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The performance of functional near-infrared spectroscopy (fNIRS) is sometimes degraded by the interference caused by the
physical or the systemic physiological activities. Several interferences presented during fNIRS recordings are mainly induced by
cardiac pulse, breathing, and spontaneous physiological low-frequency oscillations. In previous work, we introduced a
multidistance measurement to reduce physiological interference based on recursive least squares (RLS) adaptive filtering. Monte
Carlo simulations have been implemented to evaluate the performance of RLS adaptive filtering. However, its suitability and
performance on human data still remain to be evaluated. Here, we address the issue of how to detect evoked hemodynamic
response to auditory stimulus using RLS adaptive filtering method. A multidistance probe based on continuous wave fNIRS is
devised to achieve the fNIRS measurement and further study the brain functional activation. This study verifies our previous
findings that RLS adaptive filtering is an effective method to suppress global interference and also provides a practical way for
real-time detecting brain activity based on multidistance measurement.

1. Introduction

Functional near-infrared spectroscopy (fNIRS) has been
demonstrated to have the potential to discover hemodynamic
variations within the cortex [1, 2]. It is an increasingly popu-
lar technology for brain activity assessment due to its several
advantages over other techniques (fMRI, EEG, etc.) for por-
tability, low cost of the measurement equipment, and low
restraints of subjects [3, 4]. In real applications, the useful sig-
nal is in the deeper regions of the brain and the strong mix-
ture between the physiological interference and the brain
activity response presents significant challenges in signal
extraction [5]. The suppression of this kind of physiological
interference is very important to accurately access the brain
function in fNIRS measurement.

The physiological interference is mainly from the pertur-
bation caused by heartbeat, respiratory, and blood pressure
variation. All of these interference sources are located both
in the vasculature of the superficial layer of the brain and
inside the brain and are often low correlated with the func-
tional response of the brain activity [6]. Previous attempts
have been made to reduce such kind of interference and
retrieve the brain function response. Various approaches
have been investigated to extract hemodynamic response
from fNIRS recordings in the past either based on single dis-
tance or multidistance fNIRS instruments. Low-pass filtering
(LPF) or band-pass filtering (BPF) technique is a simple
method to remove the interference caused by cardiac oscilla-
tions. LPF is particularly effective and easy to implement for
the single distance measurement. However, LPF is not
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effective at removing the specific physiological noise signal
such as respiratory and blood pressure fluctuations since
there are partial overlap in the frequency of these fluctuations
and the low frequency components of the hemodynamic
response. Based on the single channel probe arrangement,
empirical mode decomposition (EMD) algorithm together
with Hilbert transform was presented to be an effective
method for suppressing the physiological interferences from
the fNIRS signal. This methodology has the advantage of
simplicity in instrument design and the possibility for the
application in optical topography [7].

Recently, multidistance measurement is extensively
adopted to eliminate physiological interference in fNIRS
data based on the use of additional short source-detector
separation [8, 9]. Owing to the direct relation between
source-detector separation and depth reached by photons
within tissues, the short source-detector separation measure-
ment is mostly sensitive to the superficial layer hemodynamic
changes, and the long source-detector separation measure-
ment is used to observe the hemodynamic changes both in
the superficial layer and in the cerebral cortex. The short
separation measurement is used as the reference signal, and
the long separation measurement is treated as the target sig-
nal [10]. Next, signal from this reference is employed to esti-
mate global interference, which is then removed from the
target signal to obtain the stimulus-evoked brain activity
[11]. Many different algorithms have been implemented to
improve estimation of hemodynamic response from fNIRS
measurements based on the use of the multidistance mea-
surement. Least mean squares-based adaptive filtering has
previously presented the potential to suppress physiological
interference either for simulated signal or for real human
data [9, 12]. Other novel effective methods [3, 13, 14] relying
on combining different algorithms were recently used for
reducing the physiological interference and improving the
signal to noise ratio of the evoked brain activity signal.

Previously, we have developed recursive least squares
(RLS) adaptive filtering to remove physiological interferences
based on a multidistance probe configuration [4]. The
RLS-based algorithm appeared to have significant power to
suppress the physiological interference in the synthetic data,
yielding small MSE and fast convergence. Monte Carlo
simulations suggest that signal from short detector actually
dominates the major component of the physiological inter-
ference, thus making it an appropriate reference measure-
ment for adaptive filtering-based interference cancellation.
Our Monte Carlo simulation results suggest that this method
is very effective in reducing mean squared error (MSE)
between the estimated brain activity and the real simulated
response. This algorithm is fast enough to recover the brain
activity for real-time applications. However, its suitability
and performance on human data remains to be evaluated.
Here, we describe the experiment of evoked auditory
response detection as a further study of our methodology.
A multidistance probe with continuous wave fNIRS technol-
ogy is devised to implement the NIRS measurement. To eval-
uate the performance of the RLS algorithm in the in vivo
experiment, the power spectral density (PSD) and contrast
to noise (CNR) are analyzed in our study.

2. Materials and Method

2.1. NIRS Instrumentation. We used two LEDs (SMT760/
850), at 760 and 850nm, respectively, and three monolithic
photodiodes as detectors (OPT101, with on-chip transimpe-
dance amplifier; Burr-Brown Inc., Tucson, Arizona). The
two LEDs and three detectors are typically configured as a
multidistance probe. One of the two LEDs is selected to
emit the light, and two of the three detectors are chosen
to obtain the output light according to different subject,
with the near detector sensing systemic physiological fluc-
tuations and the far detector additionally measuring deeper
tissue hemodynamic response.

The optical channels work in frequency division multi-
plexing mode, so that the signal from the two light sources
can be separated and the ambient light can be removed. Once
the light pass through the head and are detected by the detec-
tors, they are separated by demodulating and then amplified.
To reduce the noise, a 10Hz low-pass filter is designed at
each detector channel before the signal is digitized and sam-
pled into the memory. A calibration procedure is required to
correct any signal offset such as dark current. Figure 1 shows
the experimental apparatus for brain activity measurement
with near-infrared spectroscopy.

2.2. Experiment. The auditory stimulation task was per-
formed on a healthy, 21-year-old female, with no known
history of neurological, psychiatric, auditory, or visual
problems. In the experiment, the subject had been given
a verbal agreement to participate in the test study. Optical
data was collected using the NIRS system based on the audi-
tory block design experiment. The block design experiments
are always adopted by the fNIRS groups to analyze the hemo-
dynamic response. The experiment is implemented based on
some published literatures [7, 9]. The concentration changes
of the oxyhemoglobin, Δ[HbO2], and deoxyhemoglobin,
Δ[HHb], can be observed in the auditory cortex of the sub-
ject. In the experiment, the sound stimulation was prepared
by using GoldWave audio editor software. First, we select
concise and powerful music as the sensitive stimulus

Light source

Photodiode

Figure 1: Experimental apparatus for brain activity measurement
with NIRS.
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according to the opinion of the participant. The editing pro-
cedure is done by cutting down 20 seconds in the climax part
of the music and followed by the silent mode for 20 seconds.
The whole block is composed of the “stimulus” stage and the
“resting” stage. The “resting” stage and the “stimulus” stage
are repeated alternately during the experiment. One about
7-minute run of 10 blocks was presented, and the auditory
stimulation frequency was 0.025Hz.

The probe location depends on the experiment type and
the corresponding response area. For the auditory stimulus,
the response area should be temporal region. Left temporal
region is at approximately position T3 and the right temporal
region is at approximately position T4 according to the Inter-
national 10–20 system [15]. In our experiment, the sensor
probe is placed on the upper side of the head, located near
the T4 position of the international standard 10–20 guiding
system (Figure 2). The subject listens carefully to the music
using the earphones, and the eyes focused on the central
marking area of the screen. Then the participant can pay
attention to the auditory stimulus. The combined light of
two wavelengths was in contact with tissue in one source
location (S2 in Figure 2(a)), and exiting light was collected
from two detector locations, 13mm and 35mm from the
source, respectively (D1 and D3 in Figure 2(a)).

In the experiment, in order to reduce the artifacts caused
by head movement, the subjects lean on the chair and the
sensor probe was fixed to the test area to minimize head
swaying. In order to ensure that the participant is not dis-
turbed by the outside sound, the experiment is carried out
in the quiet and dark laboratory. Soft black Velcro was also
used to absorb stray light beneath the probe. Before the stim-
ulus test, the baseline stage is carried out at least 200 seconds
until the subject is calm. There is no stimulation during this
period and the subject is required to keep quiet and calm.

2.3. Data Analysis. In the experiment, we consider the unsta-
ble light intensity of LED. Therefore, we first correct the opti-
cal data according to the light intensity drift. Then the light
density changes of each channel are calculated on the basis
of the measured data at the baseline stage. The light density
changes obtained by the modified Lambert-Beer law are then

converted to the concentration changes of HbO2 and HHb.
The time series of concentration changes of oxyhemoglobin
were analyzed by adaptive filtering method. The HbO2 con-
centration obtained by S2-D1 and S2-D3 was used as the ref-
erence signal and the target signal of the adaptive filtering
input, respectively. The time sequence of HHb concentration
change was processed by the same method. RLS adaptive fil-
tering takes advantage of the finite impulse response (FIR)
described earlier in our previous paper, and the filter order
is N = 16. The recursive least squares method is used as the
optimization algorithm for the coefficient of the filter, and
it is calculated point by point. The forgetting factor X is
0.999, and the initial filter coefficient is set to [0 0 0]T.
The method is based on a linear mapping relationship
between S2-D1 and S2-D3, and the mapping relation
depends on the sampling values near the time point and
adjusts with time adaptively.

Another problem is that the magnitudes of Δ[HbO2]
and Δ[HHb] are underestimated due to the so-called partial
volume effect (PVE) [16]. Monte Carlo simulations have
been previously used to estimate the ratio of the optical
path length in the activated volume to the optical path
length in the sampling volume. After adaptive filtering, par-
tial volume effect factor (PVEF) is introduced to compen-
sate partial volume effect in order to obtain relatively
accurate results of cerebral cortex hemodynamic changes.
Because the value of PVEF cannot be obtained accurately
in the actual measurement, the PVEF is set to 9.15 by our
Monte Carlo simulation. For the results of adaptive filter-
ing, the spectrum components are analyzed by power spec-
tral density (PSD), including hemodynamic response and
physiological interference. The metric of contrast to noise
is calculated before and after RLS adaptive filtering accord-
ing to the PSD data.

3. Results

3.1. HbO2 Changes during Auditory Stimulation. The concen-
tration changes of oxyhemoglobin, Δ[HbO2], and the con-
centration changes of deoxyhemoglobin, Δ[HHb], were
filtered using the RLS algorithm, and the results are presented

S1

S D

S2 D1 D2 D3

(a) (b)

Figure 2: Diagram of auditory block-design experiment. (a) Probe position on the head. (b) Central fixation cross for gaze.

3Journal of Healthcare Engineering



in Figure 3. We show both the time series of the calculated
concentrations (the first column) and their block averaged
results (the second column). The block-averaged results were
achieved by averaging the stimulation and the rest periods
within 10-epoch blocks. Hereinto, Figure 3(a) shows the
Δ[HbO2] calculated with the reference channel S2-D1, and
Figure 3(b) shows the block averaged result. Figure 3(c)
shows the Δ[HbO2] calculated with the target channel S2-
D3, and Figure 3(d) shows the block averaged result. Neither
the raw time series nor the block average result shows any
obvious expected signal change in Figures 3(a) and 3(b). It

is concluded that the detected light is not sensitive to the deep
region of the head. From Figures 3(c) and 3(d), we hope to
observe the tendency of oxyhemoglobin concentration corre-
sponding to the stimulus, namely, the concentration of oxy-
hemoglobin increases at the beginning of the auditory
stimulation and gradually returned to the normal value after
the stimulation. However, the tendency of Δ[HbO2] is not
obvious during the whole block experiment either from the
calculated value or the block average result. The physiological
interference is very large, and the brain activity signal is not
easy to be retrieved. Thus, we calculate the correlation

Calculated Δ(HbO2) from short separation S2-D1

Calculated Δ(HbO2) from long separation S2-D3

Evoked auditory hemodynamics using low-pass filtering
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Figure 3: RLS adaptive filtering to remove physiological interference. (a) Reference measurements of Δ[HbO2] calculated from S2-D1 with
13mm source-detector separation and (b) its block averaged result. (c, d) Target measurements from S2-D3 with 35mm source-detector
separation. (e, f) Low-pass filtering result for the target measurements. (g, h) RLS adaptive filtering results for target measurements. (i, j)
Adaptive filtering result with PVE compensation.
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coefficient between the reference signal from S2-D1 and the
measurement signal from S2-D3 during the baseline period.
The correlation coefficient is 0.89, which means that the data
in the reference channel and the physiological interference
in the measurement channel have a high correlation. There-
fore, we can adopt adaptive filtering to suppress the physio-
logical interference.

To compare with the adaptive filtering method, the raw
signal is low-pass filtered at a cut-off frequency of 0.125Hz.
The Δ[HbO2] with low-pass filtering and its block averaged
results are shown in Figures 3(e) and 3(f). The low-pass fil-
tering suppresses a large proportion of high-frequency phys-
iological interference. However, the periodicity of brain
activity is not obvious. The Δ[HbO2] after RLS adaptive fil-
tering is shown in Figures 3(g)–3(j). Figures 3(g) and 3(h)
are Δ[HbO2] obtained by RLS adaptive filtering and the block
averaged results. Figures 3(i) and 3(j) are Δ[HbO2] after com-
pensating with the partial volume effect and its block aver-
aged results. That is, the results shown in Figures 3(g) and
3(h) were corrected with PVEF using the results in
Figures 3(c) and 3(d). The physiological interferences in
Figures 3(g) and 3(h) were significantly suppressed. It can
be seen from the entire time series of Δ[HbO2] and their
block averaged results that the oxyhemoglobin concentration
increases significantly at the initial presentation of the musi-
cal stimulus and gradually returned to normal value after the
stimulus. For the data corrected with PVEF, the tendency is
more obvious. From the block averaged results, it can be seen
that at the initial time of stimulation, the hemodynamic
response is delayed by about 4 seconds relative to the audi-
tory stimulus, and the hemodynamic changes do not disap-
pear immediately after the stimulus finished, with a delay of
about 6 seconds and then gradually return to the normal
state. By comparing the results of low-pass filtering and
RLS adaptive filtering, the expected signal change can be seen
from Figures 3(g)–3(j). It is obvious that low-pass filtering
can only eliminate high-frequency interference but RLS algo-
rithm can effectively suppress physiological noise.

Unlike in our previous Monte Carlo simulation study, a
truly rigorous evaluation of RLS method in vivo requires an
uncontaminated evoked brain activity response signal,
which, unfortunately, is unavailable. Therefore, in order to
further investigate the validity of RLS adaptive filtering algo-
rithm in hemodynamic parameter measurement, the power
spectral density before and after filtering is analyzed.
Figure 4(a) shows the power spectral distribution of the orig-
inal signal. It can be seen that there is a significant peak
around 1.2Hz in the frequency range of 0–2.5Hz, which cor-
responds to the body’s cardiac cycle. Figure 4(b) is the result
of RLS adaptive filtering, and the high frequency physiolog-
ical interference is significantly suppressed compared with
the amplitude of the power spectrum before filtering.

To further evaluate the effectiveness of the RLS algo-
rithm, the contrast noise ratio (CNR) is calculated here to
analyze the processing results. Here, we use the power spec-
tral density to calculate the CNR before and after filtering.
In the in vivo experiments, the brain activity signal and noises
cannot be separated completely, and then the energy of signal
and noise is obtained by integrating the power spectral den-
sity of “signal frequency band” and “noise frequency band”
by using the method in the literature [13]. The CNR is then
calculated as the square root of “signal energy” and “noise
energy.” For the auditory block-design experiment, each
block time is 40 seconds. The brain function signal is not a
simple sinusoidal signal, and there are harmonic compo-
nents. Here, the base band frequency is 0.025Hz and the sec-
ond harmonic frequency is 0.05Hz. Thus, we determine the
frequency domain near the base band 0.019–0.031Hz, and
the second harmonic frequency 0.044–0.056Hz as a signal
frequency band, and other frequency values in the range
of 0–5Hz as the noise band. Although this method inevita-
bly introduces errors, it is a relatively valid assessment
method for the in vivo experiments. In particular, the power
spectral density is not calculated from a single block but
from 4000 points over the entire time series. Through the
comparison, the CNR for original signal is 30.31%, and
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Figure 4: Power spectrum intensity of HbO2 (a) before RLS adaptive filtering and (b) after RLS adaptive filtering.
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the CNR of the filtered data is improved to 146.38%. The
result demonstrates that RLS adaptive filtering method
based on multidistance measurement can effectively reduce
physiological interference.

3.2. HHb Changes during Auditory Stimulation. Figure 5 is
the change in the concentration of HHb measured in the
auditory block experiment. Figures 5(a)–5(j) present the
equivalent result of Figures 3(a)–3(j), respectively, but for
HHb. From Figures 5(a)–5(d), we can see that the measured
HHb concentration variation is smaller than that of HbO2,

and the result is in accordance with the literature [17]. The
measured results in Figures 5(c) and 5(d) can better reflect
the hemodynamic response, but the trend is opposite to
HbO2. Such results are different from Figures 3(c) and 3(d),
which indicate that physiological interference has relatively
low influence on deoxyhemoglobin concentration change
measurement. It can be explained that physiological interfer-
ence is mostly from arterial blood, and arterial blood has a
higher proportion of HbO2 than venous blood. Therefore,
the physiological interference introduced by HbO2 is more
significant. Comparing with the results of low-pass filter
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(Figures 5(e) and 5(f)), RLS filtering results (Figures 5(g) and
5(h) and the PVEF correction value of RLS filter results
(Figures 5(i) and 5(j)) do not improve the quality of measure-
ment signal significantly.

Similarly, in order to analyze the effectiveness of RLS
filtering for HHb detection from the frequency domain, the
power spectral density of HHb is presented in Figure 6.
Figures 6(a) and 6(b), respectively, is the power spectrum
before and after the filtering in the 0–2.5Hz range. By
analyzing the contrast noise ratio of HHb, it is found that
the contrast noise ratio before HHb filtering is 86.43%.
Compared with the contrast noise ratio of HbO2, we can
see that the physiological interference of HHb is relatively
low, which is also seen from Figure 6(a). That is, the peak
value of power spectrum density at 1.2Hz is not obvious.
After filtering, the contrast noise ratio is 88.84%, which
indicates that the improvement of HHb using RLS adaptive
filtering is not obvious.

4. Discussion

The fNIRS can be used to noninvasively monitor cerebral
functional hemodynamics. However, in real situations,
fNIRS recordings are often corrupted by interference engen-
dering from ongoing physiological activities which occurs in
both superficial and brain tissue layers. The suppression of
this interference is important for reliable extraction of brain
activity measurements because these physiological fluctua-
tions can significantly degrade the signal quality. Therefore,
the estimation of evoked hemodynamic response from fNIRS
signal still remains a challenging task.

Adaptive filtering has been widely used to help identify
and separate the interference components in fNIRS data.
Some of them use auxiliary physiological measurements such
as the pulse oximeter, electrocardiogram (ECG), chest band
respirometer, spirometer, and capnograph [18]. This method
is effective in reducing global interference, but the indispens-
ability of additional equipments is the limitation of its

application. The RLS algorithm thus presents the potential
to obtain the evoke hemodynamic response in fNIRS data
based on multidistance measurement.

In our previous study, RLS has also been explored for
physiological interference reduction with the synthetic fNIRS
data. The RLS algorithm iteratively computes the updated
estimate of the filter coefficients upon the arrival of new data.
The MSE, the convergence rate, the optimum source detector
arrangement, and sensitivity of superficial layer thicknesses
were delicately discussed. The use of NIRS multidistance
probe arrangements for adaptive filtering depends on the
assumptions that signal acquired from the near detector are
not caused by brain activity and signal acquired from far
detector are sufficiently sensitive to brain activity. In the
in vivo experiment, signal from near detector can present
the physiological interference since the correlation coefficient
between the near-detector signal and the far-detector signal
measured in the baseline stage is high.

We are currently working on the evaluation of the RLS
adaptive filtering on the real human data. It is found that
the physiological interference in HHb is less obvoius than
that in HbO2. Such phenomenon can be explained that the
blood in the venous compartments exhibited little physiolog-
ical interference, whereas the physiological interference in
HbO2 present in all compartments was substantial. It also
can be seen in Figures 4 and 6 that the energy of the noise
frequency band in power spectral density is smaller for
HHb than that for HbO2. The CNR in evoked hemody-
namic response improved substantially for HbO2 and that
for HHb. We consider that this occurred due to excessive
physiological interference of the overlying layers and pre-
dominantly in HbO2, a challenge which was effectively
resolved by RLS adaptive filtering.

5. Conclusions

The RLS adaptive filtering is a promising approach to
analyze evoked hemodynamic response. The evaluation of
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Figure 6: Power spectral density of HHb. (a) Before RLS adaptive filtering. (b) After RLS adaptive filtering.
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this method is implemented based on the multidistance mea-
surement. An auditory block experiment was designed to
analyze the changes in hemodynamic parameters in the tem-
poral lobe region by exerting musical stimulus. The modified
Lambert-Beer law is used to convert the optical data to the
hemodynamic parameters in the reference channel and in
the target channel. It is found that the hemodynamic param-
eters in the measurement channel have obvious physiological
interference and the evoked hemodynamic response is
always masked by the interference. RLS adaptive filtering is
used to extract hemodynamic parameters. By analyzing the
PSD and the CNR, we find that RLS adaptive filter can sup-
press physiological interference, especially for the presence
of obvious interference of oxyhemoglobin.
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