
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Sally Lau,
Grossman School of Medicine, New
York University, United States

REVIEWED BY

Kun Zheng,
Peking Union Medical College Hospital
(CAMS), China
Hilal Ozakinci,
Moffitt Cancer Center, United States

*CORRESPONDENCE

Pinggui Lei
pingguilei@foxmail.com
Peng Luo
luopeng@gmc.edu.cn

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Thoracic Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 19 February 2022

ACCEPTED 20 September 2022
PUBLISHED 06 October 2022

CITATION

Hu N, Yan G, Wu Y, Wang L, Wang Y,
Xiang Y, Lei P and Luo P (2022) Recent
and current advances in PET/CT
imaging in the field of predicting
epidermal growth factor receptor
mutations in non-small cell
lung cancer.
Front. Oncol. 12:879341.
doi: 10.3389/fonc.2022.879341

COPYRIGHT

© 2022 Hu, Yan, Wu, Wang, Wang,
Xiang, Lei and Luo. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 06 October 2022

DOI 10.3389/fonc.2022.879341
Recent and current advances in
PET/CT imaging in the field of
predicting epidermal growth
factor receptor mutations in
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Tyrosine kinase inhibitors (TKIs) are a significant treatment strategy for the

management of non-small cell lung cancer (NSCLC) with epidermal growth

factor receptor (EGFR) mutation status. Currently, EGFR mutation status is

established based on tumor tissue acquired by biopsy or resection, so there is a

compelling need to develop non-invasive, rapid, and accurate gene mutation

detection methods. Non-invasive molecular imaging, such as positron

emission tomography/computed tomography (PET/CT), has been widely

applied to obtain the tumor molecular and genomic features for NSCLC

treatment. Recent studies have shown that PET/CT can precisely quantify

EGFR mutation status in NSCLC patients for precision therapy. This review

article discusses PET/CT advances in predicting EGFR mutation status in

NSCLC and their clinical usefulness.

KEYWORDS

PET/CT, prediction model, epidermal growth factor receptor, non-small cell lung
cancer, radiogenomics
1 Introduction

Lung cancer has the highest incidence and mortality worldwide (1), with non-small

cell lung cancer (NSCLC) accounting for approximately 85% of all lung cancer cases and

adenocarcinoma (ADC) being the most prevalent pathological type (2). The emergence

of targeted therapy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor

(TKI) paradigms has radically changed advanced NSCLC treatment and improved
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patient survival rates, especially for advanced lung

adenocarcinoma (3). Accurate and rapid quantification of

EGFR mutation status in NSCLC patients is crucial to

selecting the most effective management strategy for

individualized therapy and precision medicine to improve

patient prognosis.

The gold standard assessment of EGFR mutation status is

based on tumor tissue acquired by fine-needle aspiration,

biopsy, or resection (4). However, acquiring a representative

biopsy is not necessarily feasible with inherent limitations,

including sampling bias due to the intratumoral heterogeneous

tissue samples that are not readily available, and the invasive

methods have low repeatability, may cause patient discomfort,

and are time-consuming and costly, with inadequate samples

or poor-quality tissue samples leading to inconclusive results

(5). Despite liquid biopsy’s convenience, rapidity, and

affordability, its sensitivity and stability are not ideal (6).

Therefore, it is critical to develop a high-throughput and

ideally non-invasive longitudinal method for EGFR mutation

detection in NSCLC.

Image-based phenotyping is a promising clinical method for

precision medicine, as it provides a non-invasive approach to

visualizing tumor phenotypic characteristics (7). CT imaging

combined with clinical characteristics has been systematically

analyzed to predict EGFR mutations in NSCLC (8), with

positron emission tomography/computed tomography (PET/

CT) now widely applied to assess NSCLC patients undergoing

targeted treatment. PET images capture the molecular tumor

phenotypes indicating somatic mutations (9); thus, there is

increasing interest in whether PET/CT can predict EGFR

mutation status in NSCLC patients to develop individualized

treatment. This review article discusses PET/CT advances in

predicting EGFR mutation status in NSCLC and their

clinical usefulness.
2 Association of 18F-FDG uptake
PET/CT with epidermal growth
factor receptor mutation status in
non-small cell lung cancer

The EGFR signaling pathway maintains aerobic glycolysis in

EGFR-mutated lung cancer cells, and EGFR TKIs have an early

and profound influence on aerobic glycolysis, as they activate

and promote increased oxidative phosphorylation (10),

consequently indicating that EGFR mutation status is closely

related to glucose metabolism in lung cancer cells. 18F-FDG

PET/CT is increasingly used for cancer diagnosis and image-

guided therapy, as it can characterize tumor cell proliferation

and glucose metabolism. Accordingly, 18F-FDG metabolic

parameters, for instance, maximum standardized uptake value
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(SUVmax), total lesion glycolysis (TLG), and metabolic tumor

volume (MTV) may, in part, reflect EGFR mutation status in

NSCLC. Numerous studies have assessed the association

between 18F-FDG uptake and EGFR mutation status in

NSCLC (Figure 1) but have conflicting results (Table 1).

Na et al. evaluated the relationship between the EGFR

mutation status and the SUVmax of 18F-FDG uptake by

reviewing 100 patients with NSCLC (11), reporting that

patients with a low SUVmax were more likely to have an

EGFR mutation as compared to patients with a high SUVmax.

Mak et al. (12) assessed 100 patients with NSCLC (24 EGFR

mutants and 76 wild types), demonstrating that high FDG

uptake in the primary tumor is related to a very low risk of an

EGFR mutation. Subsequently, increasing evidence

demonstrated that EGFR mutation status is associated with a

lower SUVmax in NSCLC (9, 13). Chen et al. (14) showed that

patients with an EGFR mutation showed decreased SUVmax

values and subsequently reported that decreased FDG uptake

associated with EGFR mutation status was via NOX4/ROS/

GLUT1 axis. Yang et al. (15) analyzed 200 patients with lung

adenocarcinoma, demonstrating that MTV of wild-type and

mutant EGFR was significantly different. Furthermore, a study

by Liao et al. (16) demonstrated that low primary MTV (pMTV)

(<8.13 cm) was a strong and independent predictor and could be

combined with female sex and gastrin-releasing peptide levels

(proGRP, ≥38.44 pg/ml) to determine EGFR mutation status. In

addition, decreased FDG uptake was shown to be a significant

predictor of EGFR mutation status (17–22). Interestingly, EGFR

mutation status was reported to be associated with a higher

SUVmax (23, 24). Ko et al. (23) demonstrated a tendency of

higher SUVmax in NSCLC patients with an EGFR mutation,

and higher SUVmax could be combined with never smoking,

carcinoma embryonic antigen (CEA) level, and a non-spiculated

tumor margin to obtain a higher area under the receiver

operating characteristic (ROC) curve for EGFR mutation

status. A similar conclusion was reached by Kanmaz et al. (24).

However, multiple studies have shown no association

between 18F-FDG uptake and EGFR mutation status. Chung

et al. found no significant differences in 18F-FDG PET/CT

parameters (SUVmax, MTV, and TLG) of EGFR mutation-

positive and mutation-negative lung adenocarcinoma cases

(25). Other studies confirmed that 18F-FDG metabolic

parameters of PET/CT in NSCLC had no significant clinical

value in predicting EGFR mutation status (26–29). The low

diagnostic OR and the likelihood ratio scatter plot indicated that
18F-FDG PET/CT might be useless for predicting EGFR

mutation status in NSCLC as indicated by a meta-analysis of

Du et al. (30). According to a recent meta-analysis (31), SUVmax

of the primary tumor had a moderate predictive value for EGFR

mutation status in NSCLC. Due to this dispute, further high-

quality studies are required to explore the predictive value of

EGFR mutation status in NSCLC.
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3 Predictive value of 18F-FDG PET/
CT-derived radiomics with
epidermal growth factor receptor
mutation status in non-small cell
lung cancer

Radiomics texture is an emerging field of interest in medical

imaging and is a high-throughput and quantitative extraction of

imaging features based on a computational approach (32). The

rapid advance of emerging radiomics analysis could help

discriminate the disease type, predict survival, and monitor the

response to therapy using large datasets and artificial intelligence

techniques (33). Radiomics also has various logistic advantages,

for instance, offering nearly real-time results and being non-

invasive (34). Additionally, compared with standard biopsy,

radiomics can provide a comprehensive analysis of one lesion

and multiple lesions within the examined area (35). The growing

applications of 18F-FDG PET/CT radiomics have therefore

attracted extensive interest in recent years, especially in lung

cancer (36). The radiomics analysis of 18F-FDG PET/CT data

comprises five steps: 1) data acquisition, 2) image segmentation,

3) feature extraction, 4) feature selection, and 5) model

construction (Figure 2). Indeed, 18F-FDG PET/CT radiomics
Frontiers in Oncology 03
estimates of the tumor imaging phenotype extracted from PET/

CT images facilitate the management of lung cancer, including

differential diagnosis of benign/malignant solitary pulmonary

nodules, NSCLC subtypes, lymph node metastasis, and distant

metastases, as well as response evaluation and survival

prediction (34, 37, 38). Increasing studies have confirmed the

feasibility and potential superiority of 18F-FDG PET/CT

radiomics to predict EGFR mutation status in NSCLC (Table 2).

To our knowledge, studies demonstrating the relationship

between 18F-FDG PET/CT imaging textures and EGFR

mutation status are limited. However, they have proved that

prediction models based on 18F-FDG PET/CT imaging features

can help differentiate EGFR mutation status in NSCLC, which is

crucial in clinical practice to identify candidates for targeted

therapy (39–44). Yang et al. (45) used 18F-FDG PET/CT-based

radiomics features integrated with clinical features and 18F-FDG

PET/CT metabolic parameters (MTV, TLG, SUVmax, and

SUVmean) of 174 lung adenocarcinoma patients to establish

prediction models and achieved an area under the curve (AUC)

of 0.71–0.77. Shiri et al. (46), Zhang et al. (47), and Zhang et al.

(48) reached a similar conclusion.

Li et al. (49) showed that radiomics signatures derived from
18F-FDG PET/CT images were significantly more predictive of

EGFR mutations than those derived from CT or conventional
FIGURE 1

Representative epidermal growth factor receptor (EGFR) status and 18F-FDG PET/CT finding. A 53-year-old man with EGFR wild-type lung
adenocarcinoma. (A) CT, (B) PET, and (C) PET/CT fusion images show a 1.0-cm-sized mild 18F-FDG uptake mass in the dorsal segment of the
left lower lobe (SUVmax = 2.3) (arrow). (D) Genetic testing demonstrates wild-type EGFR status.
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PET images. In addition, a recent study found that PET/CT

radiomics model has a better capability (AUC = 0.76) to predict

EGFR mutation status than the PET radiomics model (AUC =

0.71) and the CT radiomics model (AUC = 0.74) in NSCLC (50).

A meta-analysis by Abdurixiti et al. (51) revealed that PET/CT-

based radiomics signatures could be used as a diagnostic index

for EGFR mutation status in patients with NSCLC.

The reachable results in the literature are definitely

promising; 18F-FDG PET/CT-based radiomics has the
Frontiers in Oncology 04
potential to replace classic approaches based on biopsy and

histopathology to detect EGFR mutation status in NSCLC.

However, the results should be interpreted with caution, as

there is a lack of reproducibility and a basic deficiency of

normalization methods and settings (52), so further studies are

essential to establish a consistent approach. Furthermore, a high-

quality predictive model depends on a large amount of data, so

additional studies involving larger multicenter cohorts will be

needed to develop this method into a clinical tool.
TABLE 1 Recent publications about the association of 18F-FDG metabolic parameters of PET/CT with epidermal growth factor receptor mutation
status in non-small cell lung cancer.

Authors No. of
patients

Aspect evaluated Main results

Na et al. 100 SUVmax A low SUVmax were more likely to possess EGFR mutation compared with patients with a high
SUVmax.

Mak et al. 100 SUVmax High FDG avidity in the primary tumor was associated with a very low chance of harboring an
EGFR mutation.

Usuda et al. 148 CT imaging features and SUVmax The EGFR mutation was significantly associated with pure or mixed GGO, lower SUVmax, and
smaller tumor diameter.

Qiang et al. 97 SUVmax Lower SUVmax was significantly correlated with the EGFR mutation group.

Guan et al. 360 SUVmax Lower SUVmax values (SUVmax ≤ 8.1) were significantly associated with EGFR mutations.

Chen et al. 157 SUVmax The SUVmax values were significantly lower in patients with EGFR mutations compared with
patients with wild-type EGFR.

Takamochi
et al.

734 SUVmax EGFR mutations were more frequent in tumors with lower SUVmax.

Lv et al. 849 pSUVmax, nSUVmax, and
mSUVmax

Low pSUVmax, nSUVmax, and mSUVmax were significantly associated with EGFR mutations.

Gu et al. 210 CEA, CT imaging features, and
SUVmax

Higher CEA levels (CEA ≥ 7.0 ng/ml) and lower SUVmax (SUVmax < 9.0) were significant
predictors of EGFR mutations.

Zhu et al. 139 SUVmax, SUVmean, SUVpeak,
and SUVratio

SUVmax, SUVmean, SUVpeak, and SUVratio were lower in EGFR-mutated than in wild-type
tumors.

Ko et al. 132 CEA, CT imaging features, and
SUVmax

High SUVmax, CEA levels, and a non-spiculated tumor margin were independent predictors of the
EGFR mutation.

Kanmaz
et al.

218 TTF-1 and SUVmax High SUVmax was positively correlated with EGFR mutation.

Caicedo et a 102 SUVpeak, SUVmax, and
SUVmean

No significant differences were observed in 18F-FDG uptake between EGFR-mutated and EGFR wild
type.

Lee S M
et al.

206 SUVmax 18F-FDG avidity of NSCLC had no significant clinical value in predicting EGFR status.

Lee E Y
et al.

71 pSUVmax, mSUVmax, and
dSUVmax

No statistically significant difference was observed in SUVmax of the primary tumors and EGFR
mutation status.

Du et al. 3574 SUVmax SUVmax has low sensitivity and specificity in predicting EGFR mutations.

Guo et al. 4024 SUVmax, SUVmean SUVmax and SUVmean had pooled sensitivity and specificity to predict EGFR mutation status.

Chung et al. 106 SUVmax, MTV, and TLG No significant differences were found in FDG PET/CT parameters for EGFR mutation-negative and
EGFR mutation-positive patients.

Cho et a 61 SUVmax, MTV, and TLG SUVmax and TLG were significantly lower with EGFR mutation-positive lesions compared with
EGFR wild type.

Liu et al. 82 SUVmax, MTV, TLG,
clinicopathologic

Lower MTV combined with non-smokers and a peripheral tumor location were more likely to have
EGFR mutations.

Yang et al. 200 SUVmax, SUVmean, MTV, and
TLG

MTV demonstrated a significant difference between wild-type and mutant EGFR mutation status.

Liao et al. 191 SUVmax, MTV, TLG, CA199, and
proGRP

Low MTV, proGRP, and female sex were independent significant predictors for EGFR mutation.
NSCLC, non-small cell lung cancer; SUV, standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis; CT, computed tomography; EGFR, epidermal growth
factor receptor; TTF-1, thyroid transcription factor 1; CA199, carbohydrate antigen 199; proGRP, recombinant pro-Gastrin releasing peptide.
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TABLE 2 Recent publications about the predictive value of 18F-FDG PET/CT-derived radiomics with epidermal growth factor receptor mutation
status in non-small cell lung cancer.

Authors No. of
patients

Aspect evaluated Main results

Yip et al. 348 PET radiomics features 19 novel PET radiomics features were strongly associated with EGFR mutation status.

Park et al. 183 Heterogeneity of textural parameters
of PET/CT

Heterogeneity textural parameters acquired from pretreatment FDG-PET/CT had clinical implications
for identifying a high-risk subpopulation for EGFR TKI treatment.

Jiang et al. 80 PET and CT radiomics features 35 selected features were significantly associated with EGFR mutation status.

Koyasu
et al.

138 Random forest (RF), gradient tree
boosting (XGB)

In the classification of EGFR mutation status, the AUC values were as follows: RF, 0.625; XGB, 0.617.

Mu et al. 616 PET/CT-based deep learning model Deep learning model to predict EGFR mutation status with AUCs of 0.86, 0.83, and 0.81 in the
training, validation, and independent test cohorts, respectively.

Abdurixiti
et al.

973 PET/CT-based radiomics The ICC for summed RQS was 0.986 [95% confidence interval (CI): 0.898–0.998].

Yang et al. 174 PET/CT radiomics features, The mutant/wild-type model was identified in the training (AUC, 0.77) and validation (AUC, 0.71)
groups.

Zhang J
et al.

248 PET/CT-based radiomics features AUC is equal to 0.79 in the training set and 0.85 in the validation set, compared with 0.75 and 0.69
for the clinical model.

Zhang M
et al.

173 PET/CT radiomics prediction model Four CT and two PET radiomics features were finally selected to build the PET/CT radiomics model.

Shiri et al. 150 Low-dose CT, diagnostic CT, and
PET radiomics

Multivariate machine learning-based AUC performances were significantly improved to 0.82 for
EGFR.

Li et al. 115 PET/CT, CT radiomics features,
conventional PET parameters

Wild-type of EGFR− cases with an AUC of 0.805, an accuracy of 80.798%, a sensitivity of 0.826, and a
specificity of 0.783.

Chang
et al.

583 PET/CT, CT, and PET radiomics
models

The PET/CT radiomics–clinical combined model has better performance (AUC = 0.84) to predict
EGFR mutation.
Frontiers in
 Oncology
PET/CT, positron emission tomography/computed tomography; EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer.
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FIGURE 2

The workflow for radiomics analysis of 18F-FDG PET/CT data comprises five steps: (A) data acquisition, (B) image segmentation, (C) feature
extraction, (D) feature selection, and (E) model construction.
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4 A new type of molecular PET/CT
probe to evaluate epidermal growth
factor receptor mutation status in
non-small cell lung cancer

18F-FDG metabolic parameters associated with EGFR

mutation status in NSCLC reflect the tumor cell glucose

metabolism of tumor cells, which have poor sensitivity and are

limited by many factors. Therefore, the targeting moiety or

ligand must be attached with an applicable labeling agent for

the imaging modality to accurately evaluate EGFR mutation

status or guide EGFR-TKI treatment. Antibodies are often used

due to their sufficient high-affinity specific EGFR (wild and

mutated) binding. Currently, the molecular imaging modalities

employed for detecting EGFR mutations are SPECT, PET, and

PET/CT. Isotopic labeling substances may be combined with

monoclonal antibodies to EGFR or EGFR-TKI molecular probes

to reflect EGFR mutation status according to radioactive uptake

in PET/CT images. Previous studies mainly used radioactive

nuclides such as 86Y, 64Cu, and 89Zr to label anti-EGFR

monoc lonal ant ibodies ( inc lud ing ce tuximab and

panitumumab) and 11C and 18F to label EGFR-TKI (involved

PD153035, gefitinib, erlotinib, and afatinib). However, current

research focuses on cell and animal experiments with little

clinical application (Table 3).
Frontiers in Oncology 06
4.1 Monoclonal antibody probes

Monoclonal antibodies directly target the extracellular

domain of EGFR to prevent the binding of EGFR to ligands,

thus blocking downstream signal transduction pathways.

Monoclonal antibodies are all large molecules that need to be

labeled with radionuclides with a long half-life, such as 64Cu,
11C, and 89Zr, as they infiltrate tissue very slowly. PET/CT using
89Zr-cetuximab allowed the visualization and quantification of

tumor 89Zr-cetuximab uptake in cells and animals (53) or other

malignancies (54) with EGFR mutations. Van Loon et al. studied

head and neck cancer (NHC) and NSCLC patients using 89Zr-

cetuximab PET/CT but showed that SUVmax and

SUVmean had no direct relationship between EGFR

immunohistochemistry (IHC) score and tumor-to-background

ratio (TBR) (55). 89Zr-DFO-panitumumab PET/CT imaging

assessed EGFR expression at a cellular level and in animals

(56, 57).
4.2 Epidermal growth factor receptor–
tyrosine kinase inhibitors
molecular probes

Radiolabeled EGFR-TKI can bind specifically to the tyrosine

kinase domain of the mutant protein, and the uptake levels can
TABLE 3 Recent publications about the new type of molecular probe of PET/CT in use for the detection of epidermal growth factor receptor
mutation status in non-small cell lung cancer.

Authors No. of
patients

New type of molec-
ular probe

Main results

Lui et al. 11 11C-PD153035 EGFR expression in NSCLC primary tumors with 11C-PD153035 uptake, and the SUVs were also correlated
with the EGFR expression level.

Meng
et al.

21 11C-PD153035 11C-PD153035 uptake is close to the EGFR expression level in NSCLC.

Sun et al. 75 18F-MPG 18F-MPG uptake is significantly accelerated in NSCLC tumors harboring EGFR-activating mutations.

Van Loon
et al.

6 89Zr-cetuximab No direct significant association was found between SUVmax, SUVmean, and EGFR IHC score.

Memon
et al.

30 11C-Erlotinib Variation in 11C-erlotinib accumulation between different malignant lesions in the same patient.

Bahce
et al.

10 11C-Erlotinib 11C-Erlotinib accumulated in tumors that expressed high levels of EGFR and were sensitive to TKI therapy.

Bahce
et al.

10 11C-Erlotinib Tumor 11C-erlotinib uptake in NSCLC patients after erlotinib therapy was reduced and further illustrated the
11C-erlotinib binding specificity of EGFR mutation.

Song et al. 3 18F-IRS PET/CT imaging with 18F-IRS showed a potential to diagnose NSCLC EGFR mutation.

Stadt et al. 10 18F-Afatinib 18F-Afatinib can potentially be used in evaluating EGFR mutation-positive patients.

Stadt et al. 12 18F-Afatinib 18F-Afatinib PET/CT could provide methods to identify EGFR mutation-positive patients who benefit from
afatinib therapy.
11C-PD153035, 11C-labeled 4-N-(3-bromoanilino)-6,7-dimethoxyquinazoline; 18F-MPG, 18F-labeled2-(2-(2-(2-(4-(3-chloro-4-fluorophenylamino)-6-methoxyquinazolin-7-yl)oxy)
ethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate; 18F-IRS, 18F-N-(3-chloro-4-fluorophenyl)-7-(2(2-(2-(2-(4-fluorine)ethoxy)ethoxy)-ethoxy)-6-(3-morpholinopropoxy)
quinazoline-4-amine.
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reflect EGFR expression and mutation status. Therefore, EGFR-

TKI molecular probes have many obvious advantages over

monoclonal antibodies. EGFR-TKI molecular probes are

labeled with radionuclides of short circulating half-life, such as
11C and 18F, which can penetrate tissues quickly because they are

small molecules.

4.2.1 11C-PD153035
4-N-[3-bromoanil ino]-6 ,7-dimethoxyquinazol ine

(PD153035) is a reversible inhibitor of EGFR tyrosine kinase and

a potent ATP-competitive TKI of EGFR (58). Additionally, 11C-

labeled PD153035 has been assessed in vivo as a PET/CT agent

to estimate EGFR expression in multiple tumors (59). Liu et al.

studied the distribution of 11C-PD153035 in PET/CT imaging of

11 patients with NSCLC, finding that SUVs were correlated with

expression levels of EGFR (60). Meng et al. analyzed 11C-

PD153035 PET/CT images of 21 NSCLC patients revealing

that 11C-PD153035 uptake is closely related to EGFR

expression (61). Dai et al. demonstrated that 11C-PD153035

PET/CT imaging can be used as a simple and efficient method to

detect NSCLC patients who are sensitive to EGFR-TKIs (62).

Furthermore, the synthesis of polyethylene glycol (PEG)-

modified (PEGylated) anilinoquinazoline derivative, 2-(2-(2-

(2-(4-(3-chloro-4-fluorophenylamino)-6-methoxyquinazolin-7

yl)oxy)ethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate

(T-MPG) derived from the known EGFR-TKI PD153035 has

been reported by Sun et al. (63). Not only their preclinical

research but also clinical research that involved 75 NSCLC

patients has suggested that 18F-MPG uptake is dramatically

accelerated in EGFR-mutated NSCLC.

4.2.2 11C-Erlotinib
11C-Erlotinib is a PET imaging tracer with great promise for

evaluating EGFR expression in NSCLC patients and has been

reported in animal models and human subjects, but only a

limited number of clinical PET/CT studies have been conducted.

Bahce et al. illustrated that 11C-erlotinib accumulated in tumors

that highly expressed EGFR by reviewing 11C-erlotinib PET/CT

images of 10 patients with NSCLC (64). A study by Bachce et al.

analyzed 10 NSCLC patients with EGFR mutation status,

demonstrating that 11C-erlotinib uptake in tumors reduces

after erlotinib therapy (65). However, Petrulli et al. showed a

lack of association between EGFR mutation status and 11C-

erlotinib uptake in an analysis of 10 NSCLC patients via

dynamic multi-bed PET/CT scan using 11C-erlotinib,

suggesting disease heterogeneity and low tracer uptake for the

lack of association (66).

4.2.3 11C-/18F-Gefitinib
Gefitinib is a small-molecule EGFR kinase inhibitor that

binds to the intracellular tyrosine kinase domain and disrupts

EGFR kinase activity with nanomolar affinity (67). 11C- and 18F-
Frontiers in Oncology 07
radiolabeled gefitinib could be applied to image EGFR

expression and pharmacokinetics non-invasive study of

gefitinib in patients. However, a few studies have been

conducted at the cell and animal levels, and human tumor

xenografts have not shown EGFR-specific concentrations (68).

However, a novel radiotracer, 18F-N-(3-chloro-4-fluorophenyl)-

7-(2(2-(2-(2-(4-fluorine)ethoxy)ethoxy)-ethoxy)-6-(3-

morpholinopropoxy)quinazoline-4-amine (18F-IRS) based on

gefitinib has been designed and synthesized, with 18F-IRS

PET/CT showing potential to diagnose NSCLC EGFR

mutation according to higher 18F-IRS uptake in NSCLC with

EGFR mutations (69).

4.2.4 18F-Afatinib
Afat inib is a second-generat ion irrevers ible 4-

anilinoquinazoline EGFR kinase inhibitor (70). In mouse

models bearing NSCLC xenografts [EGFR-mutated (HCC827

and H1975) xenografts and EGFR wild-type (A549)], Slobbe

et al. suggested accumulation of 18F-afatinib in NSCLC tumors

with EGFR mutation status (71, 72), justifying the further

evaluation of NSCLC tumor EGFR mutations. Stadt et al. (73)

quantified 18F-afatinib tumor uptake in NSCLC patients,

suggesting that 18F-afatinib could potentially be used to

evaluate EGFR mutation-positive patients. Furthermore, Stadt

et al. (74) also evaluated whether 18F-afatinib uptake could

predict the response to afatinib therapy by evaluating 18F-

afatinib PET/CT images of 12 patients with NSCLC, showing

that 18F-afatinib PET/CT could serve as a method for precise

quantification of EGFR mutation status in NSCLC patients who

would benefit from afatinib therapy.

The possibilities of protein molecular probes targeting EGFR

have been demonstrated in in vivo imaging cell, animal, and

clinical studies, especially EGFR-TKI-type molecular probes.

Although these studies showed that molecular probes targeting

EGFR for PET/CT imaging can identify EGFR mutation status

in NSCLC, they tend to produce high background noise because

of high lipophilicity, which leads to poor imaging quality. The

short half-life of 11C also limits its widespread use in clinical

practice, and 18F labeling requires many procedures to label

the TKIs.
5 Conclusion

EGFR is a significant target for lung cancer diagnosis and

treatment; thus, non-invasive, accurate, and rapid methods for

EGFR mutation detection should be developed in NSCLC. Due

to recent advances in molecular imaging and analytic platforms,

PET/CT may play a crucial role in identifying EGFR mutation

status. The relatively new 18F-FDG PET/CT-derived radiomics

to predict EGFR mutations has attracted much attention, with

studies revealing promising results. PET/CT imaging with
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radiolabeled monoclonal antibodies and EGFR TKIs is

particularly attractive and may be better than 18F-FDG PET/

CT-derived radiomics in detecting EGFR mutation status in

NSCLC because it can be repeatedly operate and reflect receptor

status in real-time. However, since most of the research to date

has been performed at the cellular level or in animals, further

clinical studies are needed in the future.
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