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SUMMARY

Knowledge of the full target space of bioactive sub-
stances, approved and investigational drugs as well
as chemical probes, provides important insights
into therapeutic potential and possible adverse ef-
fects. The existing compound-target bioactivity
data resources are often incomparable due to non-
standardized and heterogeneous assay types and
variability in endpoint measurements. To extract
higher value from the existing and future compound
target-profiling data, we implemented an open-data
web platform, named Drug Target Commons (DTC),
which features tools for crowd-sourced compound-
target bioactivity data annotation, standardization,
curation, and intra-resource integration. We demon-
strate the unique value of DTC with several examples
related to both drug discovery and drug repurposing
applications and invite researchers to join this com-
munity effort to increase the reuse and extension of
compound bioactivity data.

INTRODUCTION

Mapping the full spectrum of potential interactions between

compounds and their targets, including both intended or ‘‘pri-

mary targets’’ as well as unintended secondary or ‘‘off-targets’’,

is a critical part of most drug discovery and development efforts,

not only enabling exploration of the therapeutic potential of these

chemical agents but also better understanding andmanagement

of their possible adverse reactions prior to clinical testing. Accu-

mulating data show that most drugs bind tomore than one target

molecule within a biologically relevant affinity range (Santos

et al., 2017). For instance, most kinase inhibitors bind to the
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conserved ATP-binding pocket of several or many distinct

protein kinase domains that share sequence and structural

similarity, leading to target promiscuity and a broad range

of polypharmacological effects (Davis et al., 2011). Systems-

wide compound-target interaction networks are therefore

necessary to fully understand themode of action of such promis-

cuous compounds, as well as to extend therapeutic uses of

both approved and abandoned drugs, i.e., drug repurposing

(Pemovska et al., 2015).

Efforts have been made to collect and curate quantitative

compound-target interaction data, covering both active and

inactive endpoints from various high- and low-throughput

target-profiling experiments (Hersey et al., 2015; Santos et al.,

2017; Wang et al., 2017). The diversity of specific profiling

bioassays and approaches in drug discovery often leads to a

high degree of data heterogeneity, commonly arising from the

use of different experimental assays and bioactivity endpoints,

as well as from differing detection technologies and endpoint

measurements. Such non-standardized and heterogeneous

experimental factors pose challenges for the comparison and

integration of these bioactivity data resources, especially when

using them to interpret and mine phenotypic profiling data for

drug discovery and drug repurposing applications, an area of

research that has gained significant traction in recent years

(Arrowsmith et al., 2015; Schreiber et al., 2015; Plowright et al.,

2017; Licciardello et al., 2017; Corsello et al., 2017).

To address these challenges, we implemented a web-based,

open-access platform, called Drug Target Commons (DTC,

https://drugtargetcommons.fimm.fi/), to initiate a community-

driven crowd-sourcing effort to collectively extract, integrate,

annotate, and standardize quantitative compound-target bioac-

tivity data from the literature and other database sources

(Figure 1). DTC implements a number of unique features

including: (1) an interactive web interface enabling end users to

not only upload new data from experiments or literature but

also to participate in the data annotation and curation, together

with the committed data approvers; (2) a specifically adapted
e Authors. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Schematics of the DTC Platform (Open-Access Database and Web Application)

The web-based platform enables the user community to take part in crowd-sourced data extraction, annotation, and curation, as well as in using and analyzing

comprehensive and standardized compound-target interaction profiles. The community-driven effort aims to provide maximally high-quality and reproducible

bioactivity profiles and related information that will be fed back and cross-referenced to the original data sources, therefore supplementing and enhancing the

coverage and annotation of existing drug/target data resources through the crowd-sourcing initiative. Processing errors and inconsistencies in the experimental

data can be minimized via open discussions, enabled by the web interface, and only the most reliable bioactivity data will be released for end users through

regular updates under the Creative Commons License.
compound-target bioactivity assay annotation and data curation

procedure to provide more informative target profiles, making it

possible to sort out inconsistencies between profiling studies

that use differing assay types and endpoints; and (3) high-quality

and comprehensive target profiles, which include not only

the primary and secondary targets but also disease- or drug-

response-related mutant targets, hence capturing the whole

spectrum of potential target potencies. Comparedwith the exist-

ing data resources, the open-data environment and crowd-

sourcing curation ensures that themost up-to-date experimental

data for compound-target interactions will be sufficiently anno-

tated and cross-checked before being approved and deposited

into the DTC database (Table S1).

Bioassay Annotation Explains Part of the Heterogeneity
in Bioactivity Data
Differing experimental assays contribute to heterogeneous

and irreproducible bioactivity data. For example, biochemical
assays typically generate higher potency numbers than cell-

based assays, especially for compounds that compete for

binding with natural ligands or enzyme cofactors, such as

ATP-competitive kinase inhibitors. However, large differences

between biochemical and cellular potencies may also suggest

that the compound does not penetrate the cell membrane,

that it has undesirable protein-binding activities, or that it is

not metabolically stable in cellular environments. To facilitate

the standardization of bioassay annotation, we implemented

a simplified version of the bioassay ontology (BAO) (Abeyru-

wan et al., 2014), termed mBAO (micro bioassay ontology),

which conforms to the MIABE (minimum information about a

bioactive entity) guidelines (Orchard et al., 2011) for describing

compound-target bioactivities (Table S2). Compared with

the original BAO, the simplified mBAO annotation allows

the data curators to extract the assay information relatively

quickly from the method descriptions of published literature

(Figures S1 and S2).
Cell Chemical Biology 25, 224–229, February 15, 2018 225



Figure 2. Bioassay Annotations Explain

Heterogeneity in Bioactivity Data

(A) 74 bioactivity data points for the gefitinib-EGFR

drug-target pair prior to assay annotation.

(B) The mBAO annotation process revealed that the

major source of the variation was driven by the

assay type (x axis), and further variation can be

attributed to the detection technique and assay

formats (colors and shapes). The low potency

outliers originated from kinase assays run at very

high ATP concentrations.

(C) 78 bioactivity data points for the celecoxib-

COX2 drug-target pair before assay annotations.

(D) A clear distinction was observed in the assays

performed ex vivo (human blood), compared with

recombinant proteins (x axis). Further variation in

the bioactivities arises from the specific target

sources.

See also Figures S1 and S2.
As a proof of concept, we performed three rounds of data

extraction and annotation processing with the DTC platform.

These test rounds have already produced an extensive and stan-

dardized open-data resource that spans a broad spectrum of

compound and target classes (Figures S3 and S4; Table S3).

We initiated the mBAO annotation process based on the bioac-

tivity assays that have already been deposited in ChEMBL,

currently themost comprehensive, public-domain, andmanually

curated bioactivity database (Gaulton et al., 2017). These initial

test rounds have resulted so far in 187,600 fully annotated

bioactivity data points among 4,082 chemical compounds and

across 528 distinct protein targets, with specific focus on kinase

targets.
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As a first specific example, we focused

on gefitinib, an epidermal growth factor

receptor (EGFR) tyrosine kinase inhibitor

approved for treatment of patients with

non-small-cell lung cancer. The available,

nominally comparable gefitinib/EGFR

interaction affinity data points (which in

the initial release of DTC largely come

from the data in ChEMBL) were spread

out over a �10,000-fold concentration

range (Figure 2A). However, the mBAO

annotation enabled a better understand-

ing of the heterogeneity in the gefitinib/

EGFR bioactivity values (Figure 2B; see

Figure S2 for examples). Specifically, the

observed variability in the bioactivity

data points was due primarily to func-

tional assays that used different assay

formats and detection technologies,

whereas the binding assays showed

more consistent potency values (Fig-

ure 2B). The extreme outliers in the func-

tional assays originated from various

detection methods. Of note, publication

or deposition errors are beyond the scope

of any assay annotation and may explain
a portion of the remaining outlier data points (Kruger and Over-

ington, 2012).

As a second case example, we carefully annotated a new set

of bioactivities reported between the non-steroidal anti-inflam-

matory drug, celecoxib, and its primary target cyclooxygenase

2 (COX-2; gene symbol PTGS2). In doing so, we observed that

adding information about the source of the target protein is

essential for explaining the data heterogeneity (Figure 2C).

Notably, assays using purified recombinant protein exhibited

more than 10-fold higher potency than those measuring enzy-

matic activity in cellular extracts (Figure 2D). One explanation

for the differing readouts may be that the high protein-binding

propensity of celecoxib reduces its free concentration in the



Figure 3. Compounds with Differential Potency against ABL1 (T315I)

(A) A set of 25 compounds that showed potency toward phosphorylated-ABL1 (T315I), based on the current DTC database. Bubbles mark the potency class

(based on half maximal inhibitory concentration [IC50] in nM) of these compounds toward ABL1 (T315I), wild-type ABL1, and Aurora kinase B (AURKB), as an

estimate of the potential therapeutic window. The structural similarity of the compounds is visualized as a dendrogram (constructed with the C-SPADE web tool

available at http://cspade.fimm.fi; Ravikumar et al., 2017). The gray-shaded part marks candidate compounds, KW-2449 and to a lesser extent TAE-684, that are

structurally similar to axitinib (an ABL1 [T315I] inhibitor), and show similar differential selectivity toward ABL1 (T315I).

(B) Ba/F3 cells stably expressing BCR-ABL1 (T315I) were used for experimental validation, with compound concentrations on the x axis and the viability readout

on the y axis (mean and SD errors calculated based on three ormore replicates). As expected, the positive control axitinib had a higher potency toward BCR-ABL1

(T315I)-driven cells, compared with BCR-ABL1 wild-type-driven cells; similarly, KW-2449 showed a slightly higher potency toward ABL1 (T315I) compared with

BCR-ABL1 wild-type. The potency of TAE-684 was actually higher toward BCR-ABL1 wild-type than toward ABL1 (T315I) in the cell-based validation,

demonstrating the importance of further pre-clinical evaluations before entering the drug optimization or repurposing phases.
more heterogeneous cell-extract assays, and therefore results in

a perceived lower target potency (Paulson et al., 1999), but there

may also be other factors such as metabolic stability that

contribute to this difference. This example emphasizes the

importance of deep enough assay annotation for interpreting

the heterogeneous bioactivity profiles.

DTC Provides a High-Quality Knowledge Base to
Facilitate Drug Repositioning
Among the 4,082 compounds we have annotated so far, we

found interesting selectivity patterns that may help identify

drug repurposing opportunities. Despite the high number of

bioactivity data for some well-studied compounds, such as da-

satinib, bosutinib, and staurosporine, each with more than

1,000 unique bioactivity records (Figure S5), the size of the po-

tential target space is much smaller, with an average one potent

target per compound (STAR Methods). When searching for

potent inhibitors against given proteins, FLT3, AURKB, KDR,

and FLT4 appear as the top-studied kinase targets, each having

more than 120 active compounds (Figure S6A). Among mutated

kinases, variants of BRAF and ABL1 emerge in the top tier,

being targeted by more than 100 active compounds each

(Figure S6B). Having access to both mutant and wild-type
bioactivities enables mining compounds with a selective activity

against a particular disease- or resistance-related kinase

mutation.

As a case example, we focused on BCR-ABL1 fusion gene,

given its importance in precision medicine for chronic myeloid

leukemia (CML). Specifically, we took all the compounds in

DTC that have reported potencies against ABL1 wild-type,

BCR-ABL1(T315I), and Aurora B kinase, since inhibition of

aurora kinases has turned out to be a dose-limiting toxicity-

inducing off-target effect of BCR-ABL1(T315I) inhibitors (Gold-

enson and Crispino, 2015), and clustered them based on their

structural similarities (Figure 3A). Such a target-specific tree

provided enhanced information about themutation-selective ac-

tivities across a wide panel of approved and investigational com-

pounds. For example, a VEGFR inhibitor axitinib was recently

identified as a potent and selective BCR-ABL(T315I) inhibitor

(Pemovska et al., 2015), and it is currently undergoing a clinical

trial for CML (NCT02782403). Notably, compounds structurally

similar to axitinib, including TAE-684 and KW-2449, also showed

a strong potential to be repositioned as BCR-ABL1(T315I) inhib-

itors (highlighted in Figure 3A). Using a cell-based assay (Fig-

ure 3B), we confirmed that KW-2449, originally developed as

an FLT3 inhibitor, is indeed active toward BCR-ABL1(T315I).
Cell Chemical Biology 25, 224–229, February 15, 2018 227

http://cspade.fimm.fi


However, we could not replicate the TAE-684 bioactivities,

perhaps due to differing assay format compared with the original

data source. This example shows how DTC data enable map-

ping of potential compound activities but also highlights the

importance of cell-based target validation, ideally using multiple

experimental assays, before entering into expensive and long

drug development and clinical testing phases.

An Invitation to Join the Collaborative Effort to Reuse
and Extend Bioactivity Research Data
The major contributions of DTC as a drug discovery tool are the

mBAO annotation and the crowd-sourcing web platform, which

make it possible to utilize community power to enable deeper-

level annotation of an extensive set of bioactivity assays, a pro-

cess that is beyond the scope of any individual institute or group

if working alone. The key to enable such a collaborative effort re-

lies on effective communication and advertising, emphasizing

the transparency, open-access, and ease-of-use of the DTC

platform. The mBAO annotation system will be improved based

on the emerging needs from the community, yet keeping it sim-

ple enough to allow for large-scale annotations. With an

increasing number of data providers and curators joining this

effort, we envision that the bioactivity data from public data-

bases and newly published studies will be continuously anno-

tated (Figure 1).

In the next phase, the fully annotated data will be cross-

compared to reach a consensus view through community knowl-

edge and evidence-based integration approaches (Knapp et al.,

2013; Tang et al., 2014; Wang et al., 2016). We expect there will

be a number of tools built on the DTC data by us and others that

will provide added value from the bioactivity data, similar to the

C-SPADE tool used in the present study for polypharmacological

visualization (Ravikumar et al., 2017). In the long term, DTC will

provide a sustainable open-access resource for many exciting

applications, such as extending the space of the ‘‘druggable’’

cancer genome, not only for kinases but also for other target

families including GPCRs, ion channels, and nuclear receptors.

Comprehensive target selectivity profiles are also critical for

the ongoing precision oncology efforts that use patient-specific

mutation panels for tailoring targeted therapies (Dienstmann

et al., 2015; Chakradhar, 2016; Griffith et al., 2017).

SIGNIFICANCE

We have initiated Drug Target Commons (DTC) as a commu-

nity-based crowd-sourcing platform designed to improve

the reuse and consensus of compound-target bioactivity

profiles. DTC implements an open environment to collec-

tively curate, annotate, and integrate drug-target bioactivity

data from literature and other resources. In this report, we

demonstrated the added value and benefits of the DTC plat-

form for application use cases relevant for drug discovery

and repurposing applications. The deep-level expert cura-

tion and annotation as well as improved consensus on po-

tency, selectivity, and therapeutic relevance of compounds

are expected to greatly benefit many biological discovery,

phenotypic profiling, and target deconvolution efforts in

the future. To achieve the greatest impact, we invite

chemical biologists, medicinal chemists, and computational
228 Cell Chemical Biology 25, 224–229, February 15, 2018
biologists to join the community-driven data harmonization

effort. As a return, all the curated data are freely available at

http://drugtargetcommons.fimm.fi.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ba/F3 cells stably expressing BCR-ABL1 or BCR-ABL1 T315I were cultured in RPMI 1640 supplemented with 10% fetal bovine

serum (FBS), L-glutamine and penicillin-streptomycin. For Ba/F3 parental cells (sex unknown), mouse recombinant interleukin-3

(IL-3; eBioscience) was added to the growth medium at a concentration of 10 ng/ml. The human virus-packaging cell line CRL-

11654 (female) was cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% FBS and 1% penicillin-streptomycin.

All cell lines were kept in 5% CO2 at 37
�C. Ba/F3 parental cells (DSMZ) and CRL-11654 (ATCC) were purchased directly from their

sources but were not authenticated.
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METHOD DETAILS

Cell Line Assays
The Ba/F3 murine IL-3-dependent pro-B cell line was used to test kinase activity in a manner similar to previous studies (Warmuth

et al., 2007). Ba/F3 cells stably expressing BCR-ABL1 were provided by Tea Pemovska and made as described here. Briefly, Ba/F3

cells stably expressing pMIG-BCR-ABL1 and pMIG-BCR-ABL1(T315I) plasmids made by infection with replication-incompetent ret-

roviruses containing coding sequences for BCR-ABL1 and BCR-ABL1(T315I) collected after transfection of a virus-packaging cell

line (CRL-11654, ATCC). 4 days post-infection, a stable expressing population was selected by removal of IL-3 for approximately

10 days. Ba/F3 cells stably expressing BCR-ABL1 or BCR-ABL1 (T315I) were then treated with a range of concentrations of axitinib,

KW-2449 and TAE-684. Cell viability was detected by CellTiter-Glo Luminescent Cell Viability Assay (Promega) in a 384-well plate

format. Luminescence was measured using a PHERAstar FS microplate reader (BMG Labtech), and half-maximal inhibitory concen-

tration (IC50) was calculated (GraphPad Prism) to assess sensitivity of cell lines to the tested compounds. All assays were repeated at

least three times, with consistent results.

Implementation Issues

The DTC platform was implemented to support a community-driven crowdsourcing effort to improve the consensus and use of bio-

logical target profiles of drugs and chemical tools (Figure 1). Common annotation terms are critical for standardizing biological ex-

periments. To facilitate the data curation process, we implemented mBAO assay annotation that standardizes the description of

target profiling experiments in terms of the assay type and format, endpoint type, detection technology, and other key determinants

of the bioactivity readout (Figure S1). The web-based graphical user interface (GUI) enables end-users to search, view and download

existing or community-annotated bioactivity data using a variety of compound, target or publication identifiers (see Data S1 for the

user manual). Using the GUI, the expert users may also submit suggestions to edit or add new bioactivity data, as well as take part in

the mBAO bioassay annotation and data curation process (see Data S2 for the glossary of annotation terms). Through the freely

accessible DTC platform, the users cannot only upload new bioactivity data from their own experiments or literature, but can also

participate in the process of data annotation, integration and quality-control, together with the committed domain experts. Such

an open environment ensures that the experimental data points will be maximally curated, evaluated, and cross-checked before be-

ing deposited into the open DTC database for the downstream analyses.

Potent Bioactivities
We defined ’potent targets’ and ’potent inhibitors’ based on specific bioactivity cut-offs for the four most popular bioactivity types

(Kd, Ki, IC50 and activity):%100 nM for the dose-responsemeasurements (Kd, Ki or IC50) in biochemical assays, and%1000 nM for the

dose-responsemeasurements (Kd, Ki or IC50) in cell-based and other assay types. For the activity measurements (activity%, residual

activity% or %inhibition), often resulting from assays with single or a few concentration points only, we defined a rather stringent

threshold: %10% for the test concentration %1000 nM and %20% for test concentration of %500 nM in biochemical assays,

and%50% for the test concentration%1000 nM and%10% for the test concentration%10000 nM in the cell-based assays. In cases

where there weremultiple bioactivity values for a compound-target pair, originating from different studies or other data resources, we

took median bioactivity.

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical analysis was performed on the cell line assay replicates.

DATA AND SOFTWARE AVAILABILITY

All the bioactivity data points and annotations are freely available using application-programming interface (API) or direct download

(CSV file) through DTC website: http://drugtargetcommons.fimm.fi (Download tab). See also https://drugtargetcommons.fimm.fi/

userguide/ and https://drugtargetcommons.fimm.fi/glossary/. Details about source publications for fully annotated bioactivities

are provided in Table S3.
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