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Anti-Müllerian Hormone (AMH) is a secreted glycoprotein hormone with critical roles in
reproductive development and regulation. Its chemical and mechanistic similarities to
members of the Transforming Growth Factor b (TGF-b) family have led to its placement
within this signaling family. As a member of the TGF-b family, AMH exists as a noncovalent
complex of a large N-terminal prodomain and smaller C-terminal mature signaling domain.
To produce a signal, the mature domain will bind to the extracellular domains of two type I
and two type II receptors which results in an intracellular SMAD signal. Interestingly, as will
be discussed in this review, AMH possesses several unique characteristics which set it
apart from other ligands within the TGF-b family. In particular, AMH has a dedicated type II
receptor, Anti-Müllerian Hormone Receptor Type II (AMHR2), making this interaction
intriguing mechanistically as well as therapeutically. Further, the prodomain of AMH has
remained largely uncharacterized, despite being the largest prodomain within the family.
Recent advancements in the field have provided valuable insight into the molecular
mechanisms of AMH signaling, however there are still many areas of AMH signaling not
understood. Herein, we will discuss what is known about the biochemistry of AMH and
AMHR2, focusing on recent advances in understanding the unique characteristics of AMH
signaling and the molecular mechanisms of receptor engagement.

Keywords: anti-müllerian hormone (AMH), anti-müllerian hormone receptor type II (AMHR2), transforming growth
factor-b (TGF-b), bone morphogenetic protein (BMP), activin, persistent müllerian duct syndrome (PMDS), cell
signaling, prodomain
INTRODUCTION

Anti-Müllerian Hormone (AMH), also known as Müllerian Inhibiting Substance (MIS), was first
described by Alfred Jost in 1946 as a secreted testicular factor which drove the regression of the
Müllerian ducts in the male fetus (1). Importantly, dysregulation of this mechanism presents
clinically as Persistent Müllerian Duct Syndrome (PMDS), in which loss of function mutations in
AMH or its signaling receptor, Anti-Müllerian Hormone Receptor Type II (AMHR2), lead to
persistence of Müllerian duct derivatives – uterus, fallopian tubes, cervix, and upper vagina – in
males (2, 3). In women, AMH is a negative regulator of folliculogenesis and dysregulation of the
signaling pathway has been implicated in two leading causes of female infertility: Polycystic Ovary
Syndrome (PCOS) and Primary Ovarian Insufficiency (POI) (4). Since its initial description, more
recent characterization of this hormone has provided foundational insights into our current
understanding of the structure and function of AMH and its signaling pathway.
n.org June 2022 | Volume 13 | Article 9278241
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AMH is a glycoprotein hormone (5) which shares structural
and mechanistic homology with signaling proteins of the
Transforming Growth Factor b (TGF-b) family (6). This
family consists of over 30 secreted signaling ligands that have
essential functions for many processes regulating cell
homeostasis and human development, including reproductive
development (7). These ligands are synthesized from a precursor
consisting of a large N-terminal prodomain and smaller C-
terminal mature signaling domain (Figure 1A). Folding,
dimerization, and secretion are regulated by prodomains,
which are cleaved from the smaller signaling domain and, in
most cases, remain noncovalently associated (Figure 1B) (8).
Ligands signal by binding to the extracellular domain (ECD) of
two type I and two type II serine/threonine receptor kinases. This
complex brings the intracellular kinase domain (ICD) of the
constitutively active type II receptor in close enough proximity to
phosphorylate the GS domain of the of the type I receptor ICD,
relieving inhibition and activating Smad transcription factors (9)
(Figure 1C). Signaling within the TGF-b family is limited to
specific combinations of the seven type I receptors, Activin-like
kinases 1-7 (ALK1-7), and five type II receptors, ActRIIA,
ActRIIB, BMPR2, TbR2, and AMHR2 (7). It has been shown
that AMH will mainly signal using ALK2 (10, 11) or ALK3 (12–
14), type I receptors used by the bone morphogenetic protein
(BMP) branch of TGF-B ligands, and activation of BMP R-
Smads 1, 5, and 9 as well as activation of BMP reporter genes (15,
16). The other BMP type I receptor, ALK6, has a stimulatory or
inhibitory effect depending on the tissue type (17, 18). AMHR2 is
unique within the TGF-b family as it is the only receptor specific
for a single ligand (19). In this review, we will summarize the
current biochemical understanding of AMH as a TGF-b ligand
from secretion to signal, with a focus on recent efforts to
characterize the binding of AMH to AMHR2 and the looming
gaps the field must overcome in order to better understand this
important biological pathway.
PROCESSING AND REGULATION OF
AMH & AMHR2

AMH was first identified as a TGF-b ligand by sequence
similarity of its C-terminal mature signaling domain with
Activins and TGF-bs (20) and the proteolytic processing of
this domain (6). The full open reading frame of human AMH
(UniProtKB P03971-1) consists of a signal sequence (SS)
(residues 1-24), prodomain (residues 25-451), and mature
domain (residues 452-560) (Figure 1A) (6). Human AMH is
processed canonically; mammalian proprotein convertases
(PCs), such as furin, will cleave the proprotein downstream of
an a R-X-X-R motif at amino acid position 448-451 to generate
the 109 amino acid mature domain (21–24). Similar to other
family members, PC cleavage separates the N-terminal
prodomain from the C-terminal mature domain, which allows
for assembly into a noncovalent complex (Figure 1B) (6, 25–27).
Only the cleaved, processed, dimer form can properly bind its
receptors and induce downstream signaling (28), but evidence of
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mixed circulating species of AMH suggests a regulatory role of
this processing (29). Both the processed and unprocessed species
are found in the serum and follicular fluid (25, 30) in varying
ratios depending on age (27), sex (27), and disease state (31, 32).
Interestingly, alternative cleavage products resulting from serine
proteinase activity within the prodomain (Figure 1A) have been
described during purification (6, 25, 33–35), however their
biological relevance remains unknown.

The processing of AMHR2 (UniProtKB Q16671-1) is less
characterized than its ligand. While there has been robust study
of type II receptor regulation within the TGF-b family via
mechanisms of internalization (36–40), homo- and heteromeric
complex formation (41–43), and glycosylation (44, 45), for
AMHR2, the understanding of regulation is currently limited to
biosynthetic processing and surface presentation alone (46, 47).
Unlike other type II receptors, it has been suggested that functional
presentation of AMHR2 at the membrane is negatively regulated by
cleavage or by disulfide-linked oligomerization of the extracellular
domain, leading to increased retention within the ER (46).
Additionally, those functional receptors that are presented appear
to organize in clusters of homo-oligomers, resulting in a lack of
lateral mobility (46). Inmammals, receptor splice variants have been
identified that result in the deletion of either amino acids 377-471
(Amhr2D9/10) within the kinase domain, or 17-77 (Amhr2D2)
within the extracellular domain (47–49) (Figure 1A). Although
their mRNA expression level in the testes and brain is 5% or less of
the normal receptor, the existence of these variants raises interesting
questions about their regulatory function in the AMH signaling
pathway (47). Thus, continued investigation of the functional
consequences of these or other splice variants is necessary to
understand their potential impact on signaling. Lastly, Unlike
other TGF-b ligands, investigations into mechanisms of
extracellular antagonism of AMH have not been definitive (50–
52). Nevertheless, regulation of ligands by protein antagonists
represents a significant feature of TGF-b ligands, and the lack of
known AMH-binding proteins is either a missing piece of the
known mechanism or an interesting aberration from other
family ligands.
THE ROLE OF THE AMH PRODOMAIN

It is widely accepted that the prodomains of TGF-b ligands are
required for proper folding and dimerization of the mature
signaling ligand (53–55). While most prodomains are similar
in size, an indication of secondary structure elements, there are
exceptions. For example, GDF15 maintains the smallest
prodomain of 18.5 kDa whereas AMH has evolved the largest
of the prodomains at 45 kDa. Furthermore, unlike the ligands
which typically have a conserved patter of cystines, the
prodomains exhibit significant differences in the number and
placement of cysteines, indicating structural divergence (7). For
TGF-b1-3 the prodomains from two different chains are joined
by a disulfide bond (56). The intermolecular disulfide bond
increases the affinity of the prodomains for the mature ligand
thorough avidity effects. Similarly, AMH also exhibits an
June 2022 | Volume 13 | Article 927824
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interchain disulfide bond which likely increases its affinity for the
mature ligand (6).

For some ligands, such as the TGF-bs, GDF8, and GDF11 the
prodomain maintains the ligand in a latent state, and activation
occurs thorough proteolysis (57–59) of the prodomain or an
integrin-mediated stretching mechanism (56), both of which
liberate the bound ligand from the prodomain. For AMH,
BMPs, and other activin ligands, the prodomain does not
render the ligand latent and the ligand is either thought to
signal in the presence of the prodomain or that the prodomain is
readily displaced by binding the signaling receptors. For AMH,
the prodomain has been shown to allosterically regulate AMH
binding to AMHR2 without inhibiting signal (28, 60). This
mechanism is similar to the non-latent BMP7 pro-complex,
however unlike AMH, the BMP7 prodomain has a weakly
competitive interaction with the BMP type II receptors and
unchanged type I receptor interactions (61). Further parallels
might be drawn from the crystal structure of the BMP9 pro-
complex bound by ALK1, which shows that the type I receptor
can associate without displacing the prodomain (62), but this
remains untested for AMH. Unlike most BMPs, the AMH
prodomain has a 10-100 fold higher affinity for the mature
ligand (Kd = 0.4 pM) (60). Despite this high-affinity
interaction, bivalent binding to AMHR2 presented on a surface
is able to disrupt interactions and attenuate binding 1000-fold
(60). Displacement appears to be dependent on the avidity
as neither monovalent binding nor soluble receptor are able
to induce prodomain displacement. Thus, while certain
ligands have high affinity for their prodomain and confer
latency, many BMP ligands have lower affinity for their
prodomains and are more readily displaced by receptor
binding (8, 58). AMH appears somewhat unique in that it
maintains a very high affinity for the ligand, but the
prodomain can also be displaced by cell surface receptors. The
high affinity of the prodomain of AMH suggests that the
prodomain is likely to play an important role in either
protecting AMH or facilitating signaling.

As mentioned, the prodomain seems to be an additional and
principal factor of regulation within the signaling pathway. The
prodomain is required for proper folding, homo- or
heterodimerization, and secretion (7, 63–65), and the presence of
PMDS mutations within the prodomain support this mechanism
for AMH (2). In the serum, there is no unbound mature AMH
ligand (25), suggesting a role for the prodomain in shuttling the
mature domain to nearby and distant targets. The endocrine
character of AMH is a robust research area, as we have yet to
fully comprehend the breadth of extragonadal signaling targets (4,
18, 66, 67). For other ligands, the pro-complex also functions as a
shield from extracellular antagonists (23, 33, 64, 68, 69). The
interface between BMP antagonist Crossveinless 2 and BMP2 is
analogous to the interface between mature BMP9 and the BMP9
prodomain (7), so the large AMH prodomain might function to
protect AMH from interactions with a milieu of extracellular matrix
(ECM) components. On the other hand, prodomains seem to be
important for targeting the mature ligand to the cell surface through
interactions with heparin (8), fibrillin (70), and other components of
the ECM (7). However, unlike many BMPs, AMH does not have
A

B

C

FIGURE 1 | A schematic of AMH and AMHR2 processing and receptor
assembly. (A) The full translated sequences of AMH and AMHR2 undergo
processing to cleave the signal sequence. In AMH, PCs will cleave at the solid
bar, separating the prodomain and mature domain, while alternative
processing may occur at the dashed bar. In AMHR2, dashed bars represent
alternative splicing sites. (B) Assembled AMH pro-complex, which may or
may not be cleaved. (C) AMH-driven receptor assembly at the cell surface,
resulting from AMH binding AMHR2 and prodomain dissociation. Type I
receptors are activated and in turn activate BMP R-Smads.
June 2022 | Volume 13 | Article 927824
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large positively-charged patches of amino acids which would limit
its interactions with heparin; it instead has a significant hydrophobic
character (71). We do know, however, that the prodomain is
necessary for activity in tissue-based assays (72) but dispensable
for cell-based assays (47, 52, 73). This suggests that the prodomain
likely does not play a major role in the signaling mechanism but
might play a larger role in the availability of the ligand by mediating
ECM interactions or conferring protection from degradation
or antagonism.

The prodomain itself may also be subject to regulatory
mechanisms common to the TGF-b family. In this vein, the
previously mentioned alternate cleavage sites of AMH (6, 74)
(Figure 1A) might have some bearing on the activity of the
noncovalent complex. Conformational changes (7), alternative
cleavage (57, 75, 76), or other uncharacterized modifications (77)
have been shown to prime the noncovalent complex for receptor
interactions. Furthermore, there are 2 N-linked glycosylation and
several possible O-linked glycosylation sites predicted within the
AMH prodomain (78) comprising 13.5% of the complex mass (71).
Differential modification of glycosylation may impact protein-
protein interactions or cleavage, as observed in drosophila with
the ortholog of BMP7, Gbb (76). Largely, we lack understanding of
the regulatory role of the AMH prodomain beyond its absolute
necessity for secretion and activity in the body. Whether the AMH
prodomain, which is the family’s largest and most divergent, has
additional function beyond increasing the availability of the AMH
signaling ligand is not known. While recent advances in modeling
using AlphaFold can help to visualize structure and domain
architecture of the AMH prodomain (79), the lack of structural
definition of this region and low homology cause difficulty in
effectively modeling the AMH prodomain (62, 63, 80–82). As
such, structural and biochemical characterization of the
prodomain structure and its interfacing interactions with the
mature ligand and receptors will help ascertain its function.
STRUCTURAL DEFINITION OF
AMH AND AMHR2

The TGF-b family is part of the cystine knot growth factor
(CKGF) superfamily (7) which have a conserved fold and
sequence. The overall shape can be described as an opposite-
facing left and right hands in a Vulcan salute joined at the palm
(Figure 2A). This creates a concave pocket between the wrist
helix of one chain and the fingertips of the opposing chain, to
which the type I receptor is recruited, and a convex surface on a
single chain at the “knuckle” region, to which the type II receptor
binds for Activins and BMPs (84). The extracellular ligand-
binding domain of the type II receptors adopt a three-finger
toxin fold, which has also classically been described with a hand-
like morphology, consisting of three anti-parallel beta strand
fingers and a central palm region (Figure 2B). These features are
also conserved for AMH and AMHR2 as shown in the recently
solved structure of the extracellular complex (85).

In general, ligands have evolved two central binding modes
to interact specifically with their type II receptors (Figure 2C).
Frontiers in Endocrinology | www.frontiersin.org 4
Ligands of the Activin and BMP class bind at the convex,
knuckle surface of the ligand fingers, while the TGF-b class
ligands bind the fingertips (84). For AMH, the binding mode
was unknown until the recently-solved crystal structure of
AMH bound to AMHR2 (PDB:7L0J) (85). This structure
provided a critical piece for understanding ligand-receptor
interactions and disease-causing mutations (Figures 2D–E),
revealing that while similar to the general binding mode of
BMP and Activins, AMH utilizes a modified mode of type II
receptor binding (85).

The receptor binding interaction of AMH and AMHR2 is
unique within the family. While TGF-b class ligands bind TbR2
using finger 1 of the receptor and the fingertips of the ligand,
Activin and BMP class ligands bind ActRIIA and ActRIIB at the
palm of the receptor and the knuckles of the ligand (86–91)
(Figure 2C). Like Activins and BMPs, AMH binds AMHR2
using the palm of the receptor and the knuckles of the ligand,
however this interface is shifted towards the fingertips by about
7.5 Å. Additionally, fingers 1 and 3 of AMHR2 wrap around the
ligand making unique contacts with sections of AMH not
observed with Activins and BMPs, especially within fingers 3
and 4 of AMH and the connecting loop (85). While the mature
ligand is similar to each of the other three classes (the root mean
square deviation of the Ca positions is below 2 Å for BMP2,
GDF11, and TGF-b1) the AMH ligand adopts a flat character of
the fingers akin to TGF-bs.

The structure of AMH bound to AMHR2 highlighted structural
differences in each that are likely responsible for specificity. Of note,
AMH has a truncated finger 1/2 loop relative to other ligands that
facilitates the wrap-around mechanism of AMHR2 (85). More
significant variance is observed on the receptor side with
differences between AMHR2 and other type II receptors
undoubtedly contributing to specificity. Most notably is
the conformation of finger 1 of AMHR2 which is extended
compared to other receptors and forms a favorable interaction
with AMH. While the number of disulfide bonds are similar, a
shift of one cysteine (Cys60) results in unique structural
character of AMHR2. The altered location of the disulfide bond
brings together the finger 2/3 loop and finger 3 to create unique
surface for AMH binding (85). These distinct conformational
features of AMHR2 promote the selectivity of AMH binding
and signaling.

Where we still lack critical information is in our understanding
of the nature of interactions between AMH and its type I
receptors. The affinity of AMH for its type II receptor has been
shown to resemble TGF-bs or Activins, while affinity for the type I
receptor, though not yet directly tested, is assumed to follow the
same low affinity archetype as the above ligand classes (28, 73, 85).
What is known is that AMH lacks two conserved tryptophan
residues present in the type I receptor binding site of BMPs.
Importantly, these residues have been shown to be necessary for
proper signaling in members of the BMP class (92). In fact, the
entire type I binding interface is dissimilar to that of BMPs (86, 93,
94) and contains more polar and charged residues, yet AMH
will signal using the same type I receptors – ALK2, ALK3, ALK6 –
as BMPs. It will be interesting to determine how AMH
June 2022 | Volume 13 | Article 927824

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Howard et al. Molecular Mechanisms of AMH Signaling
accommodates for its binding and specificity of type I receptors
with these differences. It is possible that type I receptor binding is
shifted relative to BMPs and might even potentially interact with
the type II receptor in a cooperative mechanism similar to TGF-b,
however, this has yet to be explored.
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DISCUSSION

Recent studies have revealed a wealth of information about the
molecular mechanisms of AMH signaling, but the field has a long
way to go towards a full understanding of the intricacies of this
A

C

D

E

B

FIGURE 2 | Structural features of AMH and AMHR2. Diagram of the structure of mature AMH (A) and AMHR2 ECD (B). (C) Comparison of the binding modes of
each ligand class to a type II receptor. (D) Mapping of PMDS mutations (83), indicated by red spheres, to the binary complex. (E) Sequence of AMH and AMHR2
annotated with secondary structure features and highlighted in red with the above PMDS mutations.
June 2022 | Volume 13 | Article 927824
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unique pathway. The biochemistry of AMH is certainly less
characterized than its TGF-b family counterparts. Knowledge of
these structures and their interactions can help explain the
expanding genetic information linked to human diseases, such as
PMDS and PCOS. For example, several mutations have been
identified in the prodomain, however, we lack the structural
information needed to better understand how these mutations
impact AMH function.

The interaction between mature AMH and the extracellular
domain of AMHR2 is perhaps the most actionable piece of recent
data characterizing AMH. The crystal structure demonstrates
unique features that set AMH apart from other ligand classes, as
well as an atomic-level explanation for PMDS mutants which map
to the interface (Figures 2D–E). This story is, of course, incomplete
without a structure of mature AMH bound by a type I receptor.
While the mutual exclusivity of the AMH and AMHR2 interaction
is an interesting feature within the TGF-b family, equally interesting
is how the intracellular kinase domain of AMHR2 can employ type
I receptors shared with BMPs yet propagate an AMH-specific
signal. Intracellular interactions remain something of a black box
for the fields of both TGF-b and AMH biology.

Looking ahead, further structural studies of the AMH ligand
and receptor are warranted; these studies must be supported by
stronger assay development. Most importantly, the field should
address discrepancies between in vitro and in vivo studies,
especially concerning the prodomain. It has been known for
some time that the AMH prodomain is required for biological
function. This feature is reflected in tissue-based assays but not in
cell-based assays where the mature ligand will suffice. Better care
Frontiers in Endocrinology | www.frontiersin.org 6
should be taken to include the prodomain, when possible, to
better replicate the biological context of AMH and allay concerns
about differences between these two assay systems. Additionally,
the ability to distinguish between the transcriptional outcome of
AMH and BMP signaling would be a great and powerful tool for
probing the mechanisms of the signaling pathway at every level.
Research into this area might also help to answer a major
question of AMH signal in general: is there a signaling cascade
unique to AMH, or does AMH modulate a pre-existing BMP
signal to generate unique outcomes? Although the research areas
in need of attention are difficult, fresh data and new techniques
have done wonders to answer critical questions and spark novel
hypotheses about how this pathway truly functions.
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