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Abstract: Studies using animal models have shed light into the molecular and cellular basis for
the neuropathology observed in patients with Alzheimer’s disease (AD). In particular, the role of
the amyloid precursor protein (APP) plays a crucial role in the formation of senile plaques and
aging-dependent degeneration. Here, we focus our review on recent findings using the Drosophila AD
model to expand our understanding of APP molecular function and interactions, including insights
gained from the fly homolog APP-like (APPL). Finally, as there is still no cure for AD, we review
some approaches that have shown promising results in ameliorating AD-associated phenotypes,
with special attention on the use of nutraceuticals and their molecular effects, as well as interactions
with the gut microbiome. Overall, the phenomena described here are of fundamental significance
for understanding network development and degeneration. Given the highly conserved nature
of fundamental signaling pathways, the insight gained from animal models such as Drosophila
melanogaster will likely advance the understanding of the mammalian brain, and thus be relevant to
human health.
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1. Introduction

Alzheimer’s disease (AD) is one of the most well-known and widespread neurode-
generative diseases worldwide [1,2]. It is estimated that around 50 million people live
with dementia and that 60–70% of these people live with AD, with a projected increase to
152 million by 2050 [3,4]. Thus, it is of paramount importance to explore novel avenues
of research which may help in treating the disease, slowing its progress, and potentially
even preventing its onset altogether. Although there is still no cure for Alzheimer’s disease,
it is worth highlighting some novel treatments that would require further testing based
on promising initial results. We will mostly discuss nutraceutical compounds (naturally
occurring chemicals in food that may have medicinal benefits) as well as synbiotic formu-
lations and their interactions with the gut microbiome tested in Drosophila that have the
potential to alleviate AD-related symptoms. In addition, we will highlight recent stud-
ies using Drosophila AD models that have expanded our understanding of the molecular
mechanisms underlying AD-associated phenotypes, with a specific focus on the amyloid
precursor protein (APP) and its fly homolog APP-like (APPL).

2. AD Symptoms, Progression and Diagnosis of Neuropathology

Key symptoms of AD mainly involve declining levels of cognition, specifically through
loss of short and long-term memory [5]. In addition, patients can develop problems with
their speech, spatial orientation and memory, and decreased stability in their emotional
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state. As the disease mainly affects elderly people, there is also a high risk for other under-
lying health conditions to be neglected or affected adversely by this disease [1], ultimately
increasing their risk of injury or death. In addition, due to the neurodegenerative nature of
the disease, steady progression can lead to complications in overall brain functionality. As
a result, the typical life expectancy for most patients ranges between 3 and 9 years after
their initial diagnosis [6].

As discussed in the next section, AD neuropathology involves the buildup of neuritic
plaques of amyloid-β (Aβ) aggregates outside of neurons [7], neurofibrillary tangles of
hyperphosphorylated tau, a microtubule-associated protein, within the affected neurons [8]
and neuronal loss [9,10]. Therefore, AD pathology and progression have been analyzed
by classic postmortem studies, as for example, the Braak staging [11–13]. However, recent
efforts have focused on developing alternative methods to examine AD neuropathology
with the goal to identify initial AD signs antemortem, as for example, using positron-
emission tomography (PET) scans for tau and Aβ imaging as discussed below, to indicate
that the presence of sufficient quantities of both would permit a diagnosis of AD.

Based on the progression of mental and intellectual decline, AD is classified into
three stages: “Early”, “Middle” and “Late”, as described by the Alzheimer’s Association
(www.alz.org, accessed on 24 May 2021). These stages are considered rough generalizations
and can be further subdivided into five (www.mayoclinic.org, accessed on 24 May 2021)
or even seven stages (www.pennmedicine.org, accessed on 24 May 2021). The first signs
can be mistaken for old age, leading to a delayed diagnosis [1]. “Early Stage” hallmarks
include difficulty learning new facts or forming new memories, reduction in vocabulary,
and some minor difficulties with fine motor tasks [14]. Memories from earlier life and
implicit memory, such as how to drink from a glass, are typically not affected at this
stage [15].

The “Middle Stage” is when patients often begin to lose their ability to live indepen-
dently [16]. Vocabulary loss increases dramatically, and motor skills and coordination
decrease significantly, leading to much-increased risks of falling and subsequent injury [17].
Long-term memory also becomes impacted, which can lead to the patient having a hard
time recognizing close family members [17]. This stage is also characterized by psychosis
and erratic behavior, as well as a loss of control of bodily functions such as urination [16].
Due to the nature of these symptoms, patients often begin requiring consistent care and
monitoring, and many of them move to assisted-living facilities as a result [18].

The final stage, known as the “Late Stage”, is used to classify patients with the most
severe symptoms. Due to the harshness of their symptoms, patients in this stage often lose
all independence in their day-to-day lives, requiring around-the-clock monitoring and help,
even with the most basic activities [19]. Speech and language skills are almost completely
lost, and due to decreased mobility, there is significant muscular atrophy, which ultimately
leads patients to be confined to their beds [16]. Due to this bedridden state, one of the most
common causes of death for Alzheimer’s patients is the infection of pressure ulcers [20].

Although the cognitive tests described above can help with AD diagnosis in terms
of probability, growing efforts have focused on elucidating what is called the “preclin-
ical stage” [21]. Identification of an individual in the asymptomatic preclinical state is
accomplished by the in vivo evidence of AD-pathology, which includes the existence of
anatomical and molecular AD biomarkers [22,23]. The identification of anatomical and
molecular markers via structural and molecular imaging represents a promising method to
examine the neuropathology of AD antemortem as proposed by the Alzheimer’s Preven-
tion Initiative (API) [24,25]. Studies on AD biomarkers such as cerebrospinal fluid Aβ42
and tau have indicated a long preclinical phase of the disease of several decades before
symptom onset [1,26,27]. Another characteristic of AD progression includes the gradual
degeneration of neurons in the cerebral cortex, temporal and parietal lobes [28]. As a result,
one of the recently utilized methods to diagnose early disease stages involves magnetic
resonance imaging (MRI) to measure regional or whole-brain shrinkage between patients
and healthy adults [29]. There is also an assortment of radiopharmaceutical agents used
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specifically with PET scans to help with the diagnosis, including Florbetapir, Flutemetamol
and Florbetaben as Aβ tracers [30], as well as the first approved PET tau tracer, Flortaucipir
(trademark name: Tauvid) [31]. Fluorodeoxyglucose (FDG) PET measurements of decline
in the cerebral metabolic rate of glucose (rCMRgl) have been recognized as an estimate of
neuronal hypometabolism [32,33]. Hypometabolism has been previously proposed as a
therapeutic target in AD [34] as well as an independent biomarker [35], particularly after
considering observations from autopsy studies in the 1980s showing impairments in brain
glucose utilization and energy metabolism [36–39]. Additionally, other techniques such as
blood testing can be used to rule out other causes of cognitive impairment, such as syphilis
or heavy metal poisoning.

Different methods have been used to model AD and examine its progression, pathol-
ogy and responses to various treatments. Stem cell-based organoid development and
disease modeling have been proposed as promising novel techniques to investigate AD
pathogenesis [40], but several shortcomings and challenges are worth noting. Aging is
one of the largest risk factors in AD development, but stem-cell-derived organoids tend
to demonstrate transcriptional profiles similar to that of a prenatal brain as well as im-
mature electrical activity patterns, rather than the more complex profiles seen in older
individuals [41,42]. Additionally, organoids lack the vascularization observed in brains,
and such vascularization is critical in being able to replicate not only the disease, but also
the brain anatomy that affects the disease progression [41]. Another challenge is the lack
of complexity and diversity of cell types, including reduced numbers of microglia and
astrocytes [42]. Finally, there are limitations with regard to the integration of specialized
cells such as oligodendrocytes or microglia, or the development of neuronal circuitry that
would be of similar complexity to those seen in animal models [41]. Consequently, while
the use of stem-cell-derived organoids is an intriguing prospect and there is still much
room for improvement, animal models remain a viable approach for replicating the disease
pathology, progression and environment.

3. AD Pathogenesis and Amyloidogenic APP Processing

The main neuropathological hallmarks of AD brains include senile plaques and neu-
rofibrillary tangles, as well as neuronal and synaptic loss [43]. Plaques are buildups of
processed fragments of the amyloid precursor protein (APP), while tangles are intracel-
lular neurofibrillary buildups of tau proteins [44]. Tau proteins are a group of protein
isoforms created through alternative splicing of the microtubule-associated protein tau
(MAPT) [45]. They are typically involved in maintaining axon stability through interactions
with microtubules, but in AD cases, they become hyperphosphorylated and form neurofib-
rillary tangles [46]. Although evidence suggests that Aβ deposition and tau pathology
can precede neuronal and synaptic loss [47–49], especially considering observations from
longitudinal imaging of dystrophic neurites and plaques in rodent AD models [50–52],
the precise timing of the start of neuronal and synaptic loss in AD patients remains to
be accurately determined. Despite both plaques and tangles being the main accepted
causes of the disease, a recent consensus has been established showing a synergistic effect
between the plaques and tangles, and that elimination of the plaques alone can lead to
the amelioration of the disease and its symptoms [44,53]. An important factor to consider
is the aging-dependent decline in the clearance of plaques from the extracellular space,
leading to the Aβ plaque buildup and subsequent development of AD symptoms [54].
Therefore, we will focus our discussion of this review on recent advances in understanding
APP molecular roles and interactions.

Amyloid-β (Aβ) is a cleavage product of the Amyloid Precursor Protein, APP [55].
APP is an integral membrane protein, and while it is expressed in a wide variety of differ-
ent cell types [56], it shows particularly high expression levels on neuronal membranes,
especially in synapses [57]. A well-known function of APP surrounds its involvement in
the formation and repair of synapses [57]. This APP function is especially evident following
neural injury, as well as during the differentiation of neurons when the expression level
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of APP is significantly upregulated [58]. Additionally, APP is observed to have a trophic
function, promoting cell proliferation, differentiation, neurite outgrowth, cell adhesion
and synaptogenesis [59] and to be involved in neural stem cell development, neuronal
survival and neurorepair [59,60]. Furthermore, APP is also believed to be highly important
in reproductive endocrinology, where differential splicing of the protein is key in regulating
the differentiation of embryonic stem cells into neural precursor cells [61].

The APP protein is encoded by the gene of the same name, which is located on
chromosome 21, spanning 290 kilobases [62]. APP has many different isoforms, and it
ranges from 639 to 770 amino acids in length, being the one with 695 amino acids (APP695)
the predominant isoform of APP in mammalian neurons [55,63], with a large portion of the
protein residing in the extracellular space. This protein is often subjected to a wide range of
post-translational modifications, including phosphorylation, glycosylation and proteolytic
cleavage [64]. Of these post-translational modifications, proteolytic cleavage seems to be
directly involved in the generation of Aβ plaques [65]. There are two cleavage pathways
for APP, and they are known as “Amyloidogenic” and “Non-Amyloidogenic” [66]. In the
“Non-Amyloidogenic” pathway, the extracellular domain of the APP protein is cleaved
by a protease enzyme known as α-secretase. Following the α cleavage, the protein is then
cleaved again by γ-secretase, leading to the generation of a soluble larger fragment and a
smaller fragment known as p3 [66]. This pathway, as the name implies, does not seem to
have any pathogenic effects. However, in the “Amyloidogenic” pathway, rather than being
cleaved by α -secretase, the APP extracellular domain is first cleaved by β-secretase (also
known as BACE-1), and then by γ-secretase, leading to the generation of another large
soluble fragment, but also the Aβ fragment [66]. These Aβ fragments cluster together and
become aggregates, forming the aforementioned plaques.

4. APP Genetic and Molecular Interactions

Overexpression of the APP gene significantly increases both AD severity and pro-
gression rate, particularly observed in individuals with Down Syndrome (Trisomy 21),
who have three copies of this gene and demonstrate AD symptoms as early as 40 years of
age [67]. Furthermore, Down Syndrome patients demonstrate a similar buildup of plaques,
neurofibrillary tangles, inflammation and oxidative stress as seen in AD patients, and this
is believed to be due to triplicate expression of APP [68]. This is further supported by the
observation of elevated levels of APP mRNA concentrations of APP in the brains of AD
patients [69].

To date, a total of 69 mutations in APP have been reported, with32 reported as
pathogenic in the Alzforum database (https://www.alzforum.org/mutations/app, ac-
cessed on 24 May 2021). One of the most popular APP mutations is known as the “Swedish
Mutation”, originally discovered in two separate Swedish families who presented signif-
icantly elevated levels of β-amyloid production, along with symptoms characteristic of
AD [70,71]. The mutation results in a two amino acid change adjacent to the site of cleavage
by BACE-1 on the APP protein, specifically changing lysine and methionine to asparagine
and leucine (p.K670N and p.M671L), respectively [72]. This mutation increases the absolute
levels of Aβ42 and the rate of protofibril aggregation (without changing the Aβ42 to Aβ40
ratio) [72]. Due to these results, the “Swedish Mutation” has been a popular target for the
generation of Drosophila and mouse models of Alzheimer’s disease [73].

While the vast majority of mutations discovered on the APP gene are considered to
be generally pathological, one recently discovered mutation is believed to be the first to
demonstrate a correlative protective effect. The “Icelandic A673T mutation”, as implied by
its name, was first found in populations of Iceland and Scandinavia. People heterozygous
for this mutation did not have any adverse neurological conditions. On the contrary,
they were found to be protected against declines in cognition associated with age [74].
One intriguing report involved a 104-year-old woman heterozygous for the mutation
who had little to no amyloid pathology, despite her age and the presence of hippocampal
sclerosis [75]. Other reports have demonstrated that individuals with Scandinavian ancestry

https://www.alzforum.org/mutations/app


Int. J. Mol. Sci. 2021, 22, 7022 5 of 18

have similar resilience against Aβ plaque formation and the accompanying pathogenic
neurodegeneration [76].

Biologically, the A673T mutation is believed to be similar to the pathogenic Swedish
mutation, in that it modifies residues in very close proximity to the primary cleavage site
targeted by β-secretase; however, the resulting phenotypes are very different [74]. The “A”
residue is the second residue in the β-amyloid domain of the APP protein. This alanine to
threonine mutation has several effects. First, it is believed that this mutation results in a
less-favorable conformation of the protein for β-secretase to cleave [74]. Second, due to
the decreases in cleavage, this mutation also results in reduced Aβ levels [77]. Finally, it is
believed that the Aβ fragments which are formed despite the presence of this mutation do
not have the same ability to form clusters and show lower Aβ oligomer-binding affinity
compared to wild-type Aβ, resulting in almost no aggregation or plaque formation [77–79].
Such trends have been observed in mouse and rat models of the A673T mutation, as well as
isogenic human-induced pluripotent stem-cell-derived neurons, with the mutation being
correlated with decreased amyloidogenic processing of APP, as well as reduction of Aβ

aggregation [77,80].
APP is an evolutionarily conserved protein, and it is expressed in many different

organisms, including Drosophila and mice [81,82]. However, it is absent in animals that
lack muscles and a nervous system, such as Trichoplax adhaerens [83,84]. Although animal
nervous systems may lack some complexity and high cognitive functions present in human
brains and findings in animal modes may not always translate into efficacious treatments
for human patients, the high degree of conservation of fundamental processes animal
models supports their use to unravel mechanisms underlying distinct abnormalities and
pathophysiological development as well as to develop effective treatment strategies [85].
For example, many models of neurodegenerative diseases have been developed using
Drosophila, including those for Parkinson’s disease, amyotrophic lateral sclerosis (ALS),
Huntington’s disease, Rett syndrome, ataxia telangiectasia and Alzheimer’s disease [86–88].
We will focus our discussion on some recent findings from Drosophila studies in the section
below and highlight some of the novel nutraceutical and synbiotic approaches that have
demonstrated promising results in ameliorating APP-dependent phenotypes.

5. Recent Research on APP: Insights from Drosophila

Drosophila expresses the “APP-like” (APPL) protein, which has high homology with
human APP (hAPP) in both the N-terminal extracellular domains, as well as the C-terminal
intracellular domain [89–91]. It is important to note that there are different views about
the conservation degree of the domain encoding the Aβ region between both proteins.
Whereas some groups indicate that it is not present in Drosophila APPL [90,92], other labs
have shown that the secreted Aβ-like peptide resulting from APPL cleavage is conserved to
hAPP [93,94]. Interestingly, hAPP expression rescues some of the phenotypes observed in
appl null flies [95], suggesting that functionally, the two proteins are very similar. Conserved
motifs between hAPP and Drosophila APPL have also been shown to serve the same
physiological roles, and that they are sufficient and interchangeable for proper neural
functionality [58].

Overexpression of wild-type and mutated hAPP has been the strategy of established
Drosophila AD models for several years (reviewed in [96,97]. Recent studies showed that
APP overexpression in flies disrupted sleep patterns, one of the earliest symptoms ob-
served in AD patients [98]. Interestingly, middle-aged flies expressing hAPP demonstrated
significant disruption in their sleep patterns, with decreases in daytime and total sleep
amounts. This effect was exaggerated in older flies, which revealed consistently increased
numbers of sleep bouts and disruption, decreased overall sleep amounts and significant
sleep fragmentation [98]. In fact, sleep disorders appear at early AD stages and rise with the
severity and progression of AD [99], but the direct mechanisms behind this finding require
further investigation. One hypothesis is that regular sleep–wake cycles cause a fluctuation
in the amount of Aβ deposition, whereas the development of unclearable plaques disrupts
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this fluctuation [100]. This results in a positive feedback loop, where reduced sleep leads
to reduced Aβ clearance, leading to a further reduction of sleep and a further buildup of
plaques [100]. Therefore, powerful genetic tools and a large body of literature on sleep and
sleep disorders [101–103] make Drosophila a promising model to further investigate the
relationship between sleep, APP and human disorders.

A recent study in Drosophila demonstrated disruption of autophagy following the
altered expression of the activating subunit of the Cdk5 protein kinase (Cdk5α) [104]. Such
disruption of autophagy caused the hyperactivation of innate immunity, which in turn
induced the age-dependent death of dopaminergic neurons, establishing a fly model to
study autophagy, innate immunity and neurodegeneration [104,105]. The autophagic path-
way and innate immunity have been involved in neurodegenerative diseases, including
AD [106]. In the context of AD, previous research has not clarified whether this dysreg-
ulation is a cause or effect of the pathological state. Research by Zhuang and colleagues
demonstrated that the aberrant autophagy seen in Drosophila AD models is due to abnor-
mally elevated levels of APP, which leads to a positive feedback loop of dysregulation in
APP metabolism and further worsened symptoms. The protein chaperone E3 ligase known
as CHIP (carboxyl-terminus of Hsc70-interacting protein), which is a key component in
the autophagic pathway, induces Aβ production by increasing the expression of BACE-1,
leading to aberrant autophagy and subsequent neurodegeneration [107]. A suppression of
APP-induced neurodegenerative effects in eye development was observed by downregu-
lating CHIP activity [107]. Additional APP-induced deficits in wing expansion, locomotion
and an overall reduction in lifespan were all ameliorated by the depletion of the CHIP
chaperone E3 ligase [107]. Human CHIP shares ∼60% amino acid sequence similarity with
fly CHIP [108], and is involved in high metabolic activity and protein turnover, but no role
of CHIP in APP regulation and AD pathogenesis was known.

Another Drosophila study examined the role of APP in memory formation and memory
loss, as one of the keystone symptoms of AD is a loss of both short and long-term memory.
Using RNA interference, interactions between the intracellular domains of APPL and
membrane-associated guanylate kinase proteins (MAGUK) were shown to be critical for
appetitive long-term memory, memory which is needed for intrinsic survival functions
such as eating and drinking [109]. Additionally, their genetic analysis suggested that
these interactions would not only be present in Drosophila, but may be conserved across
many different species, including humans [109]. Consistently, deficits in learning and
memory have been previously reported not only in appl null flies [110,111], but also
in global APP knockout mice [112]. In fact, some neurons in the learning and memory
center of the fly brain, the mushroom bodies, presented modestly penetrant axonal defects
in appl null flies [113], a process that is thought to involve interactions between APPL,
the Wnt-PCP signaling pathway, the tyrosine kinase Abl and the fly huntingtin protein
Htt [114]. Additional phenotypes recently described in appl null flies include a significant
compromise in survival at early ages, neuronal cell death, enlargement of early endosomal
compartments and the accumulation of dead neurons in their brains [115]. Consistently,
global APP knockout mice have also demonstrated significant impairments in cerebral
blood flow, especially when exposed to hypoxic conditions, ultimately causing acute
mortality [116].

6. The Use of Nutraceuticals as Promising Treatment Options

γ-secretase was the target of one of the first drugs (Semagacestat) meant to treat AD.
It unfortunately had very dire consequences and was canceled during phase 3 clinical
trials over safety concerns (e.g., patients treated with Semagacestat had a significantly
higher incidence of skin cancer than those who were given a placebo) and worsening
of the pathological conditions [117]. Whether these results were due to the targeting γ-
secretase has never been determined and lends support to the need to understand the
basic biology of these proteins. Similarly, since BACE-1 is a unique component of the
Amyloidogenic pathway, there have been quite a few BACE-1 inhibitor drugs undergoing
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clinical trials [65]. However, adverse effects have been observed in many drug trials
targeting BACE-1. For instance, “Verbucestat”, a novel BACE-1 inhibitor from Merck, was
shown to cause increases in falls and injuries, suicidal thoughts, sleep disturbance and other
undesirable side effects [118]. Janssen also suspended their BACE-1 inhibitor “Atabecestat”
during their phase 2 clinical trials due to liver toxicity [119]. Other attempts at inhibiting
BACE-1 have brought about impairment of synaptic transmission, plasticity and long-
term hippocampal potentiation, which ultimately bring into question whether or not this
therapeutic treatment will be effective and non-invasive [65]. A comprehensive description
of some of the drugs described above, as well as additional promising therapeutic and
synthetic agents, has been recently reviewed [120–122].

A more promising approach to reduce BACE-1 activity has been recently shown in
Drosophila AD models, which involves a nutraceutical treatment with gallic acid [123]. Gal-
lic acid is a trihydroxybenzoic acid found in a wide variety of plants, ranging from sumac
to tea leaves, oak trees and blue-green algae. It is classified as a phenolic acid with strong
antioxidant and free radical scavenging properties. It is also found in many edible fruits,
such as strawberries, bananas and grapes. AD-flies exposed to different concentrations of
gallic acid in their diet (50 and 100 µM) showed reduced activity of cholinesterases and
β-secretase (BACE-1) as well as concentrations of reactive oxygen species and malondi-
aldehyde [123]. The therapeutic potential of gallic acid is exciting, as elevated BACE-1
activity is often seen in severe AD cases and leads to increases in Aβ production. While
previous efforts to inhibit BACE-1 demonstrated undesirable side effects, it is possible
that reduction of BACE-1 activity in conjunction with a reduced level of oxidative stress
is achievable by administering gallic acid, and this can offer a worthwhile therapeutic
pathway [123,124]. In a mouse model of AD, gallic acid also reduced β-secretase activity,
inhibited neuroinflammation and stabilized brain oxidative stress [125], further supporting
the observations using the fly model. Other studies indicated that administration of gallic
acid caused reductions in neuronal reactive oxygen species, improvement of learning and
memory and improved brain electrical activity [126].

Exposure to extraction of Mulberry fruit has also shown beneficial results in reducing
Aβ toxicity in Drosophila AD models [127]. In extracts from mulberry fruit of Morus cf.
nigra “Chiang Mai” obtained using acidic methanol, the only anthocyanin detected by the
authors was cyanidin, with a content of around 250
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tivity, in addition to promoting neurite outgrowth in the neuronal cells [127]. Additionally,
previous studies in mice have shown links between the administration of anthocyanin
and improvement in Aβ clearance, reduction of inflammation and halting of neurodegen-
eration [129]. Furthermore, other studies have shown that anthocyanin is able to work
synergistically with gallic acid in modulating BACE-1 activity, reducing inflammation
and improving the clearance of Aβ plaques [130]. Therefore, a combination therapy of
gallic acid and anthocyanin may prove to be worth exploring to examine whether it is
able to provide therapeutic benefits to AD patients, as both compounds are known to
cross the blood–brain barrier [131,132]. It is worth emphasizing that whereas the studies
mentioned above suggest promising and correlative results between the use of nutraceuti-
cals and the amelioration of some AD-related phenotypes, further studies are required to
confirm that the doses of nutraceuticals given to the animals are relevant to the observed
biological effects.
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Although the focus of this review is on recent publications using Drosophila AD mod-
els, the studies described above represent a small fraction of nutraceutical studies not
only in flies, but, even in a larger number, in rodent models [122,133,134]. For example,
cinnamon and its active compound cinnamaldehyde have also shown beneficial effects
on fly and mouse AD models [135–137]. Some additional nutraceuticals that have shown
promising results ameliorating AD-related phenotypes (Table 1) include the flavonoid
silybin B [138,139], curcumin [140], saffron [141], sulforaphane [142], iron [143,144] and
other transition metals [145]. In fact, silver treatment in flies [146] represents an intriguing
treatment option that requires further investigation as silver is known to have opposite
effects, including antiseptic activity and reduced brain inflammation as well as neurotoxic-
ity [147,148].

Table 1. Nutraceutical compounds known to ameliorate phenotypes in animal AD models.

Compound Preferred
IUPAC name Chemical Formula Type of

Molecule Occurrence References
(AD Models)

Gallic acid 3,4,5-Trihydroxybenzoic
acid
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Table 1. Cont.

Compound Preferred
IUPAC name Chemical Formula Type of

Molecule Occurrence References
(AD Models)

Crocin

Bis[(2S,3R,4S,5S,6R)-
3,4,5-trihydroxy-6-

({[(2R,3R,4S,5S,6R)-3,4,5-
trihydroxy-6-

(hydroxymethyl)oxan-2-
yl]oxy}methyl)oxan-2-

yl]
(2E,4E,6E,8E,10E,12E,14E)-

2,6,11,15-
tetramethylhexadeca-

2,4,6,8,10,12,14-
heptaenedioate
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When discussing nutraceutical approaches and AD, it is important to include the
gut–brain axis and the emerging evidence of multiple interactions between gut dysbiosis
and AD [149,150]. Interestingly, a recent study shows that flies raised without a bacterial
microbiome failed to show the age-related increase in activation of the immune response
genes and decline in expression of stress response genes observed in control flies [151].
These results indicate a crucial role of the gut microbiome in aging, since age-dependent
systemic changes in gene expression, particularly stress and immune response genes, fail
to happen when flies are grown axenically [151]. In murine AD models, previous literature
reports that the gut microbiome can influence the neuroinflammation in AD through
the production of proinflammatory cytokines (IL-1β, IL-6, IL-18, TNF-α and IFN-γ) and
bacterial metabolites [152]. Drosophila AD models show increased levels of the TNF-α eiger,
whose downstream activator JNK causes inflammation-induced apoptosis [153]. Enteric
dysbiosis by oral infection with non-pathogenic enterobacteria was induced in AD flies,
which strongly exacerbated neurodegeneration via immune hemocyte recruitment to the
brain. These results suggest that the gut–brain axis promotes neurodegeneration by the
mobilization of hemocytes and their attraction to the diseased brain [153]. Furthermore,
promising results including improvement of gut dysbiosis, altered microbiota-derived
metabolites, neuroinflammation and cognition impairment were observed in AD transgenic
mice and in initial clinical trials in humans after treatment with sodium oligomannate (GV-
971), a mixture of oligosaccharides derived from marine brown algae [154,155]. It would
be interesting to test GV-971 in Drosophila AD models to further investigate its underlying
molecular roles and effects in neuronal anatomy, such as spine remodeling [121] and
synaptic refinement [156].

The use of probiotics has been described as an efficient strategy in the treatment
of various neurological conditions [157]. A reduction in the onset and progression of
disease-related phenotypes was recently described by the modulation of the gut–brain axis
through probiotic treatment in AD flies [158]. A synbiotic formulation containing three
bioactive probiotics (Lactobacillus plantarum NCIMB 8826 (Lp8826), L. fermentum NCIMB
5221 (Lf5221), and Bifidobacteria longum spp. infantis NCIMB 702255 (Bi702255)) and a
novel polyphenol-rich prebiotic, Triphala (TFLA), improved survival, motility, Aβ accumu-
lation and acetylcholinesterase activity, likely acting through mechanisms implicating the
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peroxisome proliferator-activated receptor (PPAR)γ [158]. In a mouse AD model, Bonfili
et al. (2020) [159] investigated the effects of probiotics (SLAB51) in restoring glucose home-
ostasis. Glucose uptake correlates with a higher risk of developing AD and is influenced
by abnormalities of AMPK and Akt. Results showed restored expression levels of glucose
transporters (GLUT1 and GLUT3) and reduced phosphorylation of tau, AMPK and Akt
after treatment of SLAB51 in AD mice. Moreover, SLAB51 counteracted insulin resistance
and improved glucose metabolism impairment, delaying AD progression. In humans, Nag-
pal et al. [160] compared the effects of dietary intervention on the microbiome of normal
versus mild cognitively impaired (MCI) subjects. Gut microbial signatures such as reduced
SCFAs and a greater abundance of proinflammatory bacteria were present in MCI subjects.
Results showed that a modified Mediterranean-ketogenic diet (MMKD) regulated the gut
microbiome and the production of its metabolites, improving AD symptoms. Although
there are several factors that limit these studies, such as small sample size and gender bias,
the findings provide relevant information on the role of the gut microbiota–brain axis in
AD and contribute to the development of therapeutics.

7. Concluding Thoughts

Alzheimer’s disease has been and will continue to be a detrimental burden on the
elderly population. Not only does it lead to a significant reduction in the quality of life
for both patients and their families, but it also has the potential to distress the healthcare
industry. Model organisms such as Drosophila have been utilized to investigate relevant
molecular tools and examine subsequent phenotypes, broadening our understanding of
fundamental mechanisms. In fact, besides the results described above, additional genetic
screens and molecular studies in Drosophila have expanded our understanding of additional
AD-associated loci [161].

Furthermore, whereas our discussion focused on the success of nutraceutical ap-
proaches (Figure 1), conclusive evidence on their validity in the treatment of human AD
from clinical studies is still lacking. Besides nutraceuticals, a few treatments are worth
noting based on their promising initial results in animal models, including pharmacolog-
ical treatments such as histone deacetylases inhibitors [162] and angiotensin-converting
enzyme inhibitors [163–165]. Additionally, whereas evidence from current clinical trials
indicates beneficial effects of acetylcholinesterase inhibitors [4] and anticancer drugs in
AD patients [166], the future application of genetic approaches such as gene therapy [167],
including RNA-based therapy [168] and CRISPR [169] represents a new window for AD
treatment. Additionally, the growing literature indicating a role of the gut microbiome in
host physiology, metabolism, disease-associated phenotypes and efficacy of drug therapies
underscores the relevance of this evolving research field. Despite differences between
the more complex mammalian microbiome and the relatively simpler fly one, several
advantages of the Drosophila gut microbiota have been reported, supporting its use as a
model to study mammalian gut complexity and microbiome/drug interactions [170,171].
Future studies will determine its relevance in expanding our understanding of fundamental
mechanisms underlying neurological diseases.

By contrast, it may be worth considering the role of developmental processes in AD
onset and progression. This idea is supported by the observations that not only mammalian
APP and Drosophila APPL play important roles in developmental processes as described
above, but also other AD-associated genes and proteins are involved in neurodevelop-
mental processes such as neuronal migration and axon extension [172]. Finally, recent
advances in molecular biology have allowed the emergence of a large body of exciting
evidence linking AD-related mechanisms and epigenetics [173,174]. Several fundamental
epigenetic mechanisms are conserved in flies, supporting the idea that the insight gained
from Drosophila studies will likely advance the understanding of the mammalian brain,
and thus be relevant to human health.
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cent advances in molecular biology have allowed the emergence of a large body of excit-

ing evidence linking AD-related mechanisms and epigenetics [173,174]. Several funda-

mental epigenetic mechanisms are conserved in flies, supporting the idea that the insight 

gained from Drosophila studies will likely advance the understanding of the mammalian 

brain, and thus be relevant to human health. 
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