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ABSTRACT

Although cancer is the leading cause of disease-
related mortality in children, the relative rarity of
pediatric cancers poses a significant challenge for
developing novel therapeutics to further improve
prognosis. Patient-derived xenograft (PDX) models,
which are usually developed from high-risk tumors,
are a useful platform to study molecular driver
events, identify biomarkers and prioritize therapeutic
agents. Here, we develop PDX for Childhood Cancer
Therapeutics (PCAT), a new integrated portal for pe-
diatric cancer PDX models. Distinct from previously
reported PDX portals, PCAT is focused on pediatric
cancer models and provides intuitive interfaces for
querying and data mining. The current release com-
prises 324 models and their associated clinical and
genomic data, including gene expression, mutation
and copy number alteration. Importantly, PCAT cu-
rates preclinical testing results for 68 models and 79
therapeutic agents manually collected from individ-
ual agent testing studies published since 2008. To
facilitate comparisons of patterns between patient
tumors and PDX models, PCAT curates clinical and
molecular data of patient tumors from the TARGET
project. In addition, PCAT provides access to gene
fusions identified in nearly 1000 TARGET samples.
PCAT was built using R-shiny and MySQL. The por-
tal can be accessed at http://pcat.zhenglab.info or
http://www.pedtranscriptome.org.

INTRODUCTION

Cancer is the leading cause of disease-related mortality
in children. Approximately 300 000 children under age of
14 are diagnosed with cancer globally each year (1). In
2019, ∼11 000 new diagnoses were reported in the United
States, with ∼1200 disease-caused deaths (2). Over the last
five decades, intensive treatments combining surgical resec-
tion, radiotherapy and chemotherapy have significantly im-
proved the outcomes of pediatric cancer. For instance, 5-
year survival rate has increased from 58% in mid-1970s to
83% in 2014, with the mortality rates declining by 65%
from 1970 to 2016 (2). However, prognosis for relapse pa-
tients remains poor, and intensive treatments cause long-
term health problems such as secondary cancers, cardiovas-
cular diseases, cognitive disabilities for brain tumors, etc.
(3). Many pediatric cancers such as Ewing’s sarcoma lack
targeted therapy. Therefore, continuous efforts on finding
new therapeutic targets and developing less toxic treatments
for children with cancer are important for further improv-
ing prognosis and mitigating long-term health problems for
survivors.

Pediatric cancers constitute ∼1% of annual new can-
cer diagnoses. This small population can be further split
into many disease entities; thus, each has only a very small
number of cases. This rarity poses a significant challenge
for translational research, as collecting and testing agents
in patients, especially those of ultra-rare subtypes, is dif-
ficult. Patient-derived xenograft (PDX) models have been
used for the past four decades to alleviate these difficulties.
These models are generated by implanting patient tumors
into immune-deficient rodents and have been shown to re-
tain histological and genomic features of the original tu-
mors (4,5). Preclinical testing of these models to therapeu-
tic agents has generated highly valuable insights to guide
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clinical trials in patients. Moreover, advances in sequencing
and other high-throughput technologies now allow compre-
hensive molecular characterization of these models (6). The
resulting genomic profiles provide a repertoire for guiding
development of targeted therapies, identifying biomarkers
for drug sensitivity and understanding the genetic basis of
resistance.

Here, we introduce PDX for Childhood Cancer Thera-
peutics (PCAT), a new database of pediatric cancer PDX
models. PCAT currently stores information of 324 PDX
models spanning all major cancer types seen in children,
including some very rare subtypes. Of these models, 309
have at least one type of genomic profiling data (somatic
mutation, n = 289; expression/fusion, n = 244; copy num-
ber, n = 282). Preclinical testing data are available for 68
models across 79 therapeutic agents. To facilitate compar-
isons of PDXs and patient tumors, PCAT curated clini-
cal and molecular data from TARGET so that patterns
learned from PDXs can be easily replicated in patient tu-
mors. User-friendly interfaces were constructed for search-
ing and data mining. PCAT is freely available without the
need for registration at http://pcat.zhenglab.info or http:
//www.pedtranscriptome.org.

DATA CONTENT

In the current release, PCAT hosts information of 324 pedi-
atric cancer PDX models. These models reflect cancers com-
monly observed in children, including acute lymphocytic
leukemia (ALL, n = 95), osteosarcoma (n = 45), neuroblas-
toma (n = 40), medulloblastoma (n = 25), rhabdomyosar-
coma (n = 20), Wilms’ tumor (n = 14), atypical teratoid
rhabdoid tumors (n = 12), glioblastoma (n = 12), ependy-
moma (n = 12), Ewing’s sarcoma (n = 11) and 36 others
(Figure 1A). In addition to diagnosis, demographic infor-
mation is available for 294 models. The average age of the
tissue donors was 8 years. Thirty-seven percent of the mod-
els were derived from relapsed, post-treatment or progress-
ing diseases, whereas 63% were derived from tumors at di-
agnosis.

Mutation and copy number data were curated for 289
models from either PPTP (Pediatric Preclinical Testing Pro-
gram) (7) or PPTC (Pediatric Preclinical Testing Consor-
tium) (8). Gene level copy number changes were obtained
by discretizing copy number values into homozygous dele-
tion (−2), heterozygous deletion (−1), neutral (0), gain (1)
and amplification (2) using GISTIC2 (9). RNA sequencing-
based gene expression and fusions were obtained from
PPTC (8). Preclinical testing results of 68 models over 79
therapeutic agents were manually collected from individual
agent testing studies published since 2008. Drug responses
are categorized into six levels: progressive disease 1, progres-
sive disease 2, stable disease, partial response, complete re-
sponse and maintained complete response. Detailed expla-
nation of these six drug response levels for solid tumors and
blood cancers can be found on the ‘documentation’ page of
the website. A summary of PDX molecular data is shown in
Figure 1B. A different visualization (UpSet plot) is provided
in Supplementary Figure S1.

In addition to PDX models, PCAT also curated patient
tumor data from TARGET (Supplementary Figure S2).

These data enable users to examine patterns observed from
PDXs in patient tumors, and to further perform analyses
that are not feasible using models such as survival analy-
sis. Clinical, mutation and expression data of the TARGET
dataset were downloaded from GDC data portal (Supple-
mentary Table S1). Copy number segmentation files were
downloaded from TARGET Data Matrix and were fur-
ther analyzed by GISTIC2 to ensure compatibility with
those of PDXs (9). Only high-confidence mutations called
by at least two callers [MuSE (10), MuTect2 (11), So-
maticSniper (12) and VarScan2 (13)] were included in our
database.

Gene fusions are a very important group of cancer
drivers, particularly for childhood cancer. To catalog gene
fusions as a community resource, we employed our in-
house fusion caller PRADA (14) and a well-benchmarked
tool STAR-Fusion (15) on 943 TARGET samples (Sup-
plementary Table S2). This analysis identified a total of
8912 fusions by the two callers, with 3718 by PRADA,
5980 by STAR-Fusion and 786 called by both callers.
We benchmarked our fusion identification using driver fu-
sion events annotated for some ALL and acute myeloid
leukemia (AML) patients in the clinical data. Of the 234
driver fusion events, PRADA identified 209 (89%) and
STAR-Fusion identified 194 (83%). Combined, these two
tools identified 90% of the total 234 fusions (Figure 2A). We
next broke down these fusions by cancer type and sample
type. As expected, considerable heterogeneity was observed
in fusion loads in each cancer type (Figure 2B). Interest-
ingly, post-treatment AML samples demonstrated signifi-
cantly higher number of fusions than primary and recurrent
samples (both P-values <0.001, Wilcoxon rank sum test),
consistent with the anticipation that cytotoxic chemother-
apy causes DNA breaks leading to increased fusion rates.
Few post-treatment samples were available for other cancer
types and thus were excluded from this analysis.

WEB INTERFACE AND DATA DOWNLOAD

PCAT web interface is organized into a resource and two
analysis sections. Each analysis section consists of several
functional modules. The resource section is the interface to
the major data stored on PCAT, including the 324 PDXs
and gene fusions. When searching for PDXs, users can spec-
ify histology, mutation, gene fusion and drug treatment as
search criteria. Results will be returned in a tabular format
divided into clinical information, mutation, fusion and pre-
clinical testing if available. An example of the PDX sum-
mary page is shown in Figure 3A. Similarly, fusion search
results will be returned also in a tabular format listing fu-
sion and the case ID where this fusion is found. Clicking
each fusion links to a page that summarizes the prevalence
of the fusion in disease cohorts. The fusion detail page dis-
plays technical parameters of the fusion identification, a cir-
cos plot illustrating all fusions identified in the sample and
the expression of the two partner genes (Figure 3B).

The analysis modules are designed to enable exploration
of genomic and preclinical data of PDXs and patient tu-
mors. In the current release, PCAT is focused on gene ex-
pression data analysis because childhood cancers harbor
far fewer mutations than their adult counterparts according
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Figure 1. A summary of PDX models in the current PCAT release. (A) A pie chart illustrating histology of the 324 models. (B) An overview of molecular
and preclinical testing data of the 324 models. Each column represents one model. Tumors are separated into liquid cancer (dark green) and solid tumors
(maroon). Blue bar denotes data are available for the model.
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Figure 2. Gene fusions identified in TARGET samples. (A) Benchmarking of fusion identification against 234 driver events annotated in ALL and AML
clinical data. Each column represents one fusion. Solid color indicates the fusion was found by the corresponding tool noted on the left. (B) Distribution
of fusion events across cancer types and sample types (NBL, neuroblastoma; RT, rhabdoid tumor; ALL, acute lymphoblastic leukemia; AML, acute
myeloid leukemia; WT, Wilms’ tumor; CCSK, clear cell sarcoma kidney). Each dot represents a cancer sample. Fusion counts of post-treatment samples
are significantly higher than primary and recurrent samples in ALM (both P-values <0.001, Wilcoxon rank sum test).

to recent large-scale genomic studies (16,17). ‘Single gene
analysis’ modules allow users to correlate expression of the
input gene with histopathological parameters, patient prog-
nosis and genomic alterations (copy number and mutation).
It also allows users to find genes that share co-expression
patterns with the input gene in a selected dataset. ‘Multi-
ple gene analysis’ modules allow users to visualize expres-
sion patterns of the input genes (‘visualization’ module).
The ‘single sample gene set enrichment analysis (ssGSEA)’

module allows users to aggregate the expression of an input
gene set into a single score. Importantly, the module inte-
grates drug response data, thus allowing the correlation of
pathway activity with PDX responses to therapeutic agents.
The co-expression module returns pairwise expression cor-
relation based on the selected dataset. If users choose to
remove lineage effect, PCAT will z-score transform the ex-
pression data for each tissue of cancer origin before calcu-
lating expression correlation. Finally, PCAT allows correla-
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Figure 3. The display page of PDX and fusion search results. (A) PDX information is displayed in a tabular page divided into clinical, mutation, fusion
and preclinical testing data if available. (B) Fusion page displays identification information (evidence, junctions, etc.), a circos plot illustrating all fusions
identified in this case and a scatter plot showing expression of the two partner genes. BCR-ABL1 is used in this example (red in circos plot).

tion of gene expression and mutation with preclinical test-
ing results in the ‘preclinical testing’ module.

For all modules, PCAT provides download links for re-
turned results so that users can have the opportunity to re-
produce and customize figures for publications and other
purposes. Fusion results for TARGET can be found in Sup-
plementary Table S2.

ANALYSIS MODULES

We use examples to demonstrate the utility of the anal-
ysis modules in generating and testing hypotheses. First,
we show expression of PDGFRA, a marker of mesenchy-
mal stem cells, in PDX models (Figure 4A). As expected,
PDGFRA is highly expressed in cancers of mesenchy-
mal origin, including extracranial rhabdoid cancer and os-
teosarcoma. This pattern is replicated across TARGET
cohorts (Supplementary Figure S3). Next, we show the
correlation between CDKN2A deletion and expression.
CDKN2A is a well-established tumor suppressor and is fre-
quently deleted in cancer. In ALL models, CDKN2A dele-
tion is strongly associated with decreased expression (Fig-
ure 4B). The same pattern is observed in osteosarcoma (data
not shown), a cancer type with high genomic instability
(18). These data collectively show DNA deletion is a com-
mon mechanism to inactivate CDKN2A in cancer.

The ‘survival analysis module’ allows users to perform
survival analysis using both clinical parameters and gene
expression. PCAT supports univariate and multivariate sur-
vival analyses by deploying the R package survminer. When
no query gene is input, users can perform survival analy-
sis using clinical parameters. To correlate gene expression
with clinical outcome, PCAT provides four methods to di-
vide gene expression into groups, including auto-calculated
threshold, mean value, median value and customized cut-

off. The auto-calculated threshold is calculated by testing all
possible cutoff values between the top 20% and bottom 20%
samples based on the expression of the gene and adopts the
value that best separates the clinical outcomes of the high
and low groups. A Kaplan–Meier plot is generated for vi-
sualization. Users may also choose one or several clinical
parameters as covariates to conduct multivariate survival
analysis. A forest plot will be generated to show the hazard
ratio of each variate generated in the analysis. To demon-
strate the utility of this module, we use TERT and neurob-
lastoma as an example. High TERT expression, an indicator
of active telomerase, predicts high-risk tumors in neuroblas-
toma (19). Using either mean or median to split the cohort,
PCAT shows high TERT expression is significantly associ-
ated with worse overall survival in the TARGET neuroblas-
toma dataset (Figure 4C). This correlation holds even when
MYCN amplification is added as a covariate to the analysis
(Supplementary Figure S4), suggesting TERT expression is
an independent prognostic factor.

We use a list of 20 MYCN targets identified by shRNA
screening (20) to demonstrate utility of the ‘ssGSEA’ mod-
ule. We first ran ssGSEA using these genes in PDXs. The
output clearly showed higher scores in neuroblastoma mod-
els than others, suggesting this group of genes is upregulated
in neuroblastoma (Supplementary Figure S5). We then re-
ran ssGSEA using the TARGET neuroblastoma dataset.
We observed that MYCN amplification was strongly en-
riched in samples with higher ssGSEA scores (hence higher
expression of the target genes) (Figure 4D), verifying the
positive regulation of these genes by MYCN.

Finally, we use 19D12 (also known as SCH717454) in-
hibitor to demonstrate the utility of the preclinical testing
module. 19D12 is a fully human antibody inhibiting the
insulin-like growth factor 1 receptor (IGF1R) (21). Cor-
relating IGF1R expression and response to 19D12 reveals
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Figure 4. Examples demonstrating the utility of the analysis modules. (A) Expression of PDGFRA, a mesenchymal stem cell marker, across PDX mod-
els. (B) Correlation of CDKN2A expression and deletion in ALL PDXs. −2: homozygous deletion; −1: shallow deletion; 0: copy number neutral. (C)
Correlation of TERT expression and patient overall survival in TARGET neuroblastoma. TERT expression is divided into high and low based on mean
expression. (D) ssGESA results for top 20 MYCN targets in TARGET neuroblastoma. The color bar on top of the heat map indicates MYCN status per
clinical data annotation. Samples are ordered ascendingly per ssGSEA score, as indicated by the top bar.

that maintained complete response demonstrated by two
osteosarcoma models (OS-1, OS-9) is associated with high
IGF1R expression (Figure 5A). The same pattern was ob-
served when limiting this analysis to osteosarcoma models
only (Figure 5B). OS-2, another osteosarcoma model with
much higher IGF1R expression, shows limited response to
19D12 (PD2). Interestingly, this model has much higher ex-
pression of IGF1 and IGF2 than the two sensitive models
(Supplementary Figure S6). Despite a small sample size,
these observations suggest that high IGF1/2 expression
may be an escape mechanism to 19D12 inhibition for os-
teosarcomas.

SUMMARY AND FUTURE DIRECTIONS

In this work, we describe PCAT, a new resource for
childhood cancer PDX models. Previously published por-

tals such as PDX Finder (22) have a larger repository
than PCAT. However, PCAT is distinct in its collection
of childhood cancer PDXs. For instance, searching ‘neu-
roblastoma’, a malignancy of the peripheral nervous sys-
tem commonly seen in children, found one model on
PDX Finder, but 40 models on PCAT. Among the PCAT
functions/features not provided by PDX Finder are the in-
tuitive interface that has been developed to allow users to
explore the genomic and preclinical testing data of these
models, as well as facilitation of comparisons between pa-
tient tumors and PDX models by integrating TARGET
datasets into the portal. The gene fusions of nearly 1000
tumors are a unique resource that allows users to inquire
and examine genes and their potential involvement in fu-
sion events.

In the current release, no PDXs have genomic data from
matched donor tumors. This limits our ability to investi-



D1326 Nucleic Acids Research, 2021, Vol. 49, Database issue

n=19 n=9 n=1 n=2

�
�

��

�
�

�
�

�

�
�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

20

40

PD
1

PD
2

C
R

M
C

R

IG
F

1R
 E

xp
re

ss
io

n 
(F

P
K

M
)

n=2 n=1 n=2

�

�

�

�

�

0

20

40

PD
1

PD
2

M
C

R

IG
F

1R
 E

xp
re

ss
io

n 
(F

P
K

M
)

OS-2

OS-9

OS-1

OS-31

OS-33

OS-9

OS-1

OS-2

A B

p=0.03 (t test) p=0.008 (t test)

Figure 5. Molecular correlates of drug responses. (A) Model response to 19D12, an IGF1R antibody inhibitor, is correlated with high expression of the
target gene IGF1R. X-axis reflects response levels as follows: PD1/2, progressive disease; CR, complete response; MCR, maintained complete response.
Each dot represents a PDX model. A total of 31 models are included here, including 8 ALLs, 6 neuroblastomas, 5 osteosarcomas, 5 Ewing’s sarcomas and 7
others. P-value indicates the difference between responsive groups (CR, MCR) and resistant groups (PD1, PD2). (B) Limiting the analysis to osteosarcoma
models only (n = 5) sustains the association, suggesting it is not a tissue effect; i.e. osteosarcoma has high IGF1R expression and the drug works better on
osteosarcoma. The outlier OS-2 was excluded from the t-test in this panel.

gate the similarity between these PDXs and their donor
tumors. However, previous studies have shown that PDXs
resemble patient tumors in histology, growth characteris-
tics and genomic patterns (4–6). Preclinical testing results
of these models were shown to predict for agent activity in
children with the same diagnosis (23,24), supporting their
use in drug testing regardless of their phylogenetic rela-
tionship with parental tumors. Nevertheless, understand-
ing how genetic distance between donor tumors and the
resulting PDXs may be correlated with their responses to
anti-tumor drugs may have significant implications for us-
ing PDXs as a preclinical testing tool.

Another limitation of our PDX collection is the lack of
longitudinal samples, particularly before and after treat-
ments. Such samples are rarely biopsied in children affected
by cancer, making PDX a viable option for conducting co-
trials. Insights from such studies may reveal invaluable re-
sistance mechanisms.

The next step for PCAT is to expand its PDX collection.
More than 100 new models generated by PPTC and CPRIT
GCCRI Core (https://gccri.uthscsa.edu/services/pdx-core/)
are currently in the pipeline and will be integrated into
PCAT. Most of these models were derived from patients
of Hispanic ethnicity, thus reflecting a unique demographic
patient group in south Texas. Meanwhile, more preclini-
cal testing data and protocols of preclinical testing exper-
iments, including drug doses and schedule of administra-
tion, will be gradually added to the portal.

In addition, more functional modules will be added to
facilitate data mining and visualization. For instance, new
modules will be added to enhance users’ ability to explore
mutations. More importantly, we will implement functions

that allow users to compare their own samples to our PDX
models so that results of PDX preclinical testing can be a
reference to predict the query sample’s sensitivity to thera-
peutic agents. We envision these new modules will greatly
enhance the usability and translational relevance of this re-
source.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We are grateful to the PPTP/PPTC group for generating
many of the PDX models and their genomic and preclini-
cal data. We are also grateful to colleagues at GCCRI for
extensive discussions and their expertise in childhood can-
cer. The results published here are in whole or part based
upon data generated by the TARGET (https://ocg.cancer.
gov/programs/target) initiative, phs000218. The data used
for this analysis are available at https://portal.gdc.cancer.
gov/projects.

FUNDING

Cancer Prevention and Research Institute of Texas
[RR170055 to S.Z., RP160716 to P.H. and R.K.]; National
Cancer Institute [UO1CA199297 to P.H. and R.K.];
Greehey Children’s Cancer Research Institute [Pilot to
X.W.]. Funding for open access charge: Cancer Prevention
and Research Institute of Texas [RR170055].
Conflict of interest statement. None declared.

https://gccri.uthscsa.edu/services/pdx-core/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaa698#supplementary-data
https://ocg.cancer.gov/programs/target
https://portal.gdc.cancer.gov/projects


Nucleic Acids Research, 2021, Vol. 49, Database issue D1327

REFERENCES
1. Sweet-Cordero,E.A. and Biegel,J.A. (2019) The genomic landscape of

pediatric cancers: implications for diagnosis and treatment. Science,
363, 1170–1175.

2. Siegel,R.L., Miller,K.D. and Jemal,A. (2019) Cancer statistics, 2019.
CA Cancer J. Clin., 69, 7–34.

3. Houghton,P.J. and Kurmasheva,R.T. (2019) Challenges and
opportunities for childhood cancer drug development. Pharmacol.
Rev., 71, 671–697.

4. Hidalgo,M., Amant,F., Biankin,A.V., Budinska,E., Byrne,A.T.,
Caldas,C., Clarke,R.B., de Jong,S., Jonkers,J., Maelandsmo,G.M.
et al. (2014) Patient-derived xenograft models: an emerging platform
for translational cancer research. Cancer Discov., 4, 998–1013.

5. Houghton,J.A., Houghton,P.J. and Webber,B.L. (1982) Growth and
characterization of childhood rhabdomyosarcomas as xenografts. J.
Natl. Cancer Inst., 68, 437–443.

6. Neale,G., Su,X., Morton,C.L., Phelps,D., Gorlick,R., Lock,R.B.,
Reynolds,C.P., Maris,J.M., Friedman,H.S., Dome,J. et al. (2008)
Molecular characterization of the pediatric preclinical testing panel.
Clin. Cancer Res., 14, 4572–4583.

7. Houghton,P.J., Morton,C.L., Tucker,C., Payne,D., Favours,E.,
Cole,C., Gorlick,R., Kolb,E.A., Zhang,W., Lock,R. et al. (2007) The
pediatric preclinical testing program: description of models and early
testing results. Pediatr. Blood Cancer, 49, 928–940.

8. Rokita,J.L., Rathi,K.S., Cardenas,M.F., Upton,K.A., Jayaseelan,J.,
Cross,K.L., Pfeil,J., Egolf,L.E., Way,G.P., Farrel,A. et al. (2019)
Genomic profiling of childhood tumor patient-derived xenograft
models to enable rational clinical trial design. Cell Rep., 29,
1675–1689.

9. Mermel,C.H., Schumacher,S.E., Hill,B., Meyerson,M.L.,
Beroukhim,R. and Getz,G. (2011) GISTIC2.0 facilitates sensitive and
confident localization of the targets of focal somatic copy-number
alteration in human cancers. Genome Biol., 12, R41.

10. Fan,Y., Xi,L., Hughes,D.S., Zhang,J., Zhang,J., Futreal,P.A.,
Wheeler,D.A. and Wang,W. (2016) MuSE: accounting for tumor
heterogeneity using a sample-specific error model improves sensitivity
and specificity in mutation calling from sequencing data. Genome
Biol., 17, 178.

11. Cibulskis,K., Lawrence,M.S., Carter,S.L., Sivachenko,A., Jaffe,D.,
Sougnez,C., Gabriel,S., Meyerson,M., Lander,E.S. and Getz,G.
(2013) Sensitive detection of somatic point mutations in impure and
heterogeneous cancer samples. Nat. Biotechnol., 31, 213–219.

12. Larson,D.E., Harris,C.C., Chen,K., Koboldt,D.C., Abbott,T.E.,
Dooling,D.J., Ley,T.J., Mardis,E.R., Wilson,R.K. and Ding,L. (2012)
SomaticSniper: identification of somatic point mutations in whole
genome sequencing data. Bioinformatics, 28, 311–317.

13. Koboldt,D.C., Zhang,Q., Larson,D.E., Shen,D., McLellan,M.D.,
Lin,L., Miller,C.A., Mardis,E.R., Ding,L. and Wilson,R.K. (2012)

VarScan 2: somatic mutation and copy number alteration discovery in
cancer by exome sequencing. Genome Res., 22, 568–576.

14. Torres-Garcia,W., Zheng,S., Sivachenko,A., Vegesna,R., Wang,Q.,
Yao,R., Berger,M.F., Weinstein,J.N., Getz,G. and Verhaak,R.G.
(2014) PRADA: pipeline for RNA sequencing data analysis.
Bioinformatics, 30, 2224–2226.

15. Haas,B.J., Dobin,A., Li,B., Stransky,N., Pochet,N. and Regev,A.
(2019) Accuracy assessment of fusion transcript detection via
read-mapping and de novo fusion transcript assembly-based methods.
Genome Biol., 20, 213.

16. Grobner,S.N., Worst,B.C., Weischenfeldt,J., Buchhalter,I.,
Kleinheinz,K., Rudneva,V.A., Johann,P.D., Balasubramanian,G.P.,
Segura-Wang,M., Brabetz,S. et al. (2018) The landscape of genomic
alterations across childhood cancers. Nature, 555, 321–327.

17. Ma,X., Liu,Y., Liu,Y., Alexandrov,L.B., Edmonson,M.N., Gawad,C.,
Zhou,X., Li,Y., Rusch,M.C., Easton,J. et al. (2018) Pan-cancer
genome and transcriptome analyses of 1,699 paediatric leukaemias
and solid tumours. Nature, 555, 371–376.

18. Wu,C.C., Beird,H.C., Andrew Livingston,J., Advani,S., Mitra,A.,
Cao,S., Reuben,A., Ingram,D., Wang,W.L., Ju,Z. et al. (2020)
Immuno-genomic landscape of osteosarcoma. Nat. Commun., 11,
1008.

19. Ackermann,S., Cartolano,M., Hero,B., Welte,A., Kahlert,Y.,
Roderwieser,A., Bartenhagen,C., Walter,E., Gecht,J., Kerschke,L.
et al. (2018) A mechanistic classification of clinical phenotypes in
neuroblastoma. Science, 362, 1165–1170.

20. Valentijn,L.J., Koster,J., Haneveld,F., Aissa,R.A., van Sluis,P.,
Broekmans,M.E., Molenaar,J.J., van Nes,J. and Versteeg,R. (2012)
Functional MYCN signature predicts outcome of neuroblastoma
irrespective of MYCN amplification. Proc. Natl Acad. Sci. U.S.A.,
109, 19190–19195.

21. Kolb,E.A., Gorlick,R., Houghton,P.J., Morton,C.L., Lock,R.,
Carol,H., Reynolds,C.P., Maris,J.M., Keir,S.T., Billups,C.A. et al.
(2008) Initial testing (stage 1) of a monoclonal antibody (SCH
717454) against the IGF-1 receptor by the pediatric preclinical testing
program. Pediatr. Blood Cancer, 50, 1190–1197.

22. Conte,N., Mason,J.C., Halmagyi,C., Neuhauser,S., Mosaku,A.,
Yordanova,G., Chatzipli,A., Begley,D.A., Krupke,D.M.,
Parkinson,H. et al. (2019) PDX Finder: a portal for patient-derived
tumor xenograft model discovery. Nucleic Acids Res., 47,
D1073–D1079.

23. Peterson,J.K. and Houghton,P.J. (2004) Integrating pharmacology
and in vivo cancer models in preclinical and clinical drug
development. Eur. J. Cancer, 40, 837–844.

24. Furman,W.L., Stewart,C.F., Poquette,C.A., Pratt,C.B.,
Santana,V.M., Zamboni,W.C., Bowman,L.C., Ma,M.K.,
Hoffer,F.A., Meyer,W.H. et al. (1999) Direct translation of a
protracted irinotecan schedule from a xenograft model to a phase I
trial in children. J. Clin. Oncol., 17, 1815–1824.


