 
produce functional cells that can be transplanted back into patients 
to remedy degenerative diseases.40 Encouragingly, diseases could 
be cured through cell therapies in animal models. For example, 
gene‑corrected iPSC derived hematopoietic progenitors transplanted 
back into humanized sickle cell anemia mouse models could cure the 
animals.41 This has led to the hope that diseases caused by deficiencies 
in well‑defined cell types such as type 1 diabetes,42 Parkinson’s disease43 
and retinal degeneration44 are curable with cell‑based therapies. 
Though, hematopoietic stem cells have been used in bone marrow 
transplants since the 1950’s, cell therapies in humans still pose major 
challenges, and daunting roadblocks remain. Most importantly, safety 
has to be rigorously assessed before transplanting the reprogrammed 
cells. iPSCs resemble cancer cells in many ways and are teratogenic 
when injected into mice. This poses a significant risk as incomplete 
differentiation, and remnant pluripotent cells could potentially lead to 
cancerous growth.45,46 Collectively, avoiding insertional mutagenesis, 
oncogenic TFs and pluripotent reprogramming intermediates could 
solve this problem. Furthermore, it is often problematic to terminally 
differentiate cells so that they fully replicate the function of the cells 
matured in vivo. Cells have to be stable and need to be expandable 
so that they can be produced in sufficient quantities needed to 
support transplantation medicine. Ideally, reprogramming strategies 
should leave the genome unscathed, utilize cells that are genetically 
matched to the recipient with just the disease‑causing loci corrected 
and produce an epigenetic state identical to the tissue embedded cell 
they are meant to replace. While optimized factor cocktails, novel 
culture conditions and small molecule compounds will likely further 
advance reprogrammed cells toward the clinic, we surmise that the 
engineering of the reprogramming TFs themselves provides a viable 
strategy to be further explored.

DESIGNING BETTER PROTEINS
Bioengineering proteins to either enhance their activity or to install 
completely novel functions has been successfully accomplished in 
numerous instances. Day‑to‑day laboratory operations utilize a range 
of artificially enhanced proteins. Those include DNA polymerases with 
thoroughly optimized fidelity,47–49 proteases with engineered activity 
and substrate specificity50 and fluorescent proteins with increased 
brightness.51,52 Likewise, protein therapeutics are often rationally 
improved. In particular coagulation factors to treat bleeding disorders 
were bioengineered in a variety of ways.53 For example, factor IX was 
engineered to have prolonged activity by fusing it to a Fc fragment54 
and the coagulation factor VIIIa was rationally mutagenized for 
inactivation resistance and optimized secretion profiles.55,56 More 
ambitious goals include the engineering of whole pathways leading to 
the biotechnological synthesis of new products.57,58

What are the methods protein designers use to achieve their 
engineering goals? A rather simple way is to concatenate functional 
protein domains or even whole proteins. Examples include fusions 
of green fluorescent protein with antibody fragments that increase 
their brightness59 or attaching effector domains such as nucleases 
to artificial TFs with customized DNA sequence preferences.60 In 
addition, functional regions such as phosphorylation sites, protease 
cleavage sites, and signaling sequences can be rationally modified 
to install desired properties.55,56 Most commonly, rational and 
randomization strategies are combined to achieve the desired results. 
Using the knowledge of the protein’s structure, sequence conservation 
and functional insights gained from site‑directed mutagenesis 
experiments can lead to the selection of functionally important 
structural elements. Such elements could be individual or a small 
set of amino acids, secondary structure elements or subdomains. 
Frequently, design efforts target catalytic centers, substrate binding 
pockets or macromolecular contact interfaces. Those elements can then 
be modified taking biophysical parameters such as charge, size, and 
hydrophobicity, as well as functional data and sequence information 
of homologs into account. Yet, rationally predicting how a specific 
structural modification affects protein activity is a daunting task as our 
understanding about the structural basis for protein function remains 
limited. Therefore, protein designers often subject, structural elements 
earmarked for protein optimization to directed evolution.61 This 
strategy requires a carefully designed randomization strategy, which 
can include error‑prone polymerase chain reaction,62 site‑directed 
mutagenesis with randomized oligos63 and “chimeragenesis,” that is 
the recombination of protein fragment libraries.64 Libraries of modified 
proteins now undergo a screening and selection procedure to identify 
variants with improved functionality. Selection systems include binding 
assays such as phage display,65 ribosome display,66 enzymatic assays,67 
tests for protein stability,68 genetic complementation combined with 
phenotypic read‑outs69 and in vitro compartmentalization.70 Obviously, 
selection system design is critical as desired protein variants would 
escape detection if the screen cannot rigorously discriminate between 
enhanced and unwanted variants of the designed protein.61

Remarkably, efforts are being made to design proteins entirely from 
scratch using fragment libraries of nonnatural peptide sequences with 
minimal architectural constraints. Given the mindboggling number 
of theoretically possible protein sequences this seems like a herculean 
feat. Nevertheless, de novo design has led to the creation of some 
functional sequences.71,72 Thus far, examples for the engineering of TF 
proteins are still rather rare. Here we ask whether the toolkit of protein 
engineering could be employed to design reprogramming TFs to more 
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effectively engineer cell lineage conversions and to bring progress to 
regenerative biomedicine.

ENGINEERING SYNTHETIC REPROGRAMMING FACTORS
Enhancing reprogramming efficiency with potent transactivation 
domains
The optimization of reprogramming strategies has been a priority 
for many laboratories as the original protocol was rather inefficient. 
Efficiency enhancements could be achieved by supplementing the 
media,73 altering the factor cocktails,74–77 changing the sequence 
of factor addition,78 adding small molecules35,79–84 or removing 
reprogramming roadblocks.85,86 In addition, some studies resorted to 
protein engineering to improve reprogramming (Table 1). Based on the 
assumption that reprogramming TFs mainly act by inducing mRNA 
synthesis of their target genes, several engineering efforts were made to 
increase the transactivation potential of TFs by fusing them to potent 
transactivation domains (TADs) (TAD‑TFs, Figure 1).

Viral protein 16‑transactivation domain
The viral protein 16 (VP16) is a 490 amino acids TF protein of the 
herpes simplex virus with strong transactivating activity (Figure 1a). 
Its potent TAD was mapped and molecularly dissected more than 
25  years ago and found to consist of an acidic C‑terminal region 
spanning approximately 80 amino acids.87,88 Immediately after its 
discovery the VP16‑TAD has been utilized to engineer chimeric TFs 
with enhanced activity.89 More recently, VP16 has also been utilized to 
enable cellular reprogramming. When the VP16-TAD was fused to the 
Xenopus ortholog of the pancreatic and duodenal homeobox1 (Pdx1), 
a chimeric protein could induce the conversion of liver cells to 
pancreatic cell in transgenic tadpoles.90 A similar Pdx1‑VP16 fusion 
induced insulin biosynthesis and ameliorated glucose tolerance in 
mouse diabetic models.91,92 In an effort to enhance iPSC formation 
the VP16‑TAD was fused to pluripotency reprogramming factors.93 In 
this study, a core fragment of the VP16-TAD (residues 446-490) was 
attached to Oct4, Sox2, Klf4 and Nanog TFs separated by a glycine‑rich 
linker (Figure 1a). With the exception of Klf4, the engineered TAD‑TFs 

substantially outperformed the wild‑type proteins with regards to 
both the efficiency and the kinetics of iPSC generation in mouse and 
human cells. Moreover, Oct4‑VP16 alone could efficiently reprogram 
mouse embryonic fibroblasts into germline‑competent iPSCs.93 An 
Oct4 construct containing three C‑terminal VP16 copies arranged in 
tandem exhibited the highest efficiency (Figure 1b).

A separate study also reported that fusions of VP16 to mouse Oct4, 
human Oct4 and Xenopus Xlpou91 could support reprogramming as 
well as rescue Oct4 null ESCs.94 However, the authors did not observe 
a substantial enhancement in the reprogramming efficiency by the 
engineered proteins. The differences between the two studies could be 
caused by variations in the reprogramming conditions and construct 

Table  1: Engineered reprogramming factors

Protein modified Type of modification Effects on reprogramming and differentiation References

Reprogramming factor modulation with potent TADs

Oct4 Fusing the MyoD TAD to Oct4 ~50‑times more iPSC colonies compared to OSKM 97

Oct4, Sox2, Nanog VP16‑TAD linked to Oct4, Sox2 and Nanog Enhanced reprogramming of mouse and human fibroblasts; single 
factor reprogramming with Oct4-VP16

93

Oct4 and Xlpou91 Vp16 linked to Oct4 and its Xenopus orthologue iPSC induction similar to WT cocktail 94

Sox2, Sox18, Sox4 Sox17‑TAD linked to Sox2, Sox18EK and Sox4EK ~3–5 more iPSC colonies than Sox2‑WT 95

Oct4, Sox2, and Nanog YAP‑TAD linked to Oct4, Sox2 and Nanog ~100‑fold iPSC induction efficiency increase and 24 h reprogramming 103

Pdx1 VP16‑TAD fused to Xenopus Pdx1 Conversion of liver to pancreas in Xenopus tadpoles 90

Pdx1 VP16‑TAD fused to mouse Pdx1 Induces insulin synthesis and ameliorates glucose tolerance in 
diabetic mouse models

91,92

MyoD DNA‑binding domain of MyoD fused to the TAD of 
myocardin

Improves directed differentiation of human mesenchymal stem cells 
into skeletal myocytes

149

Mef2c MyoD TAD linked to Mef2c 15‑fold efficiency increase in fibroblasts to cardiomyocytes conversion 102

Targeted activation of endogenous reprogramming factors

TALEs Designer TALEs with VP64 targeting the distal 
Oct4 enhancer

Substitutes for exogenous Oct4 to generate iPSCs with comparable 
efficiency

120

Reprogramming factors with engineered DNA recognition properties

MyoD and E12 Swap of three amino acids from MyoD into E12 Mutant E12 can convert fibroblasts into myocytes 122

Sox17 and Sox2 Point mutation in the DNA binding domain of Sox17 Conversion of Sox17 into an iPSC inducer with about 4‑fold greater 
efficiency than Sox2

142

TAD: transactivation domain; Oct4: octamer binding protein 4; iPSC: induce pluripotent stem cells; MEFs: mouse embryonic fibroblast; TALEs: transcription‑activator‑like effectors; 
YAP:  yes‑associated protein; Pdx1: pancreatic and duodenal homeobox 1; OSKM: Oct4, Sox2, Klf4, and c‑Myc; VP16: viral protein 16; Klf4: krüppel‑like factor 4; WT: wild‑type

Figure  1: Enhancing reprogramming efficiency with TAD‑TF chimeras. 
(a) Domain structure of VP16, MyoD and YAP from which TADs were 
derived. (b) Domain structure of chimeric Oct4-TAD proteins demonstrated to 
potently enhance the reprogramming of somatic cells to iPSCs.93,97,103 YAP1 
was drawn according to Uniprot‑ID P46938 and VP16 and MyoD according to 
Hirai et al.,99 2010. TAD: transactivation domain; bHLH: basic helix‑loop‑helix 
domain; POU: Pit1‑Oct‑Unc‑86 related domain; TEAD‑IA: interaction 
region with the TF TEAD; TFs: transcription factors; Oct4: octamer binding 
protein 4; iPSCs: induce pluripotent stem cells; VP16: viral protein 16; 
YAP: yes‑associated protein.
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design as different VP16 fragments, linkers, and VP16 copy numbers 
were used. The potency of the VP16‑TAD for iPSC generation was 
again highlighted when it could be shown that fusions of VP16 to 
the truncated DNA binding high‑mobility group (HMG) domain of 
Sox2 imparted some reprogramming activity to the otherwise inactive 
HMG fragments.95

MyoD‑transactivation domain
Inspired by the remarkable potency of MyoD to single‑handedly 
convert fibroblasts into muscle cells96 Hirai et al.97 asked whether the 
TAD of MyoD can enhance reprogramming to pluripotency. MyoD, a 
TF of the basic helix‑loop‑helix (bHLH) family,98 contains a ~60 amino 
acid TAD at its N‑terminus99  (Figure 1a). The authors generated a 
series of MyoD TAD fragments and generated chimeric proteins by 
attaching them to the full‑length mouse Oct4 protein. A  chimeric 
protein consisting of a MyoD fragment (residues 1–62) attached to the 
N‑terminus of Oct4 (termed M3O, Figure 1b) was found to strongly 
amplify the number of iPSC colonies in reprogramming assays using 
mouse and human cells. However, increasing the copy number of the 
M3 fragment was detrimental to iPSC generation. Notably, neither 
Klf4 nor Sox2 could be enhanced with the M3 fragment. Rather 
M3Sox2 and M3Klf4 fusions inhibited reprogramming. Likewise, 
replacing M3 with the TADs of Gata4, Mef2c, Tax and Tat eliminated 
the reprogramming activity of Oct4. Collectively, the engineered 
M3O factor appears to support reprogramming in a more specific 
and context‑dependent manner in contrast to the VP16 fusions 
that allow a more flexible design.97 It was subsequently found that 
when culturing the cells in serum‑free media at low density, M3O 
containing cocktails could enhance iPSC formation to 26% and 7% 
of the transfected mouse or human cells, respectively.100 Moreover, 
when tested side‑by‑side, the M3O construct outperformed Oct4‑VP16 
fusions.100 Consistently, in a study done by another group, M3O was 
found to accelerate reprogramming based on a cocktail using modified 
messenger RNAs.101 Motivated by the success in using the M3 domain 
to optimize Oct4 activity, Hirai et al.102 went on to ask whether factors 
involved in cardiac transdifferentiation can be improved through M3 
chimeras. While M3 fusions to Gata4, Tbx5 and Hand2 had either no 
or adverse consequences, M3‑Mef2c chimeras lead to a 15‑fold increase 
in the number of beating clusters of induced cardiomyocytes (iCMs).
Mef2c‑VP16 fusions also showed some increase in iCM formation, 
albeit to only 20% of the M3Mef2c levels.

Yes‑associated protein‑transactivation domain
More recently, the TAD of the yes‑associated protein (YAP) was used 
to engineer iPSC inducing TFs (Figure 1a).103 YAP is a downstream 
effector of the Hippo signaling pathway and co‑activates transcription 
in concert with TFs of the TEAD family by recruiting histone 
methyltransferases.104 YAP promotes oncogenesis as well as the 
self‑renewal of ESCs via its potent transactivation activity.105,106 Its 
C‑terminal TAD was found to activate reporter genes as potently as the 
VP16 TAD.107 Zhu et al.103 fused the C‑terminal YAP residues 275‑489 
to the C‑termini of Oct4, Sox2 and Nanog to generate the engineered 
proteins Oy, Sy and Ny (Figure 1b). When this cocktail was used for 
iPSC induction in combination with native Klf4, the reprogramming 
efficiency rose from <1% to ~40%. Furthermore, the reprogramming 
kinetics was markedly accelerated with iPSC colonies appearing on 
the day after switching the transfected fibroblasts to ESC medium. The 
Sox2‑YAP fusion was reported to be most critical for the acceleration 
among the three modified TFs.

What do the three TADs used to engineer reprogramming TFs have 
in common? They consist of predominantly acidic and hydrophobic 

residues leading to a strongly negative net charge. However, none of 
the TADs has been structurally characterized presumably due to their 
flexible structure in the absence of binding partners. Therefore, the 
molecular details of how those TADs create a chromatin environment 
instructive for the mRNA synthesis of nearby genes remains 
unclear. While a series of TAD interaction partners were previously 
detected,99,108 the affinity and selectivity of those TADs for co‑regulators 
such as p300 or the mediator complex has not yet been studied in a 
systematic manner. Hence, whether those TADs mediate a general, or 
a TAD specific mechanism of transcriptional activation awaits further 
exploration. Collectively, there appear to be no obvious rules of how 
TAD‑TF chimeras should be designed to engineer lineage converting 
TFs. Rather, optimal constructs had to be empirically produced for 
each TAD‑TF combination.93,94,97 For example, increasing TAD copy 
numbers can either boost93 or impede TAD‑TF activity.94,97,109 Further 
parameters to be optimized include the length of the TAD fragment 
used, the position of the TADs at either the N‑ or C‑termini of the TFs, 
and the inclusion of linker sequences.

Inducing endogenous reprogramming factors with TAL effectors
Artificial proteins based on C2‑H2 zinc‑finger proteins  (ZFPs), 
transcription activator‑like effectors  (TALEs) and RNA‑guided 
clustered regularly interspaced short palindromic repeat  (CRISPR) 
Cas  (CRISPR associated) can be designed to target genomic loci 
with high specificity. Typically, those proteins are constructed to 
contain nuclease effector domains that enable genome editing at 
single base‑pair resolution (reviewed in110,111). While off‑target effects 
had been a lurking concern, whole genome sequencing studies 
demonstrated that unwanted modifications are very rare.112,113 Recently, 
designer TALEs (dTALEs) and ZFPs have also been used to engineer 
transcriptional activators.114,115 TALEs consist 33‑34 amino acid repeat 
domains with hypervariable residues at position 12 and 13.116 The 
identity of the dipeptide at positions 12/13 determines a recognition 
code (HD = C, NG = T, NI = A, NS = A, C, G or T, NN = A or G), which 
allows to rationally create dTALEs that recognize DNA sequences 
of choice.116 As up to 33 TALE repeat domains can be arranged in 
tandem, genomic loci can be targeted with high precision. Although, 
dTALE design is somewhat more straightforward than ZFP design, 
initial efforts were undertaken using ZFP‑VP16 fusions constructed to 
target a sequence proximal to the transcriptional start site of Oct4.117 
In another attempt, the fusion of a KRAB domain fused to a designer 
ZFP could activate endogenous Oct4 protein in series of cell lines.118 
This was a surprising observation because the KRAB conventionally 
acts as transcriptional repressor. dTALE‑VP16 fusions designed to bind 
proximal promoter sequences of SOX2, Klf4, c‑MYC and Oct4 could 
activate reporter constructs, but only dTALEs targeting Klf4 and SOX2 
could also activate the endogenous genes in 293FT cells.60 Moreover, 
dTALEs targeting the proximal promoter of Oct4 could activate the 
gene in NSCs where it is otherwise silenced. However, this strategy 
required the addition of histone deacetylase or DNA methyltransferase 
inhibitors suggesting that some chromatin loosening is needed for the 
dTALE‑TF to access its target site.119

Gao et al.120 asked whether dTALE‑TFs can replace conventionally 
used reprogramming TFs by activating their endogenous counterparts.
The authors used VP64‑TADs (four tandem repeats of VP16) to 
engineer designer transcription activators (A‑dTF) that target distal 
enhancers of reprogramming factors.120 Indeed, a A‑dTF designed to 
activate endogenous Oct4 could replace exogenous Oct4 and induce 
iPSCs in combination with c‑Myc, Klf4 and Sox2. While reprogrammed 
cells appeared faster when using the A‑dTF the overall iPSC colony yield 
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was higher when Oct4 was used directly.120 The authors went on to show 
that A‑dTF, targeting a distal Nanog enhancer could convert epiblast 
stem cells into ESCs. This study provides an elegant proof‑of‑concept 
that TALE‑based TFs can replace native reprogramming factors. 
However, as the sole function of dTALE‑TFs is to activate endogenous 
reprogramming factors that would eventually have to finish the job, 
it remains to be demonstrated whether this method can enhance cell 
lineage conversions.

Engineering chromatin association of reprogramming factors

Turning E12 into a myogenic transcription factor
The TAD‑TFs and TFs endogenously activated by A‑dTFs will likely 
engage the genome in the same manner as the native TFs as the DNA 
recognition domain is not modified. So far, only a few engineering efforts 
focused on protein interfaces involved in DNA recognition that would 
alter their genomic binding profile. Still, several swap experiments that 
install new functions and create engineered reprogramming TFs have 
been successful. The reprogramming pioneer Weintraub had provided 
the first evidence that lineage conversion activity of reprogramming TFs 
can be radically interchanged with strategically placed point mutations 
at the DNA contact interface.121,122 Following the seminal discovery that 

MyoD alone can induce a myogenic program in fibroblasts,3 Weintraub 
et al. continued to dissect the molecular basis of its specific activity. 
MyoD belongs to the bHLH family of TFs whose members bind to 
short palindromic CANNTG E‑box motifs as homo‑or heterodimers. 
By adopting a scissor‑like architecture, bHLH TFs bind the major groove 
of the DNA through the basic regions of helix198 (Figure 2a). The E‑box 
can be bound by most bHLH with similar affinity and many amino acids 
contacting the DNA are highly conserved. Nevertheless, some subtly 
different sequence preferences have recently been detected which could 
contribute to distinctive roles of bHLH TFs in cell fate determinations.123 
Weintraub compared the DNA recognition and the reprogramming 
potential of MyoD and E12, another bHLH factor that is ubiquitously 
expressed and does not trigger myogenesis.121,122 By grafting just three 
amino acids from MyoD into E12: N114A and N115T of the basic 
region and D124K of the linker (MyoD numbering; residues 6,7 and 
17 – numbering according to current bHLH conventions), E12 acquired 
the ability to convert fibroblasts into muscle cells121,122  (Figure  2a). 
As the Ala‑Thr dipeptide is conserved in myogenic bHLH TFs, this 
sequence is critical for executing a myogenic gene expression program. 
Surprisingly, the large degree of sequence variation between MyoD and 
E12 outside the bHLH domain did not contribute to their cell type 

Figure 2: Rational engineering how reprogramming factors read genomes. (a) Dimeric MyoD structure bound to DNA (pdb‑ID 1 mdy 98). The DNA is shown as 
a gray surface plot and the two MyoD molecules forming the dimer as yellow and brown cartoon. Residues engrafted from MyoD into E12 to turn E12 into a 
myogenic protein are shown as black ball‑and‑sticks and are highlighted with a dashed oval. (b) Structural models showing heterodimers of Oct4 (light blue) 
and Sox2 (yellow) on the canonical motif and Oct4‑Sox17 (orange) on the compressed motif. Sox residues that determine the discriminative heterodimerization 
with Oct4 on canonical and compressed motifs are shown as black ball‑and‑sticks. Transplanting Lys57 from Sox2 into Sox17 alone turns Sox17 into a potent 
inducer of pluripotency.142 The structural models were constructed as described in 146 based on coordinates derived from pdb‑IDs 3f27 and 1 gt0.129,130,145 To 
the right of the structural cartoons the domain structure of MyoD versus E12 and Sox2 versus Sox17 is compared. The percentages above the domain 
plots indicate the amino acid identity between the protein pairs in the N‑terminal, DNA binding and C‑terminal region. The alignment was performed using 
sequences derived from Uniprot: MyoD P10085; E12:P15806; Sox2:P48432; Sox17:Q61473. Oct4: octamer binding protein 4.
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specific functions  (Figure 2a). Rather, just three amino acids at the 
DNA interaction surface specify their functional diversity. Subsequent 
studies suggested that the Ala‑Thr dipeptide affects the conformation of 
Arg‑111 in the basic region and thereby modulates the access of Arg‑111 
to the major groove of the DNA binding site.124 Those rearrangements 
at the DNA‑binding interface could translate into allosteric events at 
other interfaces, such as binding sites for chromatin modifiers, and 
thereby influence the functional consequences of the binding event.125

Turning Sox17 into a pluripotency inducer
Our laboratory has made efforts to scrutinize the mechanism how 
proteins of the 20‑member Sox family recognize their DNA target 
sites. Confusingly, all Sox proteins bind a near‑identical CATTGT‑like 
sequence126,127 and engage DNA by binding to the minor groove to 
induce a 70° kink using a conserved set of amino acids.128–136 How then 
can individual members select specific gene‑sets to initiate characteristic 
cell fate decisions? The DNA binding HMG domain of Sox protein 
not only mediates sequence‑specific DNA recognition but is also the 
main determinant of a partner code enabling selective interactions 
with other TFs.137–141 By conducting quantitative electrophoretic 
mobility shift assays to study the HMG mediated partnership with 
the Pit1‑Oct‑Unc‑86 (POU) domain of Oct4, we observed different 
propensities of Sox‑family members to heterodimerize with Oct4 
on a series of differently configured composite sox‑oct binding 
sites.133,142 In particular an unusual “compressed” element‑where one 
nucleotide separating the sox and oct half sites is removed  –  still 
recruits Sox17/Oct4 dimers, whereas Sox2/Oct4 dimers can no longer 
assemble  (Figure  2b). Conversely, the Sox2/Oct4 pair dimerizes 
markedly better on the canonical motif than the Sox17/Oct4 pair. In the 
search for the structural basis for these differences, a single amino‑acid 
at position 57 of the HMG caught our attention. This residue, a Lys in 
Sox2 and a Glu in Sox17, shows a high degree of sequence variation 
amongst paralogous Sox proteins although it occupies a critical position 
at the Oct4 interaction interface.129,130,132,133 By exchanging this residue 
between Sox2 and Sox17 to produce Sox17EK and Sox2KE proteins, 
highly cooperative dimer formation of the Sox17EK/Oct4 complex on 
the canonical motif is installed. The wild type Sox2 normally partners 
with Oct4 in OKSM4,5 or OSNL (OS plus Nanog and Lin28)6 cocktails 
to activate the pluripotency circuitry. By contrast, the wild‑type Sox17 
induces endoderm differentiation when overexpressed in ESCs. The 
activity of the engineered factors was, therefore, studied in iPSC 
generation assays.142,143 When we replaced Sox2 with Sox17EK in OSKM 
cocktails, we could induce iPSCs with improved efficiency in both 
mouse142 and human cells.95 An analogously modified Sox7EK protein 
showed a similar behavior, whereas Sox4 and Sox18 needed additional 
TAD engineering for their conversion into reprogramming TFs.95 
Using chromatin immunoprecipitation followed by high‑throughput 
sequencing, we found that Sox17EK and Sox2 show a very similar 
binding profile when overexpressed in mouse ESCs.144 Both proteins 
pair with Oct4 on many genomic loci earmarked with canonical sox‑oct 
motifs. By contrast, Sox17 partners with Oct4 on enhancers containing 
the compressed motif. Apparently, a single point mutation drastically 
changed how Sox proteins co‑select their target genes by partnering 
with Oct4. Yet, the converse Sox2KE mutant could neither effectively 
dimerize with Oct4 on the canonical nor on the compressed sequence. 
This puzzle was resolved more recently when a novel Oct4 crystal 
structure and molecular dynamics simulation suggested an additional 
discriminatory interaction between residue 46 of Sox proteins with an 
Oct4 specific helix in the POU linker.145,146 Indeed, a rationally designed 
Sox2E46LK57E double mutant now cooperatively dimerizes with Oct4 

on the compressed motif. It will be of interest to explore the activity of 
this engineered Sox factor in lineage conversion experiments.

Collectively, the MyoD and Sox17EK examples show that the cell 
fate conversion potential of reprogramming TFs can be drastically 
changed with rather minimal modifications at structurally critical 
interfaces. We surmise that these insights could be utilized to engineer 
more potent and safer reprogramming TFs. Contrary to the TAD‑TF 
and the TALE‑TF approach; TFs with engineered DNA‑binding 
domain likely engage the genome in a new manner (Figure 3). This way, 
it could be possible to break reprogramming barriers more effectively 
and to direct cells trapped in a local minimum of the Waddington 
landscape towards a desired state of differentiation.

OUTLOOK — NOVEL APPROACHES FOR REPROGRAMMING 
FACTOR DESIGN
To produce cells for clinical applications, the process should be tightly 
controlled, fast and exclude undesired by‑products. In particular, 

Figure  3: Regulatory outcome of different categories of engineered 
reprogramming TFs. (a) TALEs coupled with TADs can be engineered to switch 
on otherwise silenced reprogramming TFs. By targeting the distal enhancer 
of Oct4 its expression is activated. The resulting gene expression program is 
expected to resemble the wild‑type scenario. (b) When potent TADs are fused to 
reprogramming TFs the chimeric protein is expected to target genomic regions 
reminiscent of the unmodified wild‑type protein (a). However, the presence 
of a potent TAD elevates expression levels as compared to the wild‑type 
and may also trigger the activation of genes that would otherwise be silent. 
(c) Rationally placed point mutations within the DNA binding domain can 
modify DNA recognition principles and alter the genomic binding profile. The 
cartoon represents a synthetic Oct4 with modified binding preferences that 
leads to the activation of genes that the wild‑type protein would not switch 
on. TFs: transcription factors; TALEs: transcription activator‑like effectors; 
TAD: transactivation domain; Oct4: octamer binding protein 4.
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reprogramming to pluripotency has witnessed a multitude of studies 
aimed to improve the efficiency of iPSC generation (excellent reviews 
by Papp and Plath28 and Soufi31). Initially, iPSC generation was rather 
slow and only a small number of cells transfected with a cocktail of 
reprogramming TFs could be reprogrammed.4 Confusingly, it appeared 
that there is a high degree of randomness in cell populations and 
by simple chance a small subset of cells enters a path leading to the 
successive progression towards pluripotency in a more deterministic 
fashion.147,148 Yet, as roadblocks toward the pluripotency continue 
to be removed; fully controlled and efficient iPSC generation could 
soon be achieved.85,86 As the quality of iPSCs produced by engineered 
reprogramming factors was validated by examining their contribution 
to embryonic development and the capacity for germline transmission, 
synthetic TFs could still contribute to the ultimate cocktail.93,97,100,103,120 
However, iPSCs are only an intermediary by‑product on the way 
towards transplantation‑grade functional cells. To lower the risk of 
cancerogenesis, a pluripotent intermediate should be avoided altogether 
or, minimally, complete differentiation of formerly pluripotent cells 
has to be ensured. Reproducibly generating functional cells to cure 
degenerative diseases will remain a challenge in the years to come. We 
anticipate that protein engineering techniques can help to overcome 
reprogramming barriers and better control cell lineage conversions to 
produce functional cells more safely and with properties more closely 
matching their in vivo counterparts (Figure 3). While widely used in 
fields such as enzymology and immunology, protein engineering is still 
in its infancy in cellular reprogramming. This is partly because of our 
incomplete understanding of how TFs work. Our structural knowledge 
is mostly restricted to isolated domains bound to short stretches of 
DNA. The mechanism of DNA target site selection, chromatin opening 
and how TFs stimulate mRNA synthesis remains largely unclear. 
Nevertheless, the studies highlighted in this review testify the promise 
of the approach and warrant further exploration as to whether protein 
engineering can bring stem cell biology closer to the bedside.
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