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Abstract

Background: Accurate identification of orthologs is crucial for evolutionary studies and for functional annotation. Several
algorithms have been developed for ortholog delineation, but so far, manually curated genome-scale biological databases
of orthologous genes for algorithm evaluation have been lacking. We evaluated four popular ortholog prediction
algorithms (MULTIPARANOID; and ORTHOMCL; RBH: Reciprocal Best Hit; RSD: Reciprocal Smallest Distance; the last two extended
into clustering algorithms CRBH and CRSD, respectively, so that they can predict orthologs across multiple taxa) against a set
of 2,723 groups of high-quality curated orthologs from 6 Saccharomycete yeasts in the Yeast Gene Order Browser.

Results: Examination of SENSITIVITY [TP/(TP+FN)], SPECIFICITY [TN/(TN+FP)], and ACCURACY [(TP+TN)/(TP+TN+FP+FN)] across a broad
parameter range showed that CRBH was the most accurate and specific algorithm, whereas ORTHOMCL was the most
sensitive. Evaluation of the algorithms across a varying number of species showed that CRBH had the highest ACCURACY and
lowest FALSE DISCOVERY RATE [FP/(FP+TP)], followed by CRSD. Of the six species in our set, three descended from an ancestor that
underwent whole genome duplication. Subsequent differential duplicate loss events in the three descendants resulted in
distinct classes of gene loss patterns, including cases where the genes retained in the three descendants are paralogs,
constituting ‘traps’ for ortholog prediction algorithms. We found that the FALSE DISCOVERY RATE of all algorithms dramatically
increased in these traps.

Conclusions: These results suggest that simple algorithms, like CRBH, may be better ortholog predictors than more complex
ones (e.g., ORTHOMCL and MULTIPARANOID) for evolutionary and functional genomics studies where the objective is the
accurate inference of single-copy orthologs (e.g., molecular phylogenetics), but that all algorithms fail to accurately predict
orthologs when paralogy is rampant.
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Introduction

Orthologous genes are homologs that originated by speciation

events, whereas paralogs are homologs that originated by gene

duplication events [1]. Accurate determination of orthologs and

paralogs is fundamental to molecular evolution analyses, the first

step in any comparative molecular biology study, and incredibly

useful for functional prediction and annotation [2,3,4,5,6].

However, identifying orthologs and distinguishing them from

paralogs is not always straightforward because genetic (e.g., gene

duplications and losses) and population-level (e.g., hybridization

and speciation) events can yield complex gene histories [2,7].

The difficulty in accurately determining orthology, the utility of

orthology in many different applications and disciplines, and the

abundance of genomic data necessitating high-throughput pipe-

lines for prediction, have led to the development of several

different types of ortholog prediction algorithms [8]. For example,

a number of graph-based algorithms use similarity searches, such

as BLAST [9], to predict groups of orthologous genes (orthogroups),

either in pairwise (between two taxa) or clustering (between

multiple taxa) fashion [3,6,10,11,12,13,14,15,16,17]. In contrast,

tree-based algorithms predict orthogroups using explicit phyloge-

netic criteria [18,19,20,21,22,23].

Although all these different types of ortholog prediction algorithms

are widely used, studies that evaluate ortholog prediction algorithm

performance for molecular phylogenetic purposes are not available.

Furthermore, large-scale studies that evaluate the relative perfor-

mance of a wide variety of different ortholog prediction algorithms

have yielded contradictory results [10,24,25,26]. For example,

whereas Alexeyenko and co-workers [10] found that the graph-

based MULTIPARANOID clustering algorithm produced the fewest

errors, a different analysis showed that ORTHOMCL, another graph-

based clustering algorithm, had the best balance of SENSITIVITY and

SPECIFICITY [27]. In contrast, Hulsen and co-workers [24] found that

the INPARANOID pairwise algorithm outperformed ORTHOMCL in

predictions of orthologous gene pairs. Furthermore, Altenhoff and

Dessimoz [25] found that the graph-based OMA clustering algorithm

[16] had the highest SPECIFICITY (together with the homolog

prediction algorithm HOMOLOGENE [28]), and that certain

tree-based algorithms were occasionally outperformed by graph-

based pairwise algorithms. Unfortunately, several differences in

algorithm design make many of the above comparisons hard to
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interpret. For example, it is unclear how to interpret comparisons

between pairwise and clustering ortholog prediction algorithms (e.g.,

[24]), or between algorithms that predict orthologs and paralogs (e.g.,

[25]), or how the results should be interpreted when the objective is

not functional prediction but phylogenetic inference (e.g., [24]).

One potential explanation for these contradictory results might

be that each one of the efforts to evaluate ortholog prediction

algorithms makes assumptions likely to be violated [10,24,25,27].

For example, several studies evaluated algorithms using functional

similarity as a proxy for orthology [24,25], whereas others

evaluated algorithms against sets of orthologs identified by

phylogenetic analysis [10,25]. However, orthologous genes are

not always functionally similar [2], and single-gene phylogenies

frequently yield erroneous results [29,30].

The contradictory results in studies of ortholog prediction

algorithm performance and the range of evaluation approaches

developed suggest that there is a clear need for reliable reference

genome-scale ortholog databases. One such high-quality reference

database of homologous gene groups is the Yeast Gene Order

Browser (YGOB) [31]. The YGOB is an excellent reference

dataset for evaluating different ortholog prediction algorithms

(e.g., [19,32]) for two reasons. First, it contains genomes of varying

evolutionary distances, and the homology of several thousand of

their genes has been accurately annotated through sequence

similarity, phylogeny, and synteny conservation data [31,33].

Second, approximately 100 million years ago, a subset of species in

the clade underwent a single round of whole genome duplication

(WGD) (Figure 1A) [34]. Subsequent differential loss of gene

duplicates originating from the WGD event resulted in groups of

different gene retention pattern where in some cases the duplicates

retained are paralogs [35] (Figure 1B), constituting ‘traps’ for

ortholog prediction algorithms (e.g., Class III gene retention

patterns in Figure 1C). Importantly, the YGOB database contains

accurate ortholog annotations from species that predate and

postdate the WGD event, as well as an accurate annotation of

hundreds of such ‘trap groups’, allowing us to compare algorithm

Figure 1. The generation of the five distinct classes of gene loss patterns following the yeast whole genome duplication (WGD). (A)
Approximately 100 million years ago, the common ancestor of S. cerevisiae, C. glabrata, and N. castellii underwent WGD, resulting in the doubling of
chromosomes. Segments that correspond to the two chromosome sets are known as tracks A and B. (B) An example of how the loss of paralogs from
different tracks, if undetected, can generate an incorrect species tree. In the example, C. glabrata has lost a paralog from track A, whereas S. cerevisiae
and N. castellii have lost paralogs from track B, ‘trapping’ ortholog prediction algorithms in incorrectly grouping the three post-WGD paralogs in an
orthogroup. (C) In the aftermath of WGD, extensive loss of paralogs within homologous gene groups resulted in different gene loss patterns, known
as classes 0 – IV [35]. Class 0 consists of groups that have not lost any paralogs. Groups in classes I and II have lost one and two paralogs, respectively.
Finally, all groups in classes III and IV have lost three paralogs, however, all paralogs lost in class IV groups were on the same track (A or B).
doi:10.1371/journal.pone.0018755.g001
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performance against orthogroup sets that are much more

challenging to decipher.

Here, we evaluated the performance of four commonly used

ortholog prediction algorithms – MULTIPARANOID [10], ORTHOMCL

[3], RBH [4,6,12,13], and RSD [14] in predicting orthogroups in six

yeast proteomes by comparing their results against reference

orthogroups retrieved from the YGOB database. To ensure that

we evaluated all algorithms for their performance in detecting

orthogroups across multiple species, we extended RBH and RSD

into clustering algorithms (CRBH and CRSD, respectively). We

selected these four algorithms among the several different ones

available [8], based on their popularity, availability as standalone

algorithms, and that they are not tree-based, which allows their

implementation for downstream molecular phylogenetic analyses.

We assessed the performance of each algorithm under a range of

parameters and conditions, including in ‘traps’, as well as using

varying numbers of species. We found that CRBH almost always

outperformed all other algorithms, suggesting that simpler

algorithms may often perform better than more complex ones in

identifying orthologs across species, but that the FALSE DISCOVERY

RATE of all algorithms was dramatically increased when groups of

paralogs stemming from the WGD event were examined.

Methods

The Test Dataset
The test dataset consists of 31,012 proteins from the proteomes

of the following six Saccharomycete yeasts: Saccharomyces cerevisiae,

Candida glabrata (also known as Nakaseomyces glabrata [36]), Naumovia

castellii (also known as Saccharomyces castellii [36]), Lachancea waltii

(also known as Kluyveromyces waltii [36]), Eremothecium gossypii (also

known as Ashbya gossypii [36]), and Kluyveromcyes lactis

[37,38,39,40,41]. A common ancestor of three of these six yeast

species (S. cerevisiae, C. glabrata, and N. castellii) underwent a single

round of WGD (Figure 1A) [34]. Although the quality of

annotations differs between the six species included in this study

[31], it is unlikely to influence significantly our results. This is so

because in our analyses we test all four algorithms on exactly the

same data, and we have no reason to think that annotation quality

differences would differentially affect the performance of ortholog

prediction algorithms in our study.

Constructing ‘Gold Groups’, a Reference Set of
Orthogroups

The Yeast Genome Order Browser (YGOB) database is a

manually curated homolog database of Saccharomycete proteins

[31] from species that predate the WGD event (K. lactis, L. waltii

and E. gossypii) as well as from species that postdate the WGD

event (S. cerevisiae, C. glabrata, and N. castellii). Thus, for every

chromosomal segment in the three pre-WGD species (L. waltii, E.

gossypii, and K. lactis), assuming no loss, there are two correspond-

ing chromosomal segments (known as track A and B) in the three

post-WGD species. As a result, each homologous gene group in

the YGOB database, assuming no gene loss, contains a single

ortholog from each pre-WGD species, and two paralogs from each

post-WGD species, one from track A and one from track B.

To construct a reference dataset of orthogroups deprived of

paralogy we first retrieved all 2,723 annotated homologous gene

groups from the YGOB (note that this set is a fraction of the total

set of true orthogroups) and split each group into two subgroups.

The first subgroup contained all ortholog genes from pre-WGD

species together with all orthologs from post-WGD species found

on track A, whereas the second subgroup contained the same

orthologous genes from pre-WGD species together with all

orthologs from post-WGD species found on track B. To avoid

the double counting of orthologs from pre-WGD species in our

assessment of ortholog predictions, we evaluated each prediction

only against the subgroup that had the best match. We used these

orthogroups, from here on referred to as ‘gold groups’, as the

reference set to evaluate the performance of ortholog prediction

algorithms.

Ortholog Prediction Algorithms Tested
The MULTIPARANOID algorithm [10] is an extension of the

graph-based INPARANOID clustering algorithm [11,42] for identi-

fying orthologs and inparalogs across multiple species. INPARANOID

uses bi-directional best BLAST [9,43] to identify putative

orthologs and a clustering algorithm to identify their inparalogs.

To do so, INPARANOID assumes that any sequences from the same

species that are more similar to the predicted ortholog than to any

sequence from other species are inparalogs [11,42]. MULTI-

PARANOID generates multi-species orthogroups by merging all

pairwise INPARANOID predictions, while minimizing the number of

internal conflicts. Furthermore, the algorithm uses a ‘cut-off’

parameter based on the distance of candidate inparalogs to the

predicted target ortholog to filter out weakly supported candidates.

MULTIPARANOID was obtained from http://multiparanoid.sbc.su.

se and INPARANOID (version 3beta) was obtained upon request from

inparanoid@sbc.su.se.

The ORTHOMCL algorithm also builds upon the INPARANOID

algorithm [11,42] by using the Markov Cluster (MCL) algorithm

for predicting orthogroups across multiple species based on their

sequence similarity information [3]. The algorithm uses an

‘inflation rate’ parameter, to regulate the ‘tightness’ of the

predicted orthogroups. ORTHOMCL (version 1.4) was obtained

from http://orthomcl.org/common/downloads/software/v1.4/.

The Reciprocal Best Hit (RBH) algorithm [4,6,12,13] relies on

BLAST [9,43] to identify pairwise orthologs between two species.

According to the RBH algorithm, two proteins X and Y from

species x and y, respectively, are considered orthologs if protein X

is the best BLAST hit for protein Y and protein Y is the best

BLAST hit for protein X. We integrated a ‘filtering’ parameter r

that enabled us to avoid constructing orthogroups that contained

distant homologs by considering the degree by which the two

proteins differed in sequence length or BLAST alignment [44,45].

Thus, putative orthogroups are retained if:

rƒ
BLAST length or sequence length of putative ortholog A

BLAST length or sequence length of putative ortholog B
ƒ

1

r
,

where 0vrv1:

From the above equation, it follows that r values close to 1 are likely

to filter out a larger number of putative orthologs, whereas r values

close to 0 are likely to include all putative orthologs. The default

mode of the algorithm does not use the filtering parameter r.

The Reciprocal Smallest Distance (RSD) algorithm [14]

generates global sequence alignments for a small number of top

BLAST hits against a query gene X from species x. RSD then

calculates the maximum likelihood evolutionary distance between

X and its top BLAST hits, identifying the gene with the smallest

evolutionary distance from X (e.g., gene Y from species y). If the

RSD search using gene Y from species y as the query also identifies

gene X from species x as its closest relative, then proteins X and Y

are considered orthologs [14,15]. In RSD, the user can modify the

shape parameter a of the gamma distribution, a key determinant of

the estimated evolutionary distance between genes. The RSD

Evaluating Ortholog Prediction

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e18755



algorithm was obtained from http://roundup.hms.harvard.edu/

site/.

Extending the Pairwise RBH and RSD Algorithms into
Clustering Algorithms CRBH and CRSD

To directly compare the clustering performance of all four

ortholog prediction algorithms we extended the pairwise algorithms

RBH and RSD into clustering algorithms CRBH and CRSD,

respectively. CRBH and CRSD construct orthogroups from more

than two species as follows (see also [46]). Considering all pairwise

BLAST similarity searches for genes A, B, C,…, N-1, N from species a,

b, c,…, n-1, n to form an orthologous gene group, gene B must be the

reciprocal best hit to gene A, gene C the reciprocal best hit to gene B

or gene A, …, and gene N the reciprocal best hit to any gene [A, B,

C,…, N-1]. In cases such as when gene A from species a is the

reciprocal best hit to gene B from species b and to gene C1 from

species c, but gene B is the reciprocal best hit to gene C2 from species c,

the algorithm drops species c from the orthogroup.

Evaluating the Performance of Ortholog Predictions
We used a BLASTP cut-off E-value of # 1e-5 in all orthogroup

predictions made with all four algorithms. We run the MULTI-

PARANOID algorithm using a range of cut-off parameter values (cut-

off = {0.0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}; 0.0

is the default value), the ORTHOMCL algorithm using a range of

inflation rate parameter values (inflation rate = {0.1, 0.5, 1.0, 1.5,

2.0, 2.5, 3.0, 3.5, 5, 7.5, 10.0, 100.0}; 1.5 is the default value), the

CRBH algorithm by ranging the values assigned to the filtering

parameter r (r = {no r, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}; no

r is the default option), and the CRSD algorithm by ranging the

values of the shape parameter a (a = {0.1, 0.4, 0.5, 0.6, 0.7, 1.0,

1.5, 2.0, 2.5, 5.0}; 0.5 is the default value). For each algorithm and

its range of parameter values, we calculated its ACCURACY,

SENSITIVITY, SPECIFICITY, and FALSE DISCOVERY RATE using the

following equations:

ACCURACY~

True Positives (TP)zTrue Negatives (TN)

True Positives (TP)zTrue Negatives (TN)zFalse Positives (FP)zFalse Negatives (FN)

SENSITIVITY~
TP

TPzFN

SPECIFICITY~
TN

TNzFP

FALSEDISCOVERYRATE (FDR)~
FP

FPzTP

Finally, we graphically plotted the RECEIVER OPERATING CHARAC-

TERISTIC (ROC curve) of SENSITIVITY versus (1 2 SPECIFICITY).

The Evaluation Pipeline for Test Orthologous Genes and
Orthogroups

We evaluated the ability of each ortholog algorithm to predict

orthogroups by comparing their predictions against the reference

gold groups. According to our evaluation pipeline (Figure 2 and

Text S1), each predicted orthogroup was first compared against the

set of gold groups to identify, if any, its corresponding gold group. If

a test group shared at least two genes with a reference gold group,

the test group was characterized as a ‘defined’ test group. In all other

cases, the test group was considered ‘undefined’.

For the defined orthogroups, we considered all genes shared

between the test group and its corresponding gold group as true

positive (TP), and any genes in the test group that did not also

belong to the gold group as false positive (FP) (Figure 2 and Text

S1). FP genes could belong to a different gold group or to be

absent from the set of corresponding gold groups. Finally, we

considered all those genes present in gold groups that did not

belong to any test groups as false negative (FN).

Given that the number of reference gold groups is much smaller

than the total number of true orthogroups in our dataset, we

expect that a significant number of test orthogroups will not have

corresponding gold groups, and hence will be undefined. Because

we wanted to calculate values that were representative for the

entire dataset, we estimated the number of true positive (TP*),

false positive (FP*), and false negative (FN*) for the undefined

orthogroups by multiplying the number of TP, FP, and FN

calculated from the defined groups with the ratio of the number of

undefined genes on the number of defined genes (Figure 2 and

Text S1). For example, TP* is the product of the TP value

multiplied by the ratio of the number of undefined genes on the

number of defined genes. Finally, by calculating the total number

of true positive (tTP = TP + TP*), false positive (tFP = FP + FP*),

and false negative (tFN = FN + FN*) genes, we were able to

estimate the number of total true negative genes (tTN = total

number of genes – tTP – tFP – tFN) in our dataset (Figure 2 and

Text S1).

To ensure that the calculated TP, FP, and FN values for

proteins that belonged to ‘defined’ groups were also representative

of the remainder of the proteins (i.e., those that belong to the

‘undefined’ groups) (Figure 2), we tested whether S. cerevisiae genes

that belong to ‘defined’ and ‘undefined’ groups differed signifi-

cantly in evolutionary rate (measured by the dN/dS ratio), number

of paralogs in genome, and codon adaptation index. We obtained

the data for evolutionary rate and codon adaptation index

calculations from the study of Wall et al. [47]. We calculated the

number of S. cerevisiae paralogs per protein using BLASTP [9]. To

evaluate whether the evolutionary and functional properties of

genes that belong to the ‘defined’ and ‘undefined’ groups were

statistically significant, we performed a two-tailed t-test (assuming

unequal variance and unequal sample size) [48].

Evaluating Algorithm Performance for Varying Numbers
of Species

To evaluate the performance of each algorithm across varying

numbers of species, we examined all possible combinations for

three, four, and five yeast proteomes and calculated each

algorithm’s ACCURACY and FDR. All algorithms were run using

the parameter values that yielded the highest ACCURACY in

orthogroup prediction on the six yeast proteomes dataset.

Evaluating Algorithm Performance against Different
Classes of Gene Loss Events

Our reference dataset contains orthogroup classes where some

of the homologs retained are paralogs. To investigate how each

algorithm performed in these ‘trap groups’, we divided the 2,723

gold groups into the five classes described by Scannell et al. [35]

(Figure 1C) and calculated the ACCURACY and FDR for each

algorithm. All algorithms were run using the parameter values that

yielded the highest ACCURACY in orthogroup prediction on the six

yeast proteomes dataset.

Evaluating Ortholog Prediction
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Figure 2. The pipeline used to evaluate the performance of the ortholog prediction algorithms. The pipeline evaluates algorithm
performance by comparing their predictions on six yeast proteomes against a high-quality reference set of orthologs (gold groups) constructed from
the YGOB [31]. The pipeline first compares each test group against the set of gold groups. If the test group matches with a corresponding gold
group, the test group is characterized as ‘defined’ and the two groups are further compared on a gene-by-gene basis. If there is no match, the test
group is characterized as ‘undefined’. For the ‘defined’ groups, genes present in both the test and the gold groups are considered true positives (TP),
whereas genes present only in the test group or only in the gold group are considered as false positive (FP) and false negative (FN), respectively.
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Results

We evaluated the performance of four different algorithms

(MULTIPARANOID, ORTHOMCL, CRBH and CRSD) in predicting

orthogroups against a manually curated, high-quality database of

ortholog groups (gold groups), by estimating SENSITIVITY, SPECIFICITY,

ACCURACY and FDR across different parameter values, using a varying

number of species and across different gene loss classes (Figures 3, 4,

5, 6 and Table S1). S. cerevisiae genes that belong to ‘defined’ and

‘undefined’ groups did not differ significantly in evolutionary rate,

number of paralogs in genome, and codon adaptation index (all p-

values for all measures across all algorithms were larger than 0.05).

Thus, the ‘defined’ and ‘undefined’ orthogroups do not differ

significantly. Therefore, our estimation of the number of true positive

(TP*), false positive (FP*), and false negative (FN*) for the undefined

orthogroups based on the number of TP, FP, and FN calculated from

the defined groups seems to be valid and our results should be

representative of the entire population of orthogroups present in the

six yeast genomes under study.

Comparing Algorithm Performance across Different
Parameter Values

Ranging the cut-off parameter value of the MULTIPARANOID

algorithm had minor effects on its performance. All analyses with

cut-off values .0 yielded identical results with higher SENSITIVITY

and ACCURACY, but lower SPECIFICITY relative to the default cut-off

value of zero. The ORTHOMCL algorithm did not exhibit any

clear trade-off between SENSITIVITY and SPECIFICITY with increasing

inflation rate values. Specifically, predictions using inflation rate

values $3.5 had both lower SENSITIVITY and SPECIFICITY. The

algorithm had almost equal SENSITIVITY for values ,3, with the

best SPECIFICITY and ACCURACY obtained when the inflation rate

was 1.5. The CRBH algorithm had the highest SENSITIVITY and

ACCURACY when r was 0.3, although similar values were obtained

when r was not set (default) or when r was 0.4. In general, r values

greater than 0.4 decreased the SENSITIVITY of the algorithm by

excluding increasing numbers of putative orthologs, but increased

its SPECIFICITY. For CRSD, SENSITIVITY and ACCURACY remain

largely stable and optimal for a values $0.4. SENSITIVITY was

highest at a = 0.4, whereas ACCURACY and SPECIFICITY were both

highest at a = 1.5. In general, the algorithm produced a limited

number of false positives, which resulted in both high ACCURACY

and low FDR.

The performance of all ortholog algorithms across different

parameter values is summarized in Figure 3. Our results suggest

that CRBH is the most accurate algorithm. Specifically, CRBH

had the highest ACCURACY (0.934, for r = 0.3), followed by CRSD

(0.921, for a = 1.5), MULTIPARANOID (0.912, for any cut-off .0)

and ORTHOMCL (0.909, for inflation rate = 1.5) (Figure 3).

Higher SENSITIVITY is typically associated with either higher

numbers of true positives or lower number of false negatives.

Across the range of all parameters for all algorithms, ORTHOMCL

showed the highest SENSITIVITY (inflation rate = 1), followed by

CRBH (r = 0.3), MULTIPARANOID (for cut-off .0) and CRSD (for

a = 0.4) (Figure 3). In contrast, higher SPECIFICITY is typically

associated with lower numbers of false positives. Across the range

of all parameters for all algorithms, CRBH has the highest

SPECIFICITY (for r = 0.9), followed by CRSD (for a = 0.1), MULTI-

From the TP, FP, and FN values for all ‘defined’ groups we then estimated the true positives (TP*), false positives (FP*), and false negatives (FN*) for
the ‘undefined’ set of groups. Finally, by adding the values obtained from the analysis of ‘defined’ and ‘undefined’ groups we calculated the total
number of true positive (tTP), false positive (tFP), false negative (tFN), and true negative (tTN) genes for all test groups, and used them to estimate
each algorithm’s SENSITIVITY, SPECIFICITY, ACCURACY and FALSE DISCOVERY RATE (See Methods and Text S1).
doi:10.1371/journal.pone.0018755.g002

Figure 3. The ACCURACY and RECEIVER OPERATING CHARACTERISTIC (ROC) curve for each ortholog prediction algorithm across a range of
parameter values. (A) The ACCURACY [(TP + TN)/(TP + TN + FP + FN)] of each ortholog prediction algorithm (shown on the Y-axis) is plotted against
the range of algorithm-specific parameter values (shown on the X-axis). Values for MULTIPARANOID are for the ‘cut-off’ parameter, values for ORTHOMCL
are for the ‘inflation rate’ parameter, values for CRBH are for the ‘filtering parameter r’, and values for CRSD are for the ‘shape parameter a’. (B) The ROC

curve for each ortholog prediction algorithm shows SENSITIVITY [TP/(TP + FN)] (on the Y-axis) plotted against 1 – SPECIFICITY [1 – (TN/(TN + FP))] (on the X-
axis). Optimal values and distributions reside on the top left of the graph. All values depicted in the graphs are shown in Table S1.
doi:10.1371/journal.pone.0018755.g003
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PARANOID (for cut-off = 0) and ORTHOMCL (for inflation rate

= 1.5) (Figure 3).

Comparing Algorithm Performance Using a Varying
Number of Species and across Different Gene Loss
Classes

To evaluate the performance of each algorithm under a

varying number of species, we ran the algorithms for all possible

combinations of three, four and five species (Figure 4). Once

again, CRBH had the highest ACCURACY (Figure 4A) and the

lowest FDR across all taxon numbers (Figure 4B), followed by

CRSD.

To investigate how the existence of ‘trap’ gold groups affected

the performance of the four ortholog prediction algorithms, we

compared their ACCURACY and FDR across the five different gold

group classes (Figure 1C). Overall, all four algorithms had higher

FDR values in paralog-containing classes (classes 0 through III) than

in paralog-lacking classes (class IV) (Figure 5). CRBH had the

highest ACCURACY and the lowest FDR values across all classes.

However, not all algorithms exhibited the same behavior across

the five classes. For example, whereas CRBH and CRSD had their

highest FDR values in class III, ORTHOMCL and MULTIPARANOID

had their highest FDR values in class 0, due to the larger number of

paralogs (Figures 5, 6). Finally, note that in class IV, where all

paralogs from the same track (track A or B) have been lost, all

algorithms perform well, but CRBH still showed the highest

ACCURACY and the lowest FDR.

Discussion

More than twenty orthology prediction algorithms and

databases have been developed, which can be divided into three

main groups: graph-based (orthology is inferred from sequence

similarity), tree-based (orthology is inferred from phylogeny), and

hybrid-based (orthology is inferred from both phylogeny and

sequence similarity) [8]. In this study, we compared the

performance of four popular graph-based clustering algorithms

Figure 4. The ACCURACY and FDR of ortholog prediction algorithms using varying numbers of species. (A) The ACCURACY of ortholog
prediction algorithms (shown on the Y-axis) is plotted against varying numbers of species (shown on the X-axis). (B) The FDR of ortholog prediction
algorithms (shown on the Y-axis) is plotted against varying numbers of species (shown on the X-axis). Each algorithm was run using the parameter
value yielding the highest ACCURACY. All values depicted in the graphs are shown in Table S1.
doi:10.1371/journal.pone.0018755.g004

Figure 5. The ACCURACY and FDR of ortholog prediction algorithms across five orthogroup classes with different gene retention
patterns. The five classes are described in Figure 1. (A) The accuracy of ortholog prediction algorithms (shown on the Y-axis) is plotted against the
five classes (shown on the X-axis). (B) The FDR of ortholog prediction algorithms (shown on the Y-axis) is plotted against the five classes (shown on the
X-axis). Each algorithm was run using the parameter value yielding the highest ACCURACY. All values depicted in the graphs are shown in Table S1.
doi:10.1371/journal.pone.0018755.g005
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Figure 6. Examples of the behavior of the four algorithms in predicting orthogroups from gold groups belonging to three different
classes. (A) Construction of gold groups (gold groups A and B) from the set of homologous gene groups from the YGOB. Each test group is
evaluated against only against the gold group that had the best match. (B) The orthogroups for three different gold groups belonging to classes 0, III
and IV predicted by the four different algorithms. The gold group is shown on the left-most column. The S. cerevisiae gene name for each of the three
gold groups is shown on the left. Genes correctly predicted as belonging to each orthogroup (true positives) are shown in green, genes incorrectly
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(MULTIPARANOID, ORTHOMCL, CRBH and CRSD) that predict

orthogroups for use in molecular phylogenetics. We did not

include tree-based and hybrid algorithms because ortholog

prediction on large datasets typically requires faster algorithms,

and because the reliance of these algorithms on knowledge of the

gene family (e.g., [18]) or species phylogeny (e.g., [19]) can render

them inappropriate for downstream phylogenetic studies (but see

[49]). Furthermore, the use of YGOB as our reference dataset

required the availability of standalone algorithms that could make

predictions on user-provided datasets.

For the majority of orthogroup predictions, all methods showed

high ACCURACY and low FDR (Figures 3, 4, 5), a finding consistent

with their similarity in algorithm construction and popularity in the

literature. However, our results also suggested that CRBH

outperformed all other three algorithms in almost all of our

comparisons (Figures 3, 4, 5). These results directly pertain to on-

going debates about the choice of ortholog prediction algorithms for

downstream evolutionary, genomic and functional analyses

[8,10,24,25,26]. However, the selection of the optimal ortholog

prediction algorithm for inferring orthologous genes and groups

across such a remarkably wide range of fields and applications is a

complex problem that is likely to be influenced by many parameters.

Curated Ortholog Databases as Gold Standards for
Algorithm Evaluation

Several different benchmarks have been used to assess the

ACCURACY of ortholog prediction algorithms [8]. However, the lack

of ‘gold’ standard reference datasets has made interpretations of

relative performance challenging. For example, several recent

comparative studies have yielded contradictory results

[10,24,25,26], but the degree to which this lack of common

high-quality reference sets contributes to these conflicts is largely

unknown. To circumvent these issues, we employed a highly

accurate genomic database of homologs to evaluate directly

ortholog prediction algorithms (see also [19,32]). We think that

our gold group set has strong potential to become one such ‘gold’

standard for the evaluation of ortholog prediction algorithms. Of

course, our dataset stems from species inhabiting a single small

twig of the tree of life. Thus, it remains an open question whether

these results hold across branches of the tree of life, or whether

ACCURACY in ortholog prediction in different branches will require

several different approaches. As more genomes from several clades

of the tree of life are sequenced [50] we anticipate that highly

accurate homolog databases, like the YGOB [31], will become

commonplace and more densely populated with orthologs from

several additional species (e.g., [51]), thus greatly facilitating

algorithm evaluation and testing the generality (or not) of findings

such as those reported in this study.

One potential limitation of such reference databases is that their

construction might be possible only from genomes of close

relatives. This is so, because accurate annotation of orthologs

between distantly related species is much more challenging; at

greater evolutionary distances protein homology is frequently

reduced to homology between domains [52], domain shuffling is

commonplace [53], and independent data, such as synteny

conservation, that are highly informative for accurate annotation

of orthologs between closely related species, become less useful

[54]. Nevertheless, our findings (see also [19,32]) suggest that

evaluation approaches against high-quality ‘gold standard’ data-

bases [31,51] are likely to be a very useful addition to existing

benchmarks [8,24,25] in the quest to accurately infer orthologs on

a genome-wide scale.

Simpler Algorithms Can Sometimes Be Better
The usefulness of ortholog identification in several downstream

genomic, molecular and evolutionary analyses, coupled with the

abundance of genomic data from diverse organisms, has spurred the

development of several ortholog prediction algorithms [8]. Thus, we

were surprised to find that CRBH, a conservative clustering version

of the simplest and earliest-developed of the four algorithms tested

that drops instead of resolving inconsistencies [4,6,12,13,55], was

consistently (e.g., across several parameter values and varying

numbers of species) the best ortholog predictor. In agreement with

our results, a recent phylogenetic and functional assessment of

ortholog prediction algorithms and databases also found that RBH

performed well and its predictions were, in several instances, better

than those of more complex algorithms [25].

The superior performance of CRBH and CRSD may be partially

explained by the fact that ORTHOMCL and MULTIPARANOID are

designed to also include inparalogs in their orthogroup predictions

(Figure 6). Using our evaluation pipeline, this design can raise

significantly the number of false positives, thus decreasing the

algorithms’ ACCURACY and SPECIFICITY, but increasing the algo-

rithms’ FDR and SENSITIVITY. However, when the algorithms were

tested on class IV orthogroups, which comprise the majority of gold

groups (1,957 orthogroups or ,70%) and have lost all paralogs from

the same track (Figure 1C), CRBH still performed better by showing

a very low FDR, high ACCURACY and SPECIFICITY and almost equal

SENSITIVITY as ORTHOMCL, the most sensitive algorithm (Figure 3).

Although this difference in performance could be due to the

inclusion of other paralogs that did not originate through the WGD,

the existence of other paralogs is unlikely to account fully for it. For

example, analysis of a dataset that contained only genes belonging

to class IV gold groups, an inparalogs-free dataset, also showed that

CRBH and CRSD have the highest ACCURACY and lowest FDR.

Finally, the set of single-copy orthogroups obtained from

ORTHOMCL and MULTIPARANOID is much smaller than the total

number of predicted orthogroups and shows much lower SENSITIV-

ITY and ACCURACY. This suggests that the popular approach of using

these algorithms for orthogroup prediction in molecular phyloge-

netic studies is less accurate than the use of algorithms designed to

predict orthogroups that contain a single gene from each species,

like CRSD and CRBH.

When tested on the class III groups (Figure 1), in which the

pattern of gene loss forced all algorithms to place single-copy

paralogs in the same orthogroup, all algorithms showed very high

FDR values (Figures 1, 5). CRBH was again the best performing

algorithm, partly due to the effect of the filtering parameter r in

dropping putative orthogroups composed of distantly related

paralogs. Note that the lack of a ‘gold’ reference dataset or the

adoption of an evaluation strategy based on majority-rule

predictions would have not permitted us to identify the failing of

these algorithms for class III orthogroups, and would have instead

considered most of them as likely true.

Choosing the Right Algorithm for Orthologous Gene
Group Prediction

Our results suggest that simpler algorithms, like CRBH and

CRSD, might be better choices for many downstream evolutionary

predicted as belonging to each orthogroup (false positives) are shown in red, whereas genes present in a gold group that were not predicted to
belong to this or any other test group (false negatives) are shown in grey.
doi:10.1371/journal.pone.0018755.g006
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analyses than more complex ones in cases where the objective is to

identify orthogroups and that the trend of several studies toward

using more complex ortholog prediction strategies is not always

justified. One of the criteria used in our selection of algorithms was

for ones whose orthogroup predictions would be appropriate for

use in phylogenetic analyses. Thus, we did not evaluate tree-based

or hybrid-based algorithms. However, such algorithms could be

much more appropriate for orthogroup prediction in several other

contexts, e.g., for functional annotation. For example, the

SYNERGY algorithm [19,56], which integrates information from

similarity searches, gene trees, and synteny in its orthogroup

predictions has been shown to be more accurate than RBH [19],

and likely to be a much better choice for evolutionary genomics

and functional studies. Similarly, because RBH, RSD and their

clustering extensions are limited to finding orthogroups that

contain a single gene from each species, they will fail to detect the

presence of inparalogs, and in contrast to algorithms such as

SYNERGY [19,56], MULTIPARANOID [10] and ORTHOMCL [3],

are probably of no use for studying gene family evolution.

Supporting Information

Table S1 The ACCURACY, SENSITIVITY, SPECIFICITY and FDR values

of ortholog prediction algorithms across a range of parameter

values (S1A), using varying numbers of species (S1B), and across
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(S1C).
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