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Abstract

Background: Recently an unexpectedly high prevalence of Plasmodium falciparum was found in asymptomatic
blood donors living in the southeastern Brazilian Atlantic forest. The bromeliad-malaria paradigm assumes that
transmission of Plasmodium vivax and Plasmodium malariae involves species of the subgenus Kerteszia of Anopheles
and only a few cases of P. vivax malaria are reported annually in this region. The expectations of this paradigm are
a low prevalence of P. vivax and a null prevalence of P. falciparum. Therefore, the aim of this study was to verify if
P. falciparum is actively circulating in the southeastern Brazilian Atlantic forest remains.

Methods: In this study, anophelines were collected with Shannon and CDC-light traps in seven distinct Atlantic
forest landscapes over a 4-month period. Field-collected Anopheles mosquitoes were tested by real-time PCR assay
in pools of ten, and then each mosquito from every positive pool, separately for P. falciparum and P. vivax. Genomic
DNA of P. falciparum or P. vivax from positive anophelines was then amplified by traditional PCR for sequencing
of the 18S ribosomal DNA to confirm Plasmodium species. Binomial probabilities were calculated to identify
non-random results of the P. falciparum-infected anopheline findings.

Results: The overall proportion of anophelines naturally infected with P. falciparum was 4.4% (21/480) and only
0.8% (4/480) with P. vivax. All of the infected mosquitoes were found in intermixed natural and human-modified
environments and most were Anopheles cruzii (22/25 = 88%, 18 P. falciparum plus 4 P. vivax). Plasmodium falciparum
was confirmed by sequencing in 76% (16/21) of positive mosquitoes, whereas P. vivax was confirmed in only
25% (1/4). Binomial probabilities suggest that P. falciparum actively circulates throughout the region and that
there may be a threshold of the forested over human-modified environment ratio upon which the proportion of
P. falciparum-infected anophelines increases significantly.

Conclusions: These results show that P. falciparum actively circulates, in higher proportion than P. vivax, among
Anopheles mosquitoes of fragments of the southeastern Brazilian Atlantic forest. This finding challenges the classical
bromeliad-malaria paradigm, which considers P. vivax circulation as the driver for the dynamics of residual malaria
transmission in this region.
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Background
The current paradigm of malaria epidemiology in the
Brazilian Atlantic forest is based on the bromeliad-
malaria model proposed by Lutz [1], Deane [2] and
Gadelha [3], among others (e.g., [4]). The bromeliad-
malaria hypothesis proposes that malaria in humans is
caused by interactions between mosquito vectors of the
subgenus Kerteszia, genus Anopheles (Anopheles cruzii
as a primary vector), and Plasmodium vivax and Plas-
modium malariae pathogens [4-6]. Bromeliad-malaria
also includes simian malaria, a related cycle in which An.
cruzii can be infected by and transmit Plasmodium
simium to howler monkeys (Aloutta spp.) [2,7]. Mosquito
species included in the subgenus Kerteszia are adapted to
bromeliad phytotelmata as habitats for their immature
stages [8]. Consequently, humans in close contact with
tropical rain forests with abundant bromeliad vegetation
can be exposed to infective bites from females of those
mosquitoes [9,10].
Epidemics of malaria during the 1940s and 1950s in the

southeastern Atlantic forest of Brazil have been primarily
associated with the dynamics of bromeliad-malaria. Tran-
smission was successfully controlled and malaria inci-
dence decreased to a hypo-endemic level by an aggressive
vector control program that included complete defores-
tation of areas where the incidence of the disease was high
and Kerteszia species were the primary vectors. This
massive effort to destroy bromeliads diminished the abun-
dance of Kerteszia mosquitoes and eliminated the burden
of malaria on humans [11]. Since that period, malaria has
become residual with a very low level of transmission
(Annual Parasite Index [API] <0.1), and few autochtho-
nous annual cases reported [12]. This situation led the
Brazilian Ministry of Health to declare malaria non-
endemic status for areas within the Atlantic forest after
the 1970s [13,14]. However, residual malaria outbreaks in
several localities within this biome [12,15] motivated in-
vestigations focused on the mosquito and parasite species
associated with malaria transmission [10,16-20]. These
research groups detected the involvement of species of
the Kerteszia, Nyssorhynchus and Anopheles subgenera of
genus Anopheles as vectors [10,20], and Alouatta and
Cebus monkeys as potential reservoirs [16-19]. The high
frequency of reactions against the repetitive epitopes of
the circumsporozoite protein (CSP) of Plasmodium falcip-
arum and P. vivax suggests that the infection of non-
human primates [16,17] by these Plasmodium species has
been neglected. Taken together, these results indicate that
the bromeliad-malaria hypothesis, which does not encom-
pass the potential circulation of P. falciparum in areas of
Atlantic forest, needs to be re-evaluated.
Recently, a cross-sectional study revealed a surpri-

singly high frequency (5.14%, 57/1,108) of P. falciparum
real-time PCR positivity in asymptomatic blood donors
living or in close contact with forested regions of the
southeastern Brazilian Atlantic forest biome [21]. The
bromeliad-malaria paradigm would predict no P. falcip-
arum infection and very low frequency of P. vivax infec-
tion in asymptomatic blood donors inhabiting forested
areas of São Paulo state [22]. In fact, Mendrone et al.
[22] suggested that the P. falciparum real-time PCR po-
sitivity found in asymptomatic blood donors [21] could
be an artifact. However, another study proposed that
alternative dynamics of Plasmodium transmission may
have evolved and caused the unexpected high frequen-
cies of P. falciparum DNA in humans, the high level of
antibodies against CSP in monkeys and Plasmodium-
infected mosquito species other than Kerteszia [23]. The
present study searched for P. falciparum circulating in
mosquitoes captured in forest fragment areas within the
Atlantic forest domain in southeastern São Paulo state.
The major objectives of this study were to: 1) address
the occurrence of Anopheles infection by P. falciparum
and/or P. vivax; and, 2) verify the range of P. falciparum
circulation in the biome, scrutinizing possible relation-
ships between frequency of P. falciparum infection in
anophelines and different grades of intermixed natural
and human-modified environments.

Methods
Anopheles mosquito collection
Field collections were conducted in seven localities situ-
ated within an area of 11,000 sq km in the fragmented
remains of the Atlantic forest in southeastern São Paulo
state. To sample mosquitoes, a landscape-based, cross-
sectional design was adopted as follows: landscapes 1-B
and 1-C – predominantly natural vegetation; landscapes
1-A, 3, 4, and 5 – natural vegetation intermixed with
rural and urban areas; landscape 2 – predominantly
human-modified environment. The characterization of
features (e.g., natural vegetation, open areas) in each
landscape was performed by supervised image classifica-
tion technique in ArcGIS 10 Spatial Analyst™ Image
Classification tool. Accordingly, a known setting of
trained pixels was applied in order to convert multiband
Landsat 5 TM into a single band image with different
categories of landscape features. The conversion was
based on differential spectral sunlight responses to dis-
tinct landscapes. Forest fragments in multiband Landsat
5 TM images showed low pixel values in blue and red
bands, because of the high absorption in these wave-
lengths for photosynthesis. On the contrary, forest re-
flectance was high for green and near infrared bands.
Exposed soil in rural areas had low pixel values for blue,
green and red bands, whereas water had high pixel
values for the blue band only. Urban areas had a mixture
of reflectance and combinations of spectrally distinct
land cover categories. The proportion of each land cover
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type (i.e., natural vegetation, rural and urban areas)
within each landscape was estimated with the aid of
FRAGSTATS version 4 [24]. In Figure 1, dark green
areas correspond to forested areas; light green areas
correspond to Atlantic coast restinga; and tiny brownish
areas correspond to mangrove. White areas correspond
to human modified environments and pink areas
represent urban areas. See Figure 1 for details.
Mosquitoes were captured from August to November

2012, using CDC-LT (Centers for Disease Control light
traps), with and without Octenol plus CO2 as attrac-
tants, and Shannon traps. The location of traps in the
field was planned to capture mosquitoes in transition
zones (forest fringes and forest edges), inside forest frag-
ments (i.e., patches of conspicuous natural vegetation)
and in anthropogenic areas (i.e., either rural or urban),
in each landscape.
Six CDC traps were distributed in three localities in

each landscape: a) approximately 50 meters inside the
forest; b) at the forest edge; and c) in the open area
approximately 50 meters from the forest edge. See
Figure 2 for details of the trap locations in each
landscape.
Specifically, three CDC-LT were placed inside the

forest: one CDC-LT with Octenol plus CO2 and one
CDC-LT without attractant were installed 1.5 metres
above the ground (~20 metres apart) and one in the tree
canopy. Two CDC-LTs without attractant were installed
at the forest edge: one at the level of the tree canopy and
one 1.5 metres above the ground. Finally, one CDC-LT
without attractant was installed in the open area, 1.5
metres above the ground. For all CDC-LT traps the period
of sampling extended from 18:00–06:00 h, when they were
collected for analysis (see Additional files 1 and 2 for
details). This sampling procedure was repeated the
following day in each landscape, totaling 12 CDC-LTs and
144-hour-effort. In landscapes 1-B and 1-C only CDC-LT
traps were used.
Additionally, collections with Shannon traps were

performed from 17:00–05:00 h, totaling 12-hour-effort,
in landscapes 1-A, 2, 3 and 4. In landscape 5, Shannon
trap was used in a three-hour-effort, from 17:00–20:00 h
(see Additional files 1 and 2 for details).

Anopheles identification
Each mosquito was morphologically identified using a
standard dichotomous key [25]. A subsample of individuals,
from each species collected, was identified by DNA sequen-
cing of the COI barcode region of the mitochondrial DNA
genome, for morphological identification confirmation, ac-
cording to Foster et al. [26] protocols. Homology between
the COI mtDNA sequences from Anopheles individuals
generated in this study and those available in GenBank was
assessed using the nucleotide BLAST search algorithm [27].
Template DNA from both non-infected Anopheles species
and Anopheles infected with Plasmodium spp. was stored
at −70°C in a reference entomological collection, the
Coleção Entomológica de Referência, Universidade de São
Paulo, Brazil, for future reference.

Genomic DNA extraction
DNA was extracted from each Anopheles specimen indi-
vidually using a salting-out method [28]. The head and
thorax of each Anopheles individual was separated from
the abdomen using a fine entomological pin as suggested
by Foley et al. [29]. Each head and thorax was then
mixed in 500 μL TEN buffer (2 mM Tris–HCl, pH 8.0,
containing 0.5 mM EDTA and 5 mM NaCl) with 5 μL
10% SDS (sodium dodecyl sulphate) and 3-μL proteinase
K (20 mg/mL). The mixture was homogenized with a
tissue tearor (model 985370–395 Biospec products) until
complete insect disruption and incubated for 1 hr at
56°C. Then, 150 μL saturated NaCl (5 M) was added and
the mixture was stirred vigorously for 30 sec. After cen-
trifugation at 5,000 rpm for 10 min at room temperature
(18-25°C), the supernatant was transferred to a 1.5-ml
plastic vial containing 600 μL of cold isopropanol. This
tube was inverted several times to aid DNA preci-
pitation, and was kept at -20°C overnight to increase
precipitation. The tube containing DNA was spun at
12,000 rpm for 10 min at 4°C. The pellet was then
washed four times with 70% ethanol, and centrifuged at
5,000 rpm for 5 min at room temperature to remove any
excess salt. DNA was dried for 20 min in a vacuum centri-
fuge AES1010 Speed Vac (Savant, USA), and resuspended
in 20 μL TE (2 mM Tris–HCl, pH 8.0, 0.5 mM EDTA).
The total amount of genomic DNA obtained from each
individual mosquito head and thorax was quantified using
a NanoDrop (ND-1000 UV–vis Spectrophotometer).

Real-time PCR assay by hydrolysis probe
A standardized real-time PCR protocol adapted from
[30] and previously used in our laboratory [21] was
employed to detect P. falciparum and P. vivax DNA in
Anopheles specimens. The specificity and sensitivity of
this protocol was verified utilizing a 10-fold serial dilu-
tion of different positive controls: 1) a laboratory-culture
of P. falciparum to test the specificity of the hydrolysis
probe; 2) a blood sample obtained from a patient in-
fected with P. vivax to test the specificity of the hydroly-
sis probe, 3) genomic DNA extracted from one head
plus thorax of Anopheles gambiae infected with P. falcip-
arum to test the sensitivity of the hydrolysis probe and,
finally, 4) a mixture of DNA obtained from a patient
with P. vivax and genomic DNA extracted from the
head and thorax of one non-infected Anopheles mos-
quito (adult emerged in laboratory from field collected
pupa) to test the sensitivity of the hydrolysis probe. A
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Figure 1 Study region and design. A) South America. B) Southeastern Brazilian Atlantic forest. SP: São Paulo state, MG: Minas Gerais state, RJ: Rio
de Janeiro state, PR: Paraná state, SC: Santa Catarina state. C) Landscapes 1–5 (10 sq km) representing spatial scale in which dynamics of malaria
transmission can occur, given the estimated home ranges of vectors and parasites. Source: SOS Mata Atlântica, Instituto Nacional de Pesquisas
Espaciais (INPE), 2008.
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PCR amplification product was obtained only when
specific Plasmodium species were present in the reaction;
no product was detected in samples without specific
parasites, or when Anopheles stephensi infected with
Plasmodium berghei was tested. The lack of cross-
amplification between different reactions demonstrated
that each was specific for the Plasmodium species tested.
Figure 2 Landscape features and trap locations. Landscape 1-A – Esteiro do M
natural vegetation plus water (97.49%) and rural (2.51%). Landscape 1-C – Pedr
2 – Boqueirão Norte, natural vegetation plus water (38.94%), rural (38.90%) an
and rural (55.34%). Landscape 4 – Sete Barras, natural vegetation (65.37%) and
rural (25.01%). CDC-light trap A: one CDC-LT with attractants and one CDC-LT
trap B: one at the level of the tree canopy and one 1.5-m above the ground;
The samples were tested in pools of genomic DNA
from 10 Anopheles individuals. Each pool was made with
100 ng of DNA extracted from each mosquito and the
real-time PCR test used 300 ng of the pooled DNA.
After this, each mosquito from a positive pool was
individually retested using 30 ng of DNA. Samples of
laboratory-cultured P. falciparum and of human blood
orro, natural vegetation (65.37%) and rural (34.63%). Landscape 1-B – Taki,
inhas, natural vegetation plus water (94.48%) and urban (5.52%). Landscape
d urban (22.16%). Landscape 3 – Eldorado, natural vegetation (44.66%)
rural (34.63%). Landscape 5 – Tapiraí, natural vegetation (74.99%) and
1.5-m above the ground and one CDC-LT in the tree canopy; CDC-light
CDC-light trap C: one CDC-LT 1.5-m above the ground.
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samples positive for P. vivax were used as positive con-
trols for the real-time PCR reactions. Each sample was
tested in duplicate and positive samples were retested in
two distinct real-time PCR reactions. Each real-time
PCR reaction had a final volume of 12.5 μL with 5 μL
from the final ddH2O diluted field sample, 6.25 μL of
the TaqMan™ Gene Expression Master Mix (Applied
Biosystems, Foster City, CA, USA) and 1.25 μL of
300 nM forward primer, 300 nM reverse primer for
either P. vivax or P. falciparum and 200 nM of TaqMan™
probe. Primers and TaqMan™ probes are described
elsewhere [21,30]. Real-time PCR amplification was
achieved using a 7500 FAST real time PCR system
(Applied Biosystems, Foster City, CA, USA) with a pro-
gramme involving two thermal cycler holds. Conditions
were 50°C for 2 min and 95°C for 10 min, followed by
50 cycles of amplification (95°C for 15 sec and 60°C for
1 min). Results were analyzed using the 7500 software
v.2 0.5 (Applied Biosystems, Foster City, CA, USA).

Plasmodium PCR amplification and DNA sequencing
To confirm the presence of either P. falciparum or
P. vivax DNA in Anopheles mosquitoes, the genomic
DNA mix (mosquito plus Plasmodium DNA) obtained
from the head and thorax of each field-collected mos-
quito positive in the real-time PCR was checked separ-
ately, employing a single template PCR amplification
strategy. Each DNA mix was tested only for the Plasmo-
dium species identified in the real-time PCR. PCR
amplification was carried out using the same set of species-
specific primers employed for the real-time PCR, without
the TaqMan™ probes. The pairs of primers FAL-F (5′ CT
TTTGAGAGTTTTGTTACTTTGAGTAA 3′), FAL-R
(5′ TATTCCATGCTGTAGTATTCAAACACAA 3′) were
used to amplify a ~96 base pair fragment of the 18S rDNA
region of P. falciparum, and the pair VIV-F (5′ ACG
CTTCTAGCTTAATCCACATAACT 3′), VIV-R (5′ ATT
TACTCAAAAGTAACAAGGACTTCCAAGC 3′) ampli-
fied a ~140 base pair fragment of P. vivax. The PCR was
performed in a final volume of 25 μL containing 1 μL
DNA extraction solution, 12.5 μL reagent TaqMan™ Gene
Expression Master Mix (Applied Biosystems, Foster City,
CA, USA) with 0.3 μM forward primer and 0.3 μM reverse
and the remaining volume of ddH2O. The PCR thermal
conditions were the same as those employed for the real-
time PCR. The PCR products were purified by DNA Clean
& Concentrator™ kit (Zymo Research), and sequenced in
both directions, using Sanger technology [31], with the
same set of primers employed for amplification. Sequen-
cing reactions were carried in a total volume of 10 μL con-
taining 20 ng of the purified PCR product, 0.5 μL BigDye™
Terminator Ready Reaction Mix, 2 μL of 1× Sequencing
Buffer (Applied Biosystems), 3.6 pmol of reverse or forward
primers and the remaining volume of ultrapure H2O.
Sequencing reactions were purified in Sephadex G50
columns (GE Healthcare), analyzed on an ABI Prism
3130 - Avant Genetic Analyzer (Applied Biosystems, Foster
City, CA, USA), and edited using Sequencher™ version 5.1
(Gene Codes Corporation, Ann Arbor, USA).

Binomial test
In order to detect non-random outcomes of the obtained
results per landscape, it was performed a binomial distribu-
tion analysis with the anopheline-P. falciparum infection
data. Considering the overall prevalence of anopheline-
P. falciparum infection obtained in the present study (see
Results) as the a priori probability, two probabilities were
calculated assuming the binomial distribution. First, it was
calculated the probability of having at least one positive
anopheline in the sample obtained. From this probability,
the statistical power (1 - β) of each sample in detecting
P. falciparum infection in the corresponding landscape, or
species, or trap was estimated. Then, it was calculated the
exact probability of finding the number of positive mosqui-
toes (k) among the total tested (n) per landscape, species,
or trap. If this probability was under the adopted level of
significance then it was used as evidence of a non-random
outcome, i.e., below or above the expected result (i.e., the
aforementioned overall prevalence). The significance level
of 0.05 and the power of the test of 0.8 were adopted [32].

Results
A total of 921 Anopheles specimens were captured. A
subsample of 480 anophelines (over the 921 captured)
was used to the real-time PCR testing. The subsample
selection strategy was oriented to proven vectors in the
region (e.g., An. cruzii, An. bellator and An. marajoara)
[33] plus others that were found infected recently (e.g.,
An. strodei, An. triannulatus, An. fluminensis) [10,20] or
other abundantly captured species (e.g., An. galvaoi, An.
mediopunctatus). Table 1 shows the absolute and relative
frequencies of Anopheles species captured.
Twenty-five specimens were infected with Plasmodium

parasites, for an overall prevalence of 5.2% (25/480). As
related to the malaria parasites, 21 out of 25 (84%) were
positive for P. falciparum, contrasting with only four out
25 (16%) which were positive for P. vivax. None of the
mosquito samples was tested for P. malariae, in spite of
the traditional acknowledgement of this species parti-
cipation in the bromeliad-malaria paradigm. Nevertheless,
between 1980 and 2007, only five cases were attributed
to P. malariae (less than 1%, 5/821 cases) in São Paulo
state [34].
Anopheles cruzii was the species with the highest in-

fectivity (22/260, 8.5%), and represented almost the to-
tality of infected anophelines found (22/25, 88%). There
was a preponderance of P. falciparum infection among
them (18/22, 82%, of P. falciparum and 4/22, 18%, of



Table 1 Absolute (n) and relative frequency (%) of field collected Anopheles specimens per landscape, Atlantic forest,
Brazil, August-November 2012

Landscape Traps Species Frequency Period of
collectionn %

1-A

Shannon An. (Ano.) fluminensisa 4 0.43 Mid October

CDC-LT An. (Ano.) intermedius 2 0.22 Late August

Shannon An. (Ano.) intermediusa 12 1.30 Mid October

CDC-LT An. (Ker.) bellator 1 0.11 Late August

CDC-LT An. (Ker.) cruzii 2 0.22 Late August

Shannon An. (Ker.) cruziia 4 0.43 Mid October

Shannon An. (Nys.) strodei s.s.a 100 10.86 Mid October

Shannon An. (Nys.) triannulatusa 21 2.28 Mid October

Subtotal 146 15.85

1-B
CDC-LT An. (Ker.) bellator 5 0.54 Mid August

CDC-LT An. (Ker.) cruzii 27 2.94 Mid August

Subtotal 32 3.48

1-C
CDC-LT An. (Ano.) mediopunctatus 19 2.06 Mid August

CDC-LT An. (Ker.) cruzii 1 0.11 Mid August

Subtotal 20 2.17

2

Shannon An. (Ano.) intermediusa 1 0.11 Mid September

CDC-LT An. (Ano.) mediopunctatus 12 1.30 Late August

Shannon An. (Ano.) mediopunctatusa 8 0.87 Mid September

Shannon An. (Nys.) albitarsis s.s.a 14 1.52 Mid September

Subtotal 35 3.80

3

Shannon An. (Ano.) intermedius 14 1.52 Late October

CDC-LT An. (Ano.) mediopunctatus 2 0.22 Late August

Shannon An. (Ano.) mediopunctatusa 51 5.54 Late October

CDC-LT An. (Ker.) cruzii 1 0.11 Late August

Shannon An. (Ker.) cruzii 19 2.06 Late October

Shannon An. (Nys.) albitarsis s.s.a 2 0.22 Late October

Shannon An. (Nys.) galvaoia 147 15.96 Late October

Shannon An. (Nys.) oswaldoi s.l. 13 1.41 Late October

Shannon An. (Nys.) triannulatus 14 1.52 Late October

Subtotal 263 28.56

4

Shannon An. (Ano.) intermedius 2 0.21 Mid September

CDC-LT An. (Ano.) mediopunctatus 1 0.11 Late August

Shannon An. (Ano.) mediopunctatusa 1 0.11 Mid September

CDC-LT An. (Ker.) cruzii 1 0.11 Late August

Shannon An. (Ano.) mediopunctatusa 3 0.32 Mid September

Shannon An. (Nys.) albitarsis s.s. 14 1.52 Mid September

Shannon An. (Nys.) galvaoia 58 6.30 Mid September

Shannon An. (Nys.) oswaldoi s.l. 8 0.87 Mid September

Shannon An. (Nys.) triannulatus 39 4.24 Mid September

Subtotal 127 13.79
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Table 1 Absolute (n) and relative frequency (%) of field collected Anopheles specimens per landscape, Atlantic forest,
Brazil, August-November 2012 (Continued)

5

Shannon An. (Ker.) cruziia 251 27.25 Late November

Shannon An. (Nys.) near pristinus 4 0.43 Late November

Shannon An. (Nys.) strodei s.s.a 40 4.34 Late November

Shannon An. (Nys.) triannulatus 3 0.33 Late November

Subtotal 298 32.35

Total 921 100
aMorphological identification confirmed by DNA COI barcode sequences.
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P. vivax). The remaining three anophelines were infected
with P. falciparum, being one An. strodei, one An. trian-
nulatus, and one An. galvaoi. Table 2 shows the amount
of anophelines tested and positive in each landscape
studied.
Table 2 shows that eight out of the twenty-five anophel-

ine samples that tested positive with real-time PCR for
Plasmodium did not amplify parasite DNA (3 P. vivax and
5 P. falciparum) in conventional PCR (Additional file 3).
From these 17 samples, 16 (15 of P. falciparum and 1 of
P. vivax) had their fragment of the 18S rDNA gene
sequenced and submitted to BLAST analysis. The
P. falciparum fragments shared 99% similarity with
P. falciparum sequences previously associated with wild
monkeys (Lagothrix cana cana, KC906727 and Alouatta
puruensis, KC906718; [35]) and 98% similarity with
Callicebus brunneus (KC906722; [35]), from the Amazon
region of Brazil. In contrast, the 18S rDNA sequence of
P. vivax shared 100% similarity with two samples
sequenced from human isolates in India (JQ627157 and
JQ627156). Morphological identification of the 25 anoph-
elines positive for Plasmodium infection was confirmed
using DNA sequences of the barcode region of the COI
mitochondrial gene (GenBank accession numbers in
Additional file 4).
The distribution of infected mosquitoes was neither

spatially nor taxonomically random. Table 3 shows the
results of the specific binomial probabilities of positive
findings for landscapes, Anopheles species, and traps.
From Table 3, it can be seen that in 3/7 different

landscapes P. falciparum-infected anophelines were found,
for an overall prevalence of 4.4% (21/480). However, it was
not possible to exclude active P. falciparum circulation all
over the region, as the power of the test was consistently
below the threshold of 80% for the negative landscapes. In
addition, in landscape 5 (natural vegetation intermixed
with rural areas, in a ratio 3:1) the prevalence of infected
anophelines found was higher than expected. On the
other hand, in landscape 3 (natural vegetation intermixed
with rural areas, in a ratio 0.8:1), a more intensively
human modified environment, the prevalence of infected
anophelines found was lower than expected. Finally, in
landscape 1-A (natural vegetation intermixed with rural
areas, in a ratio 1.9:1), representing an intermediary forest
covered environment comparing to landscapes 5 (more
forested) and 3 (less forested), the prevalence of infected
anophelines found was not significantly apart from the
expected overall prevalence for the region. These findings
could suggest that there may be a negative gradient
between human modified environments and prevalence of
P. falciparum among anophelines (specifically An. cruzii)
in this region. This new hypothesis shall be tested in a
future and properly designed study.
Notwithstanding, all infected anophelines were collected

in Shannon traps, which were not used in landscapes 1-B
and 1-C (predominantly natural vegetation intermixed with
rural areas). In contrast, CDC-LTs collected only 76 female
anophelines, representing only 8.3% of the total captured.
Half (38/76) of the CDC-LT-collected Anopheles were
tested, according to the criteria defined before, and no
specimen was positive for either P. vivax or P. falciparum
DNA (power of the test = 0.87, considering the overall
prevalence of 5.2%). Maybe this is because CDC-LT
captures females not searching for a blood meal and those
are predominantly young and nulliparous ones in the
natural environment.

Discussion
Results of the present study showed that P. falciparum and
P. vivax are present and infect anophelines in forest-
fragmented areas of the southeastern Atlantic forest where
bromeliads are common and dense [36]. Lutz [1] in 1903
proposed the involvement of Kerteszia species (An. cruzii
identified as An. lutzi) in the epidemiology of malaria in the
southeastern Atlantic forest. Later, Downs and Pittendrigh
[37] proposed the term “bromeliad-malaria” for the
transmission involving species of the subgenus Kerteszia. In
the following years, the bromeliad-malaria explanation was
largely adopted by malariologists, and thus became a
paradigm to explain the dynamics of residual malaria that
still occur in areas of the Atlantic forest where Anopheles
(Kerteszia) species are abundant and are primary vectors of
P. vivax and P. malariae [2,3]. The larval habitats of the
majority of the species in subgenus Kerteszia are bromeliad
phytotelmata [25,38], except for Anopheles bambusicolus
that is associated with the internodes of bamboo plants



Table 2 Anopheles species, number of mosquitoes tested positive for Plasmodium DNA/number of individuals tested
for infection (+/n), frequency (%) of infected Anopheles, PCR method (real-time and conventional PCR) and the parasite
species per landscape, Atlantic forest, Brazil, August-November 2012

Landscape Speciesa Real-time PCR +/n (%) PCR +/n (%) Parasite speciesb

1-A

An. cruzii 0/6 (0.0) - -

An. fluminensis 0/3 (0.0) - -

An. strodei 1/72 (1.4) 0/1 (0.0) P. falciparum

An. triannulatus 1/12 (8.3) 0/1 (0.0) P. falciparum

Subtotal 2/93 (2.15) 0/2 (0.0) -

1-B

An. cruzii 0/22 (0.0) - -

An. bellator 0/9 (0.0) - -

Subtotal 0/31 (0.0) - -

1-C
An. cruzii 0/1 (0.0) - -

Subtotal 0/1 (0.0) - -

2
An. albitarsis 0/14 (0.0) - -

Subtotal 0/14 (0.0) - -

3

An. albitarsis 0/1 (0.0) - -

An. cruzii 0/20 (0.0) - -

An. galvaoi 1/48 (2.1) 1/1 (100.0) P. falciparum

An. mediopunctatus 0/42 (0.0) - -

Subtotal 1/111 (0.9) 1/1 (100.0) -

4

An. albitarsis 0/13 (0.0) - -

An. cruzii 0/4 (0.0) - -

An. strodei 0/1 (0.0) - -

An. triannulatus 0/5 (0.0) - -

Subtotal 0/23 (0.0) - -

5

An. cruzii 4/207 (1.9) 1/4 (25.0) P. vivax

An. cruzii 18/207 (8.7) 15/18 (83.0) P. falciparum

Subtotal 22/207 (10.6) 16/22 (72.7) -

Total P. vivax 4/480 (0.8) 1/4 (25.0)

Total P. falciparum 21/480 (4.4) 16/21 (76.2)

Total 25/480 (5.2) 17/25 (68.0)
aMorphological identification of the specimens tested positive for Plasmodium was confirmed by DNA COI barcode sequences.
bPlasmodium species identified in Anopheles mosquitoes by real-time PCR and/or conventional PCR plus DNA sequencing with species-specific primers [21].
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[38]. Anopheles bellator, An. cruzii, and An. homunculus
are the most important vectors of P. vivax involved in
the dynamics of the bromeliad-malaria in the Atlantic
forest [39].
In the present study, however, results of Anopheles

mosquitoes captured in seven landscapes, which have
been distinctly modified by human activities, revealed a
high prevalence of An. cruzii infected with P. falciparum,
contrasting with a low proportion of infection by P. vivax.
In addition, other species of the subgenus Nyssorhynchus of
Anopheles were found infected with P. falciparum (An.
triannulatus, An. strodei and An. galvaoi). The high preva-
lence in An. cruzii and those findings of An. galvaoi, An.
triannulatus and An. strodei infected with P. falciparum
represent, therefore, a challenge to the bromeliad-malaria
paradigm. The found of An. cruzii as a potential vector of
P. falciparum, and that species of another subgenus of
Anopheles also may be involved in the malaria dynamics, in
landscapes with different patterns of intermixed natural
and human-modified environments of the southeastern
Atlantic forest, suggest that residual malaria transmission
in that region is complex and challenging. Therefore, mal-
aria dynamics in that region may result from simultaneous
cycles involving a range of anopheline species and, likely,
monkeys as reservoirs.
Recent studies suggest that the bromeliad-malaria

paradigm alone cannot explain the residual malaria in the
Atlantic forest. For instances, there are several evidences of
complex biological cycles involving different Plasmodium
species and anopheline vectors. Duarte et al. [10] found



Table 3 Analysis of the binomial probability distribution
of anopheline-P. falciparum infection according to
landscape or species or traps, Atlantic forest, Brazil,
August-November 2012

Landscape Positive (k) Tested (n) Probability
(P)a

1 – P
(k = 0)

1-A 2 93 0.138 0.985

1-B 0 31 0.248 0.752c

1-C 0 1 0.956 0.044c

2 0 14 0.533 0.467c

3 1 111 0.035b 0.993

4 0 23 0.355 0.645c

5 18 207 0.003b 0.997

Species Positive (k) Tested (n) Probability
(P)a

1 – P
(k = 0)

An. albitarsis 0 28 0.284 0.716c

An. bellator 0 9 0.667 0.333c

An. cruzii 18 260 0.018b 0.999

An. fluminensis 0 3 0.874 0.126c

An. galvaoi 1 48 0.255 0.885

An. mediopunctatus 0 42 0.151 0.849

An. strodei 1 73 0.126 0.963

An. triannulatus 1 17 0.364 0.535c

Traps Positive (k) Tested (n) Probability
(P)a

1 – P
(k = 0)

CDC-LT 0 38 0.181 0.819

Shannon 21 442 0.083b 1
aAn a priori probability of success (k/n) in each trial equals to 0.044, which was
the overall prevalence of anopheline-P. falciparum infection obtained herein
(21 /480), was assumed.
bThis result was statistically significant (level of significance < 0.05).
cThis result shows that the statistical power was low (<0.80).
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that An. (Nys.) lutzi and An. triannulatus from anthropic
zones were infected with P. vivax; An. strodei from transi-
tion zones (areas between sylvatic and anthropic zones)
was positive for P. malariae and An. cruzii from sylvatic
and anthropic regions tested positive for P. vivax and
P. malariae. Similarly, Neves et al. [20] demonstrated
that specimens of An. (Ano.) fluminensis, An. (Ano.)
pseudomaculipes/maculipes and An. cruzii captured in
a coastal area of an Atlantic forest reserve were
infected with P. vivax and P. malariae. In addition,
P. falciparum DNA has been reported in asymptom-
atic human residents in the mountainous regions of
the Atlantic forest, in Espírito Santo state [18].
Furthermore, Yamasaki et al. [19] hypothesized that
interacting human and zoonotic cycles of malaria
transmission, including simians as potential reservoirs,
occur in the Atlantic forest region.
Additionally, in the present work Plasmodium-infected

anophelines were found in three out of seven landscapes
composed of intermixed natural and human-modified
environments. It should be mentioned here, however,
that the sample sizes obtained in the negative landscapes
were not large enough to exclude the possibility of P. fal-
ciparum circulation in the areas. These results also sug-
gest a possible gradient between human environment
modification and the occurrence of malaria. For instance,
landscape 5, with a forest/rural environment ratio of 3:1,
had the highest proportion of P. falciparum-infected
anophelines (8.7% of An. cruzii, significantly higher than
expected by chance); landscape 1-A (forest/rural ratio of
1.9:1) had 2.2% of Nyssorhynchus species infected with
P. falciparum, an outcome expected by chance; finally,
landscape 3 (with forest/rural ratio of 0.8:1) had a lower
than expected proportion of P. falciparum-infected ano-
phelines (0.9% of infected Nyssorhynchus species). In
addition, landscape 5 is located in the same geographical
region of São Paulo state where Maselli et al. [21] found a
surprisingly high prevalence of subclinical P. falciparum
infection among asymptomatic blood donors. Previous
work by [40-42] also suggests that landscapes intermixing
natural and human modified environments may favor
malaria transmission.
The occurrence of major human infectious diseases has

long been related to landscape modification, particularly by
agriculture, which suggests that human modification of
natural environments significantly increases the risk of
infectious disease outbreaks, causing profound changes in
the transmission dynamics of such infections, and possible
evolutionary modifications in the pathogens [43]. Recent
evidence on the possible origin of human P. falciparum in
gorillas demonstrates the importance of such evolutionary
pathogen modifications in response to evolving malaria
transmission dynamics [44-47]. Krief et al. [48] proposes
that P. falciparum may have evolved as a species in Pan
paniscus (bonobos) and subsequently colonized humans by
a host-switch. In addition, based on results of phylogenetic
analysis, they assumed that Pan troglodytes (chimpanzees)
and bonobo primates can act as reservoirs for all
Plasmodium species to which humans are susceptible. On
the other hand, the high prevalence of P. falciparum
subclinical infections in blood donors living in forested
areas of São Paulo [21] and the present findings of a high
prevalence of P. falciparum in infected An. cruzii and other
Anopheles (Nyssorhynchus) species in the same region,
possibly indicate that this Plasmodium species may have
adapted to monkeys as main reservoirs, in the Atlantic
forest. Additional evidence supporting this hypothesis is
the high genetic similarity between the DNA sequences
from positive mosquitoes captured in Atlantic forest
remains in the present study with those previously
obtained from wild monkeys in Rondônia and deposited
in the GenBank [35]. Of course, further evidence such
as identification and genomic characterization of the
parasites in wild monkeys of the Atlantic forest remains
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and the completion of socio-ecological surveys specific-
ally designed to test such hypothesis are necessary to
confirm these preliminary findings.

Conclusions
The present study adds new and strong evidence to
support the hypothesis of coexisting cycles of enzootic and
human malaria, determining the residual malaria transmis-
sion dynamics in areas of the southeastern Atlantic forest.
It also indicates that the bromeliad-malaria paradigm is not
the only explanation for the dynamics of residual malaria
transmission in the southeastern Brazilian Atlantic forest.
Perhaps more important than this, is the recognition of the
need for future studies focusing on both the evolutionary
origin of P. falciparum that is circulating among different
Anopheles species in the Atlantic forest and on the effects
of different gradients of intermixed forest and human
modified environments on malaria transmission in that
region.

Additional files

Additional file 1: Field design. Schematic illustration representing
types and position in the landscape of anopheline collection traps:
1) CDC-LT in the canopy in forest, 2) CDC-LT on the ground in forest,
3) CDC-LT in the canopy in forest margin, 4) CDC-LT on the ground in
forest margin, 5) CDC-LT on the ground in open area, 6) CDC-LT with
Octenol and CO2, and 7) Shannon trap. Trap drawings are out of scale
and were modified from [25], Shannon, and [49], CDC-LT.

Additional file 2: CDC-LT and Shannon traps utilized for field
collections per landscape, Atlantic forest, Brazil, August-November
2012.

Additional file 3: Successful amplification of Plasmodium species in
Anopheles species per type of PCR method, Atlantic forest, Brazil,
August-November 2012.

Additional file 4: Description of the sequenced Plasmodium-infected
Anopheles species, Atlantic forest, Brazil, August-November 2012.
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