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ABSTRACT
Idiosyncratic adverse drug reactions are drug reactions that occur rarely and 

unpredictably among the population. These reactions often occur after a drug is 
marketed, which means that they are strongly related to the genotype of the 
population. The prediction of such adverse reactions is a major challenge because 
of the lack of appropriate test models during the drug development process. In this 
study, we chose withdrawn drugs because the reasons why they were withdrawn 
and from which countries or regions is easily obtained. We selected Dilevalol and its 
chiral drug (Labetalol) as the investigatory drugs, as they have been withdrawn from 
a European market (Britain) because of serious hepatotoxicity. First, we searched for 
and obtained the Dilevalol-induced- liver-injury related protein, multidrug resistance 
protein 1 (MDR1), from the Comparative Toxicogenomics Database (CTD). Then, 
we searched and extracted 477 non-synonymous single nucleotide polymorphisms 
(nsSNP) on MDR1 in the dbSNP database. Second, we used the VarMod tool to predict 
the functional changes of MDR1 induced by these nsSNPs, from which we extracted 
the nsSNPs that significantly change the functions of this protein. Third, we built the 
three-dimensional structures of those variant proteins and used AutoDock to perform 
a docking study, choosing the best model to determine the sites of nsSNPs. Finally, 
we used the data from the 1000 Genomes Project to verify the dominant population 
distribution of the risk SNP. We applied the same strategy to the post-marketing 
drug-induced liver injury drugs to further test the feasibility of our method.

INTRODUCTION

The liver is the major organ of drug metabolism 
and the main target organ of drug injury. According to 
statistics, at least 1100 drugs have potential hepatotoxicity. 
This kind of liver injury caused by drugs is known as drug-
induced liver injury (DILI). DILI has different clinical 
manifestations, ranging from self-recovery after drug 
withdrawal to severe cases that lead to liver failure or even 
death. DILI has been a major issue for public health and a 
pressing issue in drug toxicology. Based on knowledge of 

the current drug research and development (R&D) process, 
DILI can lead to drug withdrawal after marketing [1] or 
during phases II or III of clinical trials [2]. This serious 
hepatotoxicity, especially DILI that is found after marketing, 
named idiosyncratic DILI, has a strong correlation with the 
genotype of the population. This kind of hepatotoxicity is 
unpredictable due to the lack of a genotype testing model 
in the drug R&D process. With the maturation of genomics 
and structural biology as well as the generation of high-
throughput data, the data and technologies now provide a 
base for establishing a test model of idiosyncratic DILI. It 
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is necessary to find effective strategies or models to predict 
DILI and then prevent this potential side effect.

Different Drug Response (DDR) is a common 
problem in clinical treatment after individual drug use. 
These differences range from a failure to respond to the drug 
to an adverse drug response (ADR) [3]. It is now clear that 
these individual variations are due to genomic variations 
from individual to individual. SNPs play an important 
role in the study of DDRs that are induced by genomic 
variations [4]. SNPs show genome wide distribution in both 
coding and noncoding regions. In coding regions, SNPs are 
classified into two types, synonymous and non-synonymous 
SNPs. SNPs in the coding regions that do not affect the 
protein sequence are known as synonymous SNPs, and 
SNPs that change the sequence of a protein are known as 
non-synonymous SNPs, which can further be divided into 
missense and nonsense SNPs [5, 6]. These polymorphisms 
on drug related genes, such as drug receptors, drug 
transporters and drug metabolizing enzymes, can be an 
important determinant of the clinical response [6].

ABC transporter superfamily genes are biologically 
plausible candidates for a role in DILI susceptibility, 
especially because some ABC transporter family gene 
products transport both bile acids and drugs [7]. Some 
genetic forms of cholestasis have been found to be 
associated with specific mutations in the ABCB4 (MDR3) 
and ABCB11 (BEP) genes [8]. When a small group of 
patients suffered DILI after a series of drug administrations, 
a report indicated that a polymorphism in the exon region 
of the ABCB11 was associated with cholestasis injury [9]. 
However, this is a very common polymorphism and has 
little effect on the risk of disease. No exact results show 
the association between ABCB11 SNPs with cholestasis 
liver injury. Another transporter, the ABCB1 gene, which 
encodes the protein MDR1, has been studied in patients with 
DILI due to nevirapine. In a major study of the African race, 
there was a significantly decreased incidence of the C3435T 
ABCB1 SNP [10], and a similar relationship was also 
reported in a smaller group of U.S. patients [11]. However, 
a more recent study on DILI induced by nevirapine in 
Europeans was unable to confirm the association of DILI 
with ABCB1. Even so, the sensitivity of nevirapine DILI 
can be affected by both HLA and ABCB1 genotypes.

We can determine what kind of gene variant may be 
associated with drug response, as phenotype is reflected 
by the functions of proteins; thus, gene mutation may 
lead to functional changes of proteins that cause the 
disease. Because of this, many protein function evaluation 
algorithms have been developed [12, 13]. Additionally, 
protein structure prediction plays an important role in the 
study of the relationship between proteins and diseases, 
but resolving the structure of a protein is a labor-intensive 
and time-consuming process [14]. With the further 
development of the genome and proteome projects, a 
large number of proteins with particular functions will be 
discovered in the future, so the requirement for protein 
structure prediction is increasing [15].

Predicting drug side effects is an important topic in the 
field of drug discovery. Several methods have been proposed 
to predict ADRs. Rainer Winnenburg et al. generalized 
enrichment analysis improves the detection of adverse 
drug events from biomedical literature [16]. Zhang et al. 
propose a novel method, the “feature selection-based multi-
label k-nearest neighbor method” (FS-MLKNN), which 
can simultaneously determine critical feature dimensions 
and construct high-accuracy multi-label prediction models 
[17]. However, there is still room for improvements. In 
this study, we combined prediction on the risk population 
of idiosyncratic adverse reactions based on molecular 
docking with mutant proteins. With more and more three-
dimensional structures of proteins and nucleic acids being 
resolved, it allows us, in many cases, to study the interactions 
between proteins and small molecules [18]. The molecular 
docking technique differs from the traditional methods 
that spend considerable time calculating the binding mode 
between biological macromolecules and substrates—this 
method can quickly and accurately predict the interaction 
between biological macromolecules and substrates 
[19]. Molecular docking is the process of biological 
macromolecules interacting with each other or various small 
molecules with a high specificity and affinity to form a 
specific complex. Compared with other methods (Genome 
Wide Association Study or gene expression profile), the 
employment of molecular docking to drug recognition can 
help to refine the three-dimensional structures of targets. 
Recently, Luo et al. identified and curated the associations 
between drugs and class I HLAs from the literature and 
demonstrated that molecular docking could differentiate the 
significant drug-HLA associations that lead to idiosyncratic 
drug reactions from the non-significant associations [20]. 
This indicates that molecular docking can be utilized for 
screening drug-HLA interactions and predicting potential 
idiosyncratic drug reactions. Driessche et al. presented a 
molecular docking analysis of the common HLA-B*57:01 
variant known to be responsible for several HLA-linked 
adverse effects such as the abacavir hypersensitivity 
syndrome [21]. Our study focused on the mutation of 
MDR1. There have been no previous studies in this area.

RESULTS

Evaluation of nsSNPs on MDR1

MDR1 (Multidrug resistance protein 1) is a 
transmembrane protein encoded by gene ABCB1 that 
has a length of 1280 amino acids and effects an energy-
dependent efflux pump responsible for decreased drug 
accumulation in multidrug-resistant cells. We input 
the 477 nsSNPs from the dbSNP database to VarMod 
and gained the protein function effect scores of the 477 
nsSNPs [22, 23]. We selected all the amino acid variant 
sites that have scores greater than 0.7; a portion of the filter 
results is listed in Table 1. We set the threshold value at 
0.7 because the higher the score, the greater the functional 
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changes on protein. The nsSNV with scores less than 0.7 
would have little or no effect on the functional changes of 
the proteins. The detailed score results are shown in the 
supplemental materials (Supplementary Table 1). 

MDR1 protein modeling results and docking 
evaluation

MDR1 wild-type modeling results and analysis

The full length of the wild-type MDR1 protein 
sequence was imported into Swiss-Model [24], and 50 
templates together with 3 best models were given by the 
tool. All three models have sequence identities greater 
than 87%, and the Global Model Quality Estimation 
(GMQE) scores were greater than 0.84. This suggested 
that the models were all reasonable. In the modeling 
result, the sequence identity of Model I was 87.26%, 
and the sequence coverage ranged from 31 to 1275. 
The local quality estimate result of Model I is shown in 
Figure 1. The similarities were mostly approximately 
0.8, which also demonstrates the reliability of the 
model. The local quality estimates of the three 
models are shown in the supplementary information 
(Supplementary Figure 1). The structure of wild-type 
MDR1 is shown in Figure 2.

Modeling MDR1 mutants and docking results 

The binding pocket of MDR1 could not be 
confirmed from the PDB database, so we selected it from 
references. According to these references, there are two 
binding sites of MDR1. Binding site I consists of amino 

acids Ile340, Met68, Phe75, Tyr307, Phe951 and Val987 
[25]. Binding site II has a center amino acid known as 
Arg905 [26].

The PDB files of wild-type MDR1 were imported 
into Discovery Studio Visualizer 4.0 to show the variant 
sites. After showing the region within the 6 Å around 
variant site Ile340, six variant sites, F303L, Y307H, 
Q725R, Y953C, Y953H, F983L and M986I, were 
obtained. All six variant types were modeled in Swiss-
Model. The binding results of the seven variant types and 
the wild-type MDR1 with the two drugs (Labetalol and 
Dilevalol) are shown in Table 2. 

In the same way, five variant sites were obtained 
from binding site II, and the docking results are listed in 
Table 3.

Generally, the most simple and direct evaluation 
of docking results is the energy score. A lower energy 
indicates a stronger binding pattern of the ligand-receptor 
pair. We considered a score of less than -7 kcal/mol to 
represent that the ligand and receptor could bind together 
in the chosen site.

By comparing the binding scores, diversity could be 
found between all the variant types within binding site I. 
Variant type Q725R (Figure 3) was the only variant that 
scored less than -7 kcal/mol with both drugs, lower than 
the wild type, indicating that Q725R could bind to both 
Labetalol and Dilevalol, which directly or indirectly leads 
to liver toxicity. Population distribution data from the 1000 
Genomes Project showed that the Q725R variant only 
emerged in Europeans (Table 4) while other populations 
had no distribution of it. This result demonstrated that 
the Q725R variant has a great effect among the European 
population. 

Table 1: VarMod predicted score of functional changes of amino acids
(ABCB1) Amino acid position Damage score
R41C 0.866
Y42C 0.833
W315C 0.855
S403Y 0.829
C431W 0.866
S434I 0.803
Y490C 0.88
R543C 0.913
R547C 0.9
T558M 0.881
G579C 0.876
R580W 0.913
R588C 0.879
L772H 0.82
G894R 0.826
R958W 0.828
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Screening of MDR1 variants induced 
hepatotoxicity drug

To study the mechanism of idiosyncratic DILI that is 
induced by the binding of MDR1 and the drug, more drugs 
that cause DILI by binding to the wild-type or variant 
MDR1 proteins were needed. First, we searched for gene 
ABCB1 in the GENE classification in the CTD database 
[27], and then selected “disease” in the results, searching 
DILI in the disease category, which resulted in 211 DILI-
related compounds being found in the database. Then, 14 
drugs that contained the word “bind” were extracted with 
the interaction type of chemical interaction. 

In the Side Effect Resource database (SIDER), 25 
post-marketing drugs were selected by DILI keyword. 
After overlapping with 14 DILI drugs from the CTD, five 
drugs were obtained. The five DILI-related drugs were 

Tarcrolimus, Mefloquine, Omeprazol, Verapamil, and 
Tamoxifen. The five drugs above were docked to MDR1 
using Autodock [28]. We used binding site I and the same 
setting as Labetalol in Autodock. The docking results of 
the five DILI post-marketing drugs are shown in Table 5, 
and the binding conformations of Tarcrolimus, Mefloquine, 
Omeprazol, Verapamil and Tamoxifen for MDR1 are 
shown in Supplementary Figure 2. We also tested two DILI 
negative drugs (doxorubicin and quinidine). The results of 
the two drugs are provided in Supplementary Table 2 and 
Supplementary Table 3. The binding affinities of the two 
drugs were lower than the five DILI post-marketing drugs. 
This shows that our method is accurate.

By comparing the binding scores, diversity can be 
found between all the variant types. Variant Y307H was 
the only variant that has a score less than -7 kcal/mol 
when it was docking with Tarcrolimus. This indicated that 

Figure 1: The local quality estimate of Model I.

Table 2: Binding scores of binding site I 
Protein Labetalol/(kcal/mol) Dilevalol/(kcal/mol)
F303L –6.56 –6.68
Y307H –5.99 –6.49
Q725R –7.24 –7.49
Y953C –6.67 –5.39
Y953H –5.51 –5.58
F983L –5.93 –6.02
M986I –6.42 –6.25
MDR1 (Wild type) –6.03 –6.48
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it can bind better than other variants. We also found that 
Y307H is distrubuted in European populations (Table 6). 
We further searched the FDA adverse event report system 
and found 6 cases, all from the UK.

DISCUSSION

Idiosyncratic adverse drug reaction is always related 
to the population genotype. Because the current drug 
research and development process lacks an appropriate 
testing model, there is a blind spot in the drug R&D 

process. As the affected population expands after 
marketing, those ADR gene carriers would suffer from 
serious adverse reactions that would lead to the “black 
box” warning on drugs or their limitation, or even their 
being withdrawn from the market. Thus, it is an important 
challenge for the drug R&D process to establish a relevant 
strategy to indentify the characteristics of this kind of 
population genotype and then predict the risk population 
of DILI induced by those drugs. In our research, we 
start by searching drugs that were withdrawn from the 
market due to serious DILI because the risk population 

Table 3: Binding scores of binding site II
Protein Labtalol/(kcal/mol) Dilevalol/(kcal/mol)
I160M –3.65 –3.23
L443F –3.21 –3.18
A900T –3.52 –3.5
R905Q –4.03 –4.21
V907I –3.14 –3.19
MDR1 (Wild type) –4.22 –3.21

Figure 2: The structure of wild-type MDR1.
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is certain and its toxic sensitivity is caused by individual 
genetic variance, especially by nsSNPs. Literature mining 
is used to find the ADR-related genes, and we consider 
how the variance of these genes can lead to structural and 
functional changes on their encoded proteins and result in 
the cause of ADR when they interact with the drugs. Many 
ADRs are caused by the parent drug, the metabolized 
drug, or by byproducts of drug metabolism. Drug 
metabolism relies on the initial transport of the drug into 
the hepatocyte via influx transporters. The parent drug, 
reactive metabolites, and heavier products will then all be 
transported into the bile by efflux transporters as opposed 
to those that transport the drug into the cell. MDR1 is 
known as P-glycoprotein, it transports a significant amount 
of xenobiotics and biological compounds into the bile. 
While MDR1 can be found in many tissues, it also has 
many substrates, making it an important efflux transporter.

We explore all the mutants on the gene by 
performing function evaluations and then modeling the 
protein models according to those functional variants. 
Furthermore, we use drug-protein docking simulations to 
determine the effects of different variations on the protein 

after binding to the drug. We focused on idiosyncratic 
DILI by choosing the drugs Labetalol and Dilevalol, and 
our results indicated that both Q725R and Y953H have 
obvious docking differences from other variant types. The 
Q725R variant can better combine with the drug, implying 
that this variant can lead to changes of its protein structure 
by changing the unsolidified binding pattern to a closer 
binding, which then causes the idiosyncratic liver injury. 
The areal distribution of the variants is also consistent with 
the region that is reported to be high-DILI-occurrence, 
implying the effectiveness of our method in helping us 
discover the pattern of DILI. 

To further verify the effectiveness of our method, 
we expanded the drugs of interest from withdrawn drugs 
to post-marketing drugs with functions related to MDR1-
mediated DILI and performed docking simulations after 
constructing the variant protein. The Y307H mutant 
was found to be more strongly bound to Tarcrolimus. 
The Y307H variant is distributed only among the 
European population; therefore, we believe that the 
European population will incur a higher risk of DILI after 
Tarcrolimus administration.

Table 4: Population frequency of Q725R
Population Allele Count Allele Number
European (Non-Finnish) 1 66674
African 0 10366
East Asian 0 8632
European (Finnish) 0 6612
Latino 0 11558
Other 0 908

Figure 3: Close-up of the drug docked into the Q725R mutant. Six variant sites are depicted as sticks.
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Our method is based on the variant annotation 
of proteins, using a homology modeling method to 
build the three-dimensional protein structure and then 
perform molecular docking to confirm the genotype 
that causes serious ADR. Finally, we predicted the 
risk population of idiosyncratic drug toxicity by SNP 
distribution. This is a new attempt on idiosyncratic drug 
toxicity testing, and the established strategy also proved 
to be feasible by our results. This strategy may support 
a novel direction to solve the problem of the lack of 
an appropriate testing model for serious toxicity in the 
current drug R&D process.

MATERIALS AND METHODS

Data set

Withdrawn drug information

The withdrawn drugs were downloaded from the 
DrugBank database and expanded with FDA; after literature 
mining [29], 173 withdrawn drugs and their associated 
relevant information were obtained (Supplementary Table 
4), including drug names, withdrawn countries and reasons 
for withdrawal.

Adverse drug reaction related protein

The Dilevalol and Labetalol related DILI data 
were downloaded from the CTD database. The DILI 
data included both chemical-gene interaction and gene-
disease association. In all, 646,089 pairs of chemical-gene 
interaction associations were extracted together with their 
inference scores from the database.

Non-synonymous SNP data set

The nsSNP data were downloaded from the dbSNP 
database (Build 141). We extracted all the nsSNPs on gene 
ABCB1 (GENE ID: 5243), and 477 nsSNPs were obtained.

Population distribution data

All the population distribution information was 
downloaded from the 1000 Genomes Project, gene 
ABCB1 SNP of England’s population. Finally, we 
obtained 5,497 SNP locations.

Method

Choosing the withdrawn drug set

We accounted for the reason for withdrawal of the 
withdrawn drug set. Because DILI had the highest proportion 
of all adverse reactions, we focused on DILI for this study. 
We chose the drug with a relatively simple withdrawal area 
because that made it easy to locate the population. Dilevalol 
was finally chosen because it was only withdrawn in 
England [30]. Dilevalol is the (R, R)-isomer of the approved 
drug Labetalol. It is a mixed, nonselective β blocker and 
selective α1 blocker. Dilevalol is the stereoisomer of 
Labetalol but has a similar efficacy in treating hypertension. 
It is reported to cause hepatotoxicity as Labetalol. Thus, the 
two drugs were chosen as the experimental objects.

The extraction of the adverse drug reaction gene

The CTD database contained drug-gene interaction 
relationships, together with the inference scores provided 

Table 5: Binding scores of the five DILI post-marketing drugs
Binding Score (kcal/mol)

WT Y953H Q725R F303L Y307H Y953C F983L M986I
Tarcrolimus –6.08 –6.1 –6.85 –6.97 –7.07 –6.94 –6.67 –6.29
Mefloquine –6.34 –5.71 –6.9 –6.76 –6.28 –5.92 –6.06 –6.21
Omeprazol –7.88 –7.25 –7.49 –7.74 –7.41 –6.95 –7.27 –7.35
Verapamil –6.14 –5.02 –5.91 –6.11 –4.93 –5.63 –5.7 –6.08
Tamoxifen –7.36 –6.65 –7.83 –7.94 –7.75 –7.27 –7.03 –7.04

Table 6: Population frequency of the Y307H variant
Population Allele Count Allele Number
European (Non-Finnish) 1 66660
African 0 10368
East Asian 0 8650
European (Finnish) 0 6614
Latino 0 11564
Other 0 908
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by the database. The associations between the drug 
and gene were divided into mechanism, therapeutic or 
unclassified, based on the reference score. We extracted 
the gene that was marked as a mechanism. Only the DILI-
mechanism-marked gene ABCB1 was found to be related 
to both Dilevalol and Labetalol. ABCB1 could bind 
to both drugs according to the references. The binding 
relationship was the premise of the docking process below.

The extraction of non-synonymous single 
nucleotide polymorphisms

Gene IDs were inputted to the dbSNP database 
to obtain all the SNP variations on the gene. All the 
missense-marked SNPs were extracted. The reference SNP 
(rs), number of dbSNP, amino acid positions and amino 
acid substitutions were also extracted.

Effects of single nucleotide polymorphisms on 
protein function

VarMod is an online tool to predict the impact of non-
synonymous SNPs on proteins. It uses the ligand binding 
sites and protein-protein interactions to do the modeling and 
combines the characteristics of residue conservation with 
other features to identify the functional nsSNVs. This online 
tool finally uses machine learning methods (SVM) to provide 
a global prediction that combines different independent 
analysis results. We extracted all the non-synonymous SNPs 
in ABCB1, containing 477 different variants. Then, we used 
VarMod to predict the influence of the 477 SNP sites on the 
protein function. We selected scores greater than 0.7 for the 
variance sites, defined as functional non-synonymous SNPs.

Screening of mutant proteins and construction of 
the three-dimensional structure model of the protein

As there are a great number of nsSNPs, we selected 
amino acids that were within 6 Å of the drug binding site. 
Swiss-Model is a fully automatic, externally free online 
protein structure homology modeling tool. We submitted 
the ABCB1 protein sequence from the UniProt database and 
used the website in AUTOMATED mode. The Swiss-Model 
server automates building the homology model by first 
searching for a suitable template for constructing a reference-
based model. Following this, the model was subjected to 
strained angle correction, and quality control parameters 
were estimated [31]. The target sequence homology model 
needed a follow-up test to view its rationality for further 
use. There are many templates of the homology modeling 
structures, such as 4Q9J, 4M2S and 4KSC.

Docking and binding score

To explore the key residues of the Dilevalol binding 
site of the MDR1, molecular docking of Labetalol and 
dilevalol to the MDR1 was performed using AutoDock 

4.2. The model of MDR1 was converted to PDBQT 
format using AutoDock Tools (ADT), version 1.5.6 (http://
mgltools.scripps.edu). Then, Kollman united atom partial 
charges were assigned for the receptor. The grid size for 
the search space was set at 60 Å × 60 Å × 60 Å, centered 
on the binding pocket of MDR1, with a default grid point 
spacing of 0.375 Å. The Lamarckian genetic algorithm 
was used with a population size of 10 dockings and energy 
evaluations. Those results were clustered according to the 
root-mean-square deviation (RMSD) criterion.

ACKNOWLEDGMENTS AND FUNDING

The authors wish to thank the National Natural 
Science Foundation of China [Grants No. 61372188 and 
61671191], the China Postdoctoral Science Foundation 
[Grant No. 2015M581492], and the Heilongjiang 
Postdoctoral Fund [Grant No. LBH-Z15168].

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

1. Edwards IR, Aronson JK. Adverse drug reactions: definitions, 
diagnosis, and management. Lancet. 2000; 356:1255–1259.

2. Fromenty B. Bridging the gap between old and new 
concepts in drug-induced liver injury. Clin Res Hepatol 
Gas. 2013; 37:6–9.

3. Wang J, Pang GS, Chong SS, Lee CG. SNP web resources 
and their potential applications in personalized medicine. 
Curr Drug Metab. 2012; 13:978–990.

4. McCarthy JJ, Hilfiker R. The use of single-nucleotide 
polymorphism maps in pharmacogenomics. Nat Biotechnol.  
2000; 18:505–508.

5. Hunt R, Sauna ZE, Ambudkar SV, Gottesman MM, Kimchi-
Sarfaty C. Silent (synonymous) SNPs: should we care about 
them? Single Nucleotide Polymorphisms: Methods and 
Protocols. 2009; 578:23–39.

6. Klein K, Zanger UM. Pharmacogenomics of cytochrome 
P450 3A4: recent progress toward the “missing heritability” 
problem. Front Genet. 2013; 4:b149.

7. Noe J, Kullak-Ublick GA, Jochum W, Stieger B, Kerb R, 
Haberl M, Müllhaupt B, Meier PJ, Pauli-Magnus C. 
Impaired expression and function of the bile salt export 
pump due to three novel ABCB11 mutations in intrahepatic 
cholestasis. J Hepatol. 2005; 43:536–543.

8. Geier A, Wagner M, Dietrich CG, Trauner M. Principles 
of hepatic organic anion transporter regulation during 
cholestasis, inflammation and liver regeneration. BBA. 
2007; 1773:283–308.

9. Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, 
Kullak-Ublick GA, Meier PJ, Pauli-Magnus C. Mutations and 
polymorphisms in the bile salt export pump and the multidrug 



Oncotarget95576www.impactjournals.com/oncotarget

resistance protein 3 associated with drug-induced liver injury. 
Pharmacogenet Genom. 2007; 17:47–60.

10. Haas DW, Bartlett JA, Andersen JW, Sanne I, Wilkinson GR, 
Hinkle J, Rousseau F, Ingram CD, Shaw A, Lederman MM, 
Kim RB, Adult AIDS Clinical Trials Group. Pharmacogenetics 
of nevirapine-associated hepatotoxicity: an Adult AIDS Clinical 
Trials Group collaboration. Clin Infect Dis. 2006; 43:783–786.

11. Ritchie MD, Haas DW, Motsinger AA, Donahue JP, Erdem 
H, Raffanti S, Rebeiro P, George AL, Kim RB, Haines JL, 
Sterling TR. Drug transporter and metabolizing enzyme 
gene variants and nonnucleoside reverse-transcriptase 
inhibitor hepatotoxicity. Clin Infect Dis. 2006; 43:779–782.

12. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, 
Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. 
A method and server for predicting damaging missense 
mutations. Nat Methods. 2010; 7:248–249.

13. Cheng L, Sun J, Xu W, Dong L, Hu Y, Zhou M. OAHG: an 
integrated resource for annotating human genes with multi-
level ontologies. Sci Rep. 2016; 6:34820.

14. Baker D, Sali A. Protein structure prediction and structural 
genomics. Science. 2001; 294:93–96.

15. Consortium GP. A map of human genome variation from 
population-scale sequencing. Nature. 2010; 467:1061–1073.

16. Winnenburg R, Shah NH. Generalized enrichment analysis 
improves the detection of adverse drug events from the 
biomedical literature. BMC Bioinformatics. 2016; 17:250.

17. Zhang W, Liu F, Luo L, Zhang J. Predicting drug side 
effects by multi-label learning and ensemble learning. BMC 
Bioinformatics. 2015; 16:365.

18. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, 
Šali A. Comparative protein structure modeling of genes 
and genomes. Annu Rev Bioph Biom. 2000; 29:291–325.

19. Wang R, Lu Y, Wang S. Comparative evaluation of 11 
scoring functions for molecular docking. J Med Chem. 
2003; 46:2287–2303.

20. Luo H, Du T, Zhou P, Yang L, Mei H, Ng H, Zhang W, 
Shu M, Tong W, Shi L, Mendrick DL, Hong H. Molecular 
docking to identify associations between drugs and class I 
human leukocyte antigens for predicting idiosyncratic drug 
reactions. Comb Chem High T Scr. 2015; 18:296–304.

21. Van Den Driessche G, Fourches D. Adverse drug reactions 
triggered by the common HLA-B*57:01 variant: a molecular 
docking study. J Cheminformatics. 2017; 9:13.

22. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, 
Smigielski EM, Sirotkin K. dbSNP: the NCBI database of 
genetic variation. Nucleic Acids Res. 2001; 29:308–311.

23. Pappalardo M, Wass MN. VarMod: modelling the functional 
effects of non-synonymous variants. Nucleic Acids Res. 
2014; 42:W331–336.

24. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, 
Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L. 
SWISS-MODEL: modelling protein tertiary and quaternary 
structure using evolutionary information. Nucleic Acids 
Res. 2014:gku340.

25. Szabon-Watola MI, Ulatowski SV, George KM, Hayes CD, 
Steiger SA, Natale NR. Fluorescent probes of the isoxazole–
dihydropyridine scaffold: MDR-1 binding and homology 
model. Bioorg Med Chem Lett. 2014; 24:117–121.

26. Wen J, Zhang T, Shan ZM, Qi MY, Xiu HH, Liu L, Wu SZ, 
Jia Z, Xu KQ. Butorphanol, a synthetic opioid, sensitizes 
ABCB1-mediated multidrug resistance via inhibition of the 
efflux function of ABCB1 in leukemia cells. Oncol Rep. 
2015; 34:755–762.

27. Mattingly C, Rosenstein M, Colby G, Forrest J Jr, Boyer J. 
The Comparative Toxicogenomics Database (CTD): a 
resource for comparative toxicological studies. J Exp Zool 
Part A. 2006; 305:689–692.

28. Trott O, Olson AJ. AutoDock Vina: improving the speed and 
accuracy of docking with a new scoring function, efficient 
optimization, and multithreading. J Comput Chem. 2010; 
31:455–461.

29. Fung M, Thornton A, Mybeck K, Wu JH, Hornbuckle K, 
Muniz E. Evaluation of the characteristics of safety withdrawal 
of prescription drugs from worldwide pharmaceutical 
markets-1960 to 1999*. Drug Inf J. 2001; 35:293–317.

30. Sponer G, Bartsch W, Hooper R. Drugs acting on multiple 
receptors: β-blockers with additional properties. Pharmacology 
of Antihypertensive Therapeutics. Springer; 1990; 131–226.

31. Bordoli L, Schwede T. Automated protein structure 
modeling with SWISS-MODEL Workspace and the 
Protein Model Portal. Methods in molecular biology. 2012; 
857:107–136.


