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EDITORIAL COMMENT
Nutrient Intake and Exercise Capacity
in Heart Failure With Preserved
Ejection Fraction
Doughnut Assume it Is Only About Diastolic Function*
Scott L. Hummel, MD, MS,a,b Ana Baylin, MD, DRPHc
H eart failure with preserved ejection fraction
(HFpEF) is already at epidemic propor-
tions, and the prevalence is growing as

associated comorbidities become more common (1).
One of the strongest population-attributable risk
factors for incident HFpEF is obesity (2), and weight
loss has been proposed as an effective treatment
and preventive strategy for HFpEF. Thus far, studies
have focused on weight loss through surgery (3) or
caloric restriction (4), both of which appear to benefit
patients with HFpEF. Comparatively little attention
has been paid to whether specific dietary components
may also affect the HFpEF syndrome. Given that
humans with HFpEF (5) and proposed HFpEF animal
models (6) have significant metabolic dysfunction,
this seems highly likely.
SEE PAGE 513
In this context and in this issue of JACC: Basic to
Translational Science, Carbone et al. (7) present the
thought-provoking results of their translational study
investigating the relationship between dietary pat-
terns and factors related to HFpEF. Using data from a
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single 24-h dietary recall, they find that unsaturated
fatty acids (UFAs) are positively and simple carbohy-
drates negatively correlated with peak oxygen
consumption (VO2) from treadmill cardiopulmonary
exercise (CPX) testing in patients with HFpEF. They
complement this work with an animal study in which
they demonstrate that CD-1 mice consuming an excess
of saturated fatty acids (SFAs) or sugars develop
evidence of left ventricular diastolic dysfunction, and
conversely that mice consuming high levels of UFAs
have less diastolic dysfunction. They propose that
the murine results support the human findings.

The authors should be congratulated on exploring
an important topic that has not been extensively
investigated in human HFpEF. Although young and
able to perform maximal treadmill VO2, the patients
with HFpEF in this study were morbidly obese and
predominantly women, and had multiple comorbid-
ities. The cardinal manifestation of HFpEF is exercise
intolerance, and treadmill CPX testing represents the
quantitative gold standard to assess this issue. The
CPX tests in this study were carefully conducted, and
despite objectively determined maximum effort
patients with HFpEF were substantially limited below
predicted VO2. Accordingly, although likely early in
the disease course, this HFpEF cohort is reasonably
representative of clinical practice. The murine feeding
studies were also well described and carefully con-
ducted. Although not conducted in an experimental
model of HFpEF per se, the observations support the
concepts that UFA intake can modify body weight,
despite similar calorie intake, and that both SFA and
sugar intake can adversely affect cardiac function.

Although well acknowledged by the authors,
the dietary assessment used in this study has impor-
tant methodological limitations. Human diets vary
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tremendously from day to day and the best way to
capture long-term intake is by collecting multiple
24-h recalls or by using a food frequency question-
naire (8). Using a single 24-h recall to estimate
habitual nutrient intake carries the risk of introducing
both systematic and random errors of assessment (9).
Regardless of that limitation, the authors still
observed statistically significant associations in the
hypothesized direction. Because of measurement
error and the small sample size, the associations
could be highly attenuated. The possibility exists that
the true effects of UFA and excess sugar consumption
are larger than seen in this study.

It is important to note that UFAs include mono-
unsaturated fatty acids and polyunsaturated fatty
acids, either omega-3 or -6. Therefore, they comprise a
heterogeneous group of fatty acids with diverse
functions. Although it is generally accepted that
increasing UFA intake has an overall beneficial effect
on cardiovascular health, there are still many
unknowns in the way different fatty acids affect out-
comes and what are the best substitutions to achieve
healthy diets. A recent Cochrane review concluded
that replacing SFAs with polyunsaturated fatty acids
decreases the risk of cardiovascular disease, but that
the effect of replacing SFAs with monounsaturated
fatty acids was less clear and less well studied (10).
Additionally, the food sources of monounsaturated
fatty acids vary substantially depending on the overall
dietary pattern. In the context of a Mediterranean diet,
most monounsaturated fatty acids are plant derived,
coming from olive oil, whereas in a Western dietary
pattern, the main source of monounsaturated fatty
acids are animal derived. Therefore, the downstream
effects of these fatty acids may be significantly
modulated by dietary pattern. Larger studies with
more comprehensive dietary collection will be needed
to disentangle these complexities.

Additional challenges in interpreting this study are
the cross-sectional association between dietary
assessment and CPX testing, and the difficulty in
adjusting for other known predictors of VO2 due to
the small sample size. In older adults, the strongest
predictors of peak VO2 and its decrease over time are
age and gender (11). In turn, the impact of age and
gender on the decline in VO2 over time are substan-
tially mediated by fat-free mass and habitual physical
activity (12). The authors correctly point out that diets
rich in UFAs have previously been associated with
increased fat-free mass, as seen in this study’s body
composition analysis and confirmed in the murine
feeding study. However, because lifestyle protective
factors tend to cluster together (13), patients with
HFpEF who consume healthier diets also may engage
in more habitual physical activity and maintain more
fat-free mass over time. Future studies on this topic
will need to account for this important potential
confounder.

The authors are appropriately careful not to assign
causation of reduced VO2 to dietary intake in the
human study, and do not overemphasize the diastolic
function aspect of the animal study. It is now gener-
ally accepted that HFpEF is not a disease solely of
ventricular diastolic function, but rather a heteroge-
neous syndrome with multisystem deficiencies in
cardiovascular and noncardiovascular reserve (14).
Recent studies suggest that reduced peak VO2 in
HFpEF relates to impaired skeletal muscle meta-
bolism as much or more than cardiac function (5,15).
We agree with the authors that their results, as well as
those from large cohort studies (16,17) and small
interventional pilots (18), support the concept of
targeted dietary intervention studies in HFpEF. These
should be coupled with ongoing experimental work to
understand the metabolic consequences of specific
dietary components. Preferably, such studies would
be conducted in animal models that reflect the
metabolic disarray and multisystem dysfunction of
human HFpEF (6). We believe that studying the effect
of interventions likely to have broad-based metabolic
impact holds great promise in clarifying the patho-
physiology, and ultimately the treatment, of HFpEF.
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