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ABSTRACT: In this study, we employed tannic acid (TA)-functionalized silver
nanoparticles (TA@AgNPs) as colorimetric probe for the simultaneous and
sensitive detection of Al(III) and F− ions. The proposed sensor was based on the
aggregation and anti-aggregation effects of target Al(III) and F− ions on TA@
AgNPs, respectively. Because of the strong coordination bond between Al(III)
ions and TA, the addition of Al(III) ions to TA@AgNPs could cause aggregation
and, hence, result in a significant change in the absorption and color of the test
solution. Interestingly, in the presence of F− ions, the aggregation effect of
Al(III) ions on TA@AgNPs can be effectively prevented. The extent of
aggregation and anti-aggregation effects was concentration-dependent and can be
used for the quantitative detection of Al(III) and F− ions. The as-proposed
sensor presented the sensitive detection of Al(III) and F ions with limits of
detection (LOD) of 0.2 and 0.19 μM, respectively. In addition, the proposed
sensor showed excellent applicability for the detection of Al(III) and F− ions in real water samples. Moreover, the sensing strategy
offered a simple, rapid, and sensitive detection procedure and could be used as a potential alternative to conventional methods,
which usually involve sophisticated instruments, complicated processes, and a long detection time.

■ INTRODUCTION
Colorimetric sensors, which are based on detectable color
changes, have been widely used for the detection of various
target analytes. In this regard, noble metal nanoparticles such
as silver nanoparticles (AgNPs) and gold nanoparticles
(AuNPs) have been extensively employed as efficient color
signal generators in the fabrication of various colorimetric
sensors.1−6 AuNPs and AgNPs have attracted significant
research interest in the design of colorimetric sensors because
of their easy probe preparation, fast response, unique optical
properties (surface plasmon resonance (SPR)), and flexibility
in synthesis approaches. To date, a significant number of
AgNP- and AuNP-based colorimetric probes for the detection
of metal ions,7−9 herbicides,10,11 and proteins9,12 have been
reported.
In designing AgNP- and AuNP-based colorimetric sensors,

aggregation and anti-aggregation sensing mechanisms are the
most commonly employed sensing strategies. Aggregation-
based sensing strategies are based on the target-triggered
aggregation of nanoparticles, which eventually results in a
change in optical properties (i.e., color and SPR).13−17 In the
anti-aggregation sensing mechanism, a non-target linker
substance (i.e., molecule, ligands, or ions) induces aggregation
of the nanoparticles.18,19 However, due to strong physico-
chemical interactions (e.g., electrostatic, hydrogen bonding,
and complexation) between the target analyte and the linker

substance, the aggregation of the nanoparticle can be reversed
and/or inhibited.20 The AgNP- and AuNP-based aggregation
and anti-aggregation sensors present several interesting
features. For instance, the aggregation and/or dispersion
phenomenon displays a visible color change that can be
observed by the naked eye, and hence, qualitative and
quantitative analysis could be performed without the need
for sophisticated instruments.19,21 In addition, the surface
chemistry of AuNPs and AgNPs enables one to choose from a
variety of surface-functionalizing ligands and hence develop a
probe with improved stability, sensitivity, and selectivity. Also,
due to their high extinction coefficients, in general, AgNP- and
AuNP-based colorimetric assays show higher sensitivity
compared to conventional biochemical detection assays.22,23

Aluminum, the third most abundant element on the earth’s
crust, is widely used in the preparation of various cooking
utensils, pharmaceutical products, cosmetics, electric wires,
electronic devices, and water purifications.24−26 This wide-
spread use of aluminum could pave the way for its high
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exposure to biological systems, which in turn could result in
many toxic effects, including Alzheimer’s and Parkinson’s
disease, dementia, kidney damage, or even cancer.27−31 Hence,
it is important to selectively and sensitively detect aluminum
(Al(III)) ions. In addition, the sensitive and selective detection
of fluoride ions is of significant interest, as excessive exposure
to this ion could cause various health problems. For instance,
fluoride intake above a permissible level can cause various
diseases, including neurological disorders, fluorosis, urolithia-
sis, osteoporosis, and metabolic dysfunctions.32−34 Because of
its toxic effects, the World Health Organization (WHO) set
the maximum permissible level of fluoride ion in drinking
water as 1.50 mg/L.
To date, various AuNP- and AgNP-based colorimetric

sensors for the detection of Al(III) and F− ions have been
reported. In these reports, AgNPs and AuNPs functionalized
with various ligands such as diaminodiphenyl sulfone,35 xylenol
orange,36 thioglucose,37 11-mercaptoundecanoic acid,38 poly-
acrylate,39 and ascorbic acid40 were employed as probes.
Although these probes showed excellent detection perform-
ance, they are not without limitations. For instance, most of
these sensors showed low sensitivity, required a longer
detection time, and suffered from interferences. In addition,
some of these methods involved a complex and tedious probe
synthesis procedure and also utilized expensive ligands.
Moreover, as surface-functionalizing agents play a key role in
determining the sensitivity and selectivity of probes, it is
important to search for a new functionalizing ligand with
improved performance. Based on these observations, in our
present study, we proposed a simple, sensitive, and selective
probe for the simultaneous detection of Al(III) and F− ions. In
the detection procedure, tannic acid (TA)-functionalized
AgNPs were used as the detection probe. As far as we are
concerned, although TA is reported widely as a reducing agent
in the synthesis of AgNPs,41−43 it has not been reported in the
colorimetric detection of Al(III) or F− ions. Moreover, the
ligand we employed (TA) is abundant in nature, easily
accessible, and biocompatible.

Herein, we employ TA@AgNPs as a colorimetric sensor for
the simultaneous and sensitive detection of Al(III) and F− ions
(Scheme 1). The as-proposed sensor can sensitively and
selectively detect Al(III) and F− ions based on their
aggregation and anti-aggregation effects, respectively. In the
detection system, because of the strong chelation between
Al(III) and TA, the addition of target Al(III) ions can cause
the aggregation of TA@AgNPs. However, in the presence of
F− ions, the aggregation effect of Al(III) ions on TA@AgNPs
can be prevented. The extent of aggregation and anti-
aggregation was concentration-dependent, and hence, it can
be used to quantitatively detect Al(III) and F− ions. The
proposed detection procedure demonstrated a fast response
with excellent sensitivity and selectivity for the detection of
Al(III) and F− ions. Moreover, the sensor could also be used
for the visual detection of Al(III) and F− ions in real samples.

■ EXPERIMENTAL SECTION
Materials and Reagents. Silver nitrate (AgNO3) was

provided by the Chemistry Reagent Factory (Chengdu,
China). Aluminum chloride (AlCl3), tannic acid
(C76H52O46), and trisodium citrate (Na3C6H5O7) were
purchased from Sigma-Aldrich. Sodium fluoride (NaF) was
obtained from Guangdong Guanghua Sci. Tech. Co. Ltd.
EDTA was provided by Yuan Ye Bio-Technology Co. Ltd.
(Shanghai, China). Nitrates, chlorides, and sulfates were used
to prepare various metal ion solutions, while solutions of
anions were prepared from sodium or potassium salts. Before
use, all glassware was soaked in HCl solution, carefully washed,
and rinsed using distilled water. All chemicals and reagents
were of analytical grade and used as provided.

Instruments. Absorption spectra were collected using an
ultraviolet−visible (UV−vis) spectrophotometer (Analytik
Jena, Jena, Germany). The size and shape of TA@AgNPs
were analyzed by transmission electron microscopy (TEM)
(Philips Tecnai F20). ζ-potential measurements were
performed using a ZetaSizer (Malvern Instruments, U.K.). A
Bruker infrared Vertex 70 interferometer was employed to

Scheme 1. Schematic Representation of the Sensing Mechanism for Al(III) and F− Ions Detection
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perform Fourier-transform infrared (FT-IR) spectroscopic
analysis

Synthesis of TA@AgNPs. TA@AgNPs were prepared
using TA as a reducing and capping agent toward silver ions
following a procedure reported elsewhere.44−46 In a typical
procedure, in a three-neck round-bottom flask, 50 mL of an
aqueous solution of 0.1 mM TA and 5 mM sodium citrate was
heated with a heating mantle. After heating for about 15 min
(under vigorous stirring), 1 mL of 0.25 mM AgNO3 was
injected and heating was continued for an additional 10 min.
Then, the as-synthesized yellow colloid (TA@AgNPs) was
cooled to room temperature, centrifuged at 12,000 rpm for 30
min, and redispersed in double-distilled water. The product
was stored at 4 °C until it was required for further experiments.

Detection of Al(III) and F− Ions. In a 2 mL calibrated
flask containing TA@AgNPs, various amounts of Al(III) ions
were transferred to obtain the desired concentration. After
incubation for about 4 min at room temperature, UV−vis
absorption of the test solutions was measured. For the
detection of F− ions, various concentrations of the target
ions were added into a solution of TA@AgNPs containing 30
μM of Al(III) ions. Then, the UV−vis absorptions of the test
solutions were measured. All measurements were repeated 3
times. The Al(III) and F− ion concentrations were computed
based on the absorption ratio (A528/A410).

■ RESULTS AND DISCUSSION
Synthesis and Characterization of TA@AgNPs. Figure

1A, shows the UV−vis absorption profile of TA@AgNPs. The
as-prepared TA@AgNPs showed a bright-yellow color with a
characteristic surface plasmon resonance peak at 410 nm. To
reveal the size and morphology of TA@AgNPs, TEM was
employed, and the result is presented in Figures 1B and S1.
The TEM images showed spherical and well-dispersed TA@

AgNPs with a size distribution between 23 and 45 nm and an
average size of 33 nm.

Probe Development. The as-proposed sensor was based
on the aggregation and anti-aggregation effect of the target
analytes on TA@AgNPs. As presented in Figure 2A, the
addition of various concentrations of Al(III) ions caused a
decrease in the absorption of TA@AgNPs at 410 nm (A410)
with the appearance of a new absorption peak at 528 nm
(A528) in a concentration-dependent manner. However, in the
presence of F− ions, due to the formation of the water-soluble
Al−F complex, aggregation of TA@AgNPs can be suppressed.
As a result, as presented in Figure 2B, the absorption peak at
410 nm increased, while the absorption peak at 528 nm
decreased with an increasing concentration of F− ions. The
result demonstrated that the aggregation and anti-aggregation
effects can be used for the detection of Al(III) and F− ions.
Based on this, the ratio of absorption A528/A410 was used to
quantitatively determine the concentration of Al(III) and F−

ions.
Optimization of Experimental Variables. As the

stability of the probe plays a key role in determining the
analytical performance of a given probe, we tested the stability
of the proposed sensor at various conditions. Figure S2A shows
the effect of pH on the UV−vis absorption of TA@AgNPs.
The TA@AgNPs showed aggregation at pH values of 2 and 3.
However, TA@AgNPs showed excellent stability in the pH
range of 4−12, and hence, the probe could be used in this pH
range. Furthermore, the storage stability of the TA@AgNPs
probe stored at room temperature in a dark place was tested by
recording the UV−vis absorption spectra. As displayed in
Figure S2B, the UV−vis absorption spectra of TA@AgNPs
measured immediately after synthesis and after storage for 2
months perfectly overlapped, demonstrating its excellent
storage stability against chemical dissolution or aggregation.

Figure 1. (A) UV−vis absorption spectra and (B) TEM image of TA@AgNPs.

Figure 2. UV−vis absorption responses of TA@AgNPs (A) with various concentrations of Al(III) ions and (B) with 30 μM Al(III) and various
concentrations of F− ions.
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Next, the performance of TA@AgNPs in various solvents
such as H2O, ethanol, and methanol was evaluated. Figure S3
presents the change in the absorption profile of TA@AgNPs
(@410 nm) with the addition of various concentrations of
Al(III) ions. As presented in the figure, the change in the
absorption of TA@AgNPs was significantly higher in aqueous
solvents compared to that in ethanol and methanol. Hence, an
aqueous solvent was selected as the test medium for successive
experiments. Figure S4A presents the effect of pH on the
absorption of TA@AgNPs in the presence of Al(III) ions. The
TA@AgNPs/Al(III) system showed a pH-dependent absorp-
tion spectrum with the maximum degree of aggregation in the
pH range of 4−6. The aggregation of TA@AgNPs was further
confirmed by a change in the color of the test solution from
yellow to light red (Figure S4B). As shown in Figure 3A, a
higher absorption ratio (A528/A410 nm) was obtained at pH 4,
which indicated a higher degree of aggregation at this pH.
Hence, this pH was selected as the optimum pH for the next
experiments. In addition, as presented in Figure 3B, a higher
absorption ratio was obtained at an incubation time of 4 min.
Therefore, an incubation time of 4 min was chosen as the
optimum time.

Sensing Mechanism for Al(III) and F− Ions. The
proposed detection procedure was based on the aggregation
and anti-aggregation effect of target Al(III) and F− ions. To
reveal the sensing mechanism of the detection procedure,
various analytical techniques were employed. According to
literature results, TA is known for its ability to form a stable
complex with Al(III) ions.47−49 With this in mind, we studied
the FT-IR spectra of TA@AgNPs in the presence and absence
of Al(III) ions. As presented in Figure 4A, the FT-IR spectra of
TA@AgNPs showed two main absorption peaks at 3288 and
1643 cm−1 corresponding to hydroxyl and carboxylic func-
tional groups, respectively. However, after the addition of
Al(III) ions into TA@AgNPs, new absorption peaks appeared
at 1396 and 1338 cm−1. The weak absorption band at 1396
cm−1 could be attributed to the interaction of Al(III) ions with
carboxylate groups.50 The new intense absorption band at
1338 cm−1 could be related to the interaction of Al(III) ions
with the ester groups in TA.51,52 The above results
demonstrated the possible complex formation between Al(III)
ions and functional groups in TA. The aggregation of TA@
AgNPs with the addition of Al(III) ions further proved the
possible coordination interaction. As a result, the absorption
profile of TA@AgNPs significantly changed with a decrease in

Figure 3. UV−vis absorption response of TA@AgNPs with 25 μM Al(III) at various (A) pH values and (B) incubation times.

Figure 4. (A) FT-IR spectra of TA@AgNPs in the absence and presence of 100 μM of Al(III) ions. (B) UV−visible absorption spectra of (a) TA@
AgNPs and (b) TA@AgNPs with 100 μM Al(III) ions. TEM images of (C) TA@AgNPs with 100 μM Al(III) ions and (D) TA@AgNPs with 100
μM Al(III) and 200 μM F− ions.
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the absorption intensity at 410 nm accompanied by a visible
color change from yellow to red (Figure 4B and Inset). In
addition, a new absorption peak appeared at 528 nm (Figure
4B curve-b). Also, after the addition of Al(III) ions, the ζ-
potential of TA@AgNPs changed from −19 to −7 mV, which
further proved the coordination interaction between TA on the
surface of AgNPs and Al(III) ions (Figure S5). Furthermore,
the aggregation of TA@AgNPs in the presence of Al(III) ions
was proven by TEM images (Figure 4C).
Figure S6 presents the UV−vis absorption spectra of TA@

AgNPs in the presence and absence of Al(III) and F− ions. In
the presence of Al(III) ions, TA@AgNPs aggregated (Figure
S6, curve-b). However, in the presence of F− ions (curve-c),
the extent of aggregation of TA@AgNPs by Al(III) ions was
significantly suppressed. This could be due to the formation of
water-soluble strong Al−F complexes53−55 with the stability
constant (βn = 7−19),56,57 which are significantly higher than

those for the Al−TA complexes (βn = 5).49,57,58 Moreover, as
the addition of various concentrations of F− ions did not cause
any significant absorption change in TA@AgNPs (Figure S7),
the anti-aggregation effect of F− ion could be solely due to its
interaction with Al(III) ions, which was further proved by the
ζ-potential results (Figure S5). The ζ-potentials of TA@
AgNPs and TA@AgNPs/Al(III) systems were −19 and −7
mV, respectively. However, in the presence of F− ions, the ζ-
potential result was −15 mV, indicating the anti-aggregation
effect of F− ions. Moreover, the TEM image (Figure 4D)
showed well-dispersed TA@AgNPs in the presence of both F−

and Al(III) ions, which further affirmed the antiaggregation
effect of F− ions.

Detection of Al(III) and F− Ions. The analytical
performance of the proposed sensor was evaluated under
optimized conditions. As presented in Figure 5A, the
absorption of TA@AgNPs at 410 nm gradually and

Figure 5. UV−vis absorption spectra and corresponding linear range of the probe in the presence of (A, B) Al(III) ions and (C, D) F− ions,
respectively.

Table 1. Comparison of the Analytical Performance in the Present Work with Some of the Previously Published Colorimetric
Al(III) and F− Ions Sensors

target analyte probe linear range LOD refs

Al(III) diaminodiphenyl sulfone@AuNPs 1.0−500 μM 0.62 μM 35
Al(III) 1,2,3-triazole-4,5-dicarboxylic acid@AuNPs 1.5−4.0 μM 0.015 μM 59
Al(III) ascorbic acid capped@AuNPs 3.7−13 μM 0.46 40
Al(III) poly(vinylpyrrolidone)@AgNPs 0.1−103 nM 0.04 μM 60
Al(III) N-lauroyltryramine@AuNPs 1−12 μM 1.15 μM 61
Al(III) biogenesis@AgNPs 0.05−1 ppm 0.01 ppm 62
Al(III) tannic acid@AgNPs 2.0−25 μM 0.2 μM this work
F− polyacrylate@AuNPs 30−200 μM 100 μM 39
F− thioglucose@AuNPs 20−40 mM 20 mM 37
F− AuNPs 120 μM−1.5 mM 120 μM 63
F− sulphanilic acid and catechol@AuNPs 1−40 μM 0.2 μM 64
F− saponin@AgNPs 10 ppm 65
F− 3-aminophenylboronic acid and dithiobis(succinimidylpropionate)@AuNPs 75−1000 μM 56.5 μM 66
F− 4-quinonimine@AuNPs 0.17 μM 67
F− tannic acid@AgNPs 4−25 μM 0.19 μM this work
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significantly decreased with increasing concentration of Al(III)
ions, while the absorption profile at 528 nm showed a gradual
increase in a concentration-dependent manner. The aggrega-
tion phenomenon can be seen by the naked eye as the color of
the test solution gradually changed from yellow to light red
with increasing Al(III) ions concentration (Figure 5A, inset).
Interestingly, as depicted in Figure 5B, the ratio of change in
the absorption (A528/A410 nm) can be used to quantitatively
detect the concentration of target Al(III) ions. The ratio of
change in the absorption showed linearity in the concentration
range between 2 and 25 μM. The detection system showed an
LOD of 0.2 μM, which is lower than the maximum permissible
level of Al(III) ions (7.4 μM) set by WHO for drinking water.
Figure 5C,D presents the analytical performance of the

sensor for the detection of F− ions. As presented in Figure 5C,
the absorption profile of the probe at 410 nm increased with an
increase in the concentration of F− ions, while the absorption
peak at 528 nm significantly decreased in a concentration-
dependent manner. The absorption ratio at 528 and 410 nm
showed linearity in the concentration range of 4 to 25 μM. The
probe demonstrated an LOD of 0.19 μM, which is lower than
that of the higher permissible level of F− ions (74 μM) set by
WHO in drinking water.
Table 1 presents a comparison of the analytical performance

of the proposed sensor with those of other methods. As
presented in the table, the proposed sensor showed a
comparable or superior detection limit. In addition, compared
to these methods, the proposed sensing strategy offered a
simple, rapid, and sensitive detection procedure and could be
used as a potential alternative to conventional methods, which
usually involve sophisticated instruments, complicated pro-
cesses, and a long detection time. Moreover, the proposed
sensor employed readily available and biocompatible AgNP
functionalizing agents.

Selectivity of the Detection. The applicability of the
TA@AgNPs probe for the detection of Al(III) ions in the
complex matrix was tested using various possible interfering
metal ions. In a particular procedure, the UV−vis absorption
response of TA@AgNPs was evaluated in the presence of
various metal ions including Ba2+, Ca2+, Co2+, Cs2+, Cu2+, Al3+,
Fe2+, Fe3+, K+, Mg2+, Pb2+, Zn2+, Na+, Hg2+, Ni2+, Cd2+, and
Cr3+. As presented in Figure S8A,B, among the tested metal
ions, only Al(III) ions caused significant absorption and color
change to the test solution. The absorption ratio A528/A410 of
Al(III) ions was higher compared to other metal ions (Figure
6A). The result demonstrated the selectivity of the probe for
the detection of Al(III) ions. Moreover, compared to various
anions, including halogens, only F− ions successfully prevented
the aggregation effect of Al(III) ions on TA@AgNPs (Figures

6B and S8C). The result proved the selectivity of the sensor
toward F− ions.

Real Sample Analysis. The real sample applicability of the
sensor was tested using tap water samples collected from
Arbaminch University (Ethiopia). Before analysis, the water
samples were filtered with a 0.22 μM membrane to remove any
suspended particles. Then, the filtered samples were spiked
with a series of standard Al(III) or F− ion solutions, and then
the UV−vis absorbance responses were recorded. As presented
in Table 2, the samples spiked with Al(III) ions showed a

percent recovery between 99 and 102%, with a relative
standard deviation (%RSD) less than 5%. Moreover, the
samples spiked with F− ions resulted in a % recovery between
94 and 106% with a %RSD less than 5%. The excellent %
recovery and lower %RSD showed the feasibility of the
proposed sensor for Al(III) and F− ions detection in real
samples.

■ CONCLUSIONS
In the present work, we proposed a simple yet sensitive TA@
AgNPs-based colorimetric probe for the simultaneous and
sensitive detection of Al(III) and F− ions. The detection
procedure was based on the aggregation and anti-aggregation
effect of Al(III) and F− ions, respectively. In the detection
system, the chelation between TA with Al(III) ions could
cause the aggregation of TA@AgNPs and results in significant
absorption and color change. The extent of change in
absorption is concentration-dependent and could be used to
quantitatively detect target Al(III) ions with an LOD of 0.2
μM. Moreover, in the presence of F− ions, the aggregation of
TA@AgNPs due to the presence of Al(III) ions can be
effectively prevented. As a result, F− ions can be detected based
on their anti-aggregation effects, with an LOD of 0.19 μM.
Also, the sensor showed excellent applicability for the

Figure 6. Absorption profile of TA@AgNPs in the presence of (A) various metal ions and (B) various anions in the presence of 30 μM Al(III) ions.

Table 2. Application of the Colorimetric Probe for the
Detection of Al(III) and F− Ions in Real Water Samples (n =
3)

method added (μM) measured (μM) recovery (%) RSD (%)

aluminum 0
5 20.31 102 3.2
10 25.21 100 2.2
15 34.94 99 0.8

fluoride 0
5 4.7 94 2.7
10 10.4 104 4.4
15 16.0 106 2.1
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detection of Al(III) and F− ions in real water samples.
Moreover, the sensing strategy offered a simple, rapid, and
sensitive detection procedure and could be used as a potential
alternative to conventional methods, which usually involve
sophisticated instruments, complicated processes, and a long
detection time. Furthermore, although the as-proposed sensor
showed excellent performance, high sensitivity, and selectivity,
future work is needed to further boost its sensing performance.
In addition, the as-proposed sensor showed a higher response
at an acidic pH of 4, which might limit its applicability in
biological systems. As a result, a probe with detection
capability in a neutral medium needs to be developed (pH =
7). Moreover, it would be necessary to explore a new surface-
functionalizing ligand for AgNPs to further improve the
stability, selectivity, and sensitivity of the detection system.
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