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Oridonin, as a natural terpenoids found in traditional Chinese herbal medicine Isodon
rubescens (Hemsl.) H.Hara, is widely present in numerous Chinese medicine preparations.
The purpose of this review focuses on providing the latest and comprehensive information
on the pharmacology, pharmacokinetics and toxicity of oridonin, to excavate the
therapeutic potential and explore promising ways to balance toxicity and efficacy of
this natural compound. Information concerning oridonin was systematically collected
from the authoritative internet database of PubMed, Elsevier, Web of Science, Wiley
Online Library and Europe PMC applying a combination of keywords involving
“pharmacology,” “pharmacokinetics,” and “toxicology”. New evidence shows that
oridonin possesses a wide range of pharmacological properties, including anticancer,
anti-inflammatory, hepatorenal activities as well as cardioprotective protective activities
and so on. Although significant advancement has been witnessed in this field, some basic
and intricate issues still exist such as the specific mechanism of oridonin against related
diseases not being clear. Moreover, several lines of evidence indicated that oridonin may
exhibit adverse effects, even toxicity under specific circumstances, which sparked intense
debate and concern about security of oridonin. Based on the current progress, future
research directions should emphasize on 1) investigating the interrelationship between
concentration and pharmacological effects as well as toxicity, 2) reducing pharmacological
toxicity, and 3) modifying the structure of oridonin—one of the pivotal approaches to
strengthen pharmacological activity and bioavailability. We hope that this review can
provide some inspiration for the research of oridonin in the future.
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INTRODUCTION

Oridonin, (PubChem CID: 5321010, CAS No: 28957-04-2, MW: 364.4 g/mol), with the molecular
formula of C20H28O6 (Cheng et al., 2019), is a naturally occurring terpenoids that mainly exists in
Isodon rubescens (Hemsl.) H.Hara (Figure 1; Yang I.-H. et al., 2017; Jian et al., 2019; Meng et al., 2019).
In thousands of years of clinical practice, the Isodon rubescens (Hemsl.) H.Hara has been widely applied
as central agent in classic traditional Chinese medicine (TCM) formulas with its efficacy of clearing
away heat and detoxifying, boosting blood circulation and alleviating pain. Generally, I. rubescens
(Hemsl.) H.Hara is frequently utilized in the treatment of acute and chronic pharyngitis, tonsillitis and
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bronchitis in clinic (Zhang et al., 2020). As the main bioactive
chemical component of I. rubescens (Hemsl.) H.Hara, in recent
years, numerous achievements have been witnessed on the
exploration of pharmacological effects of oridonin, such as anti-
inflammatory (Cummins et al., 2019; He et al., 2019), anti-cancer
(Vasaturo et al., 2018; Jeon et al., 2019; Hu et al., 2020), anti-
microbial (Li D. et al., 2016), anti-sepsis (Zhao et al., 2016),
neuroprotection (Lin et al., 2019), immunoregulation (Guo
et al., 2013) and so on. Consequently, to some extent, these
rapid advancements in the discovery of the pharmacological
activity of oridonin have provided extensive opportunities for
the development of innovative disease strategies. On the other
hand, there have been mounting reports concentrated on the
adverse reactions of oridonin. Recent studies have shown that
oridonin can cause suicidal erythrocyte death, induce the
expression and activation of CYP2C and CYP3A family, and
interfere with the early embryonic development of zebrafish.
Under this background, thereby motivated, we herein to
summarize the latest and comprehensive information on the
pharmacology, toxicity and pharmacokinetics of oridonin, to
excavate the potential of this natural active ingredient in the
treatment of various diseases and furnish basic information for
the rational and secure utilization of oridonin.

PHARMACOLOGY

Anti-Inflammatory Activity
According to the literature, oridonin can markedly inhibit
experimental autoimmune neuritis (EAN) by lessening local
inflammatory reaction and increasing the proportion of
immune regulating macrophages in the peripheral nerves
possibly by the pathway of Notch, which indicates that it can
be developed as a potential therapeutic agent for human Guillain-
Barre syndrome (GBS) and neuropathies (Xu L. et al., 2019).
Moreover, the employment of oridonin enables to relieve
carrageenan-induced pleurisy through activating the KEAP-1/

Nrf2 pathway and suppressing the TXNIP/NLRP3 and NF-κB
pathway in the model of BALB/c mice. These specific
manifestations includes reducing lung injury scores, releasing
of cytokines, neutrophil infiltration, exudating volume and the
exudate protein concentration, decreasing the levels of oxidative
stress markers (Yang et al., 2020). Recently, researcher relies on
the fact that oridonin itself can act as a protective agent against
LPS-induced inflammatory response, which the specific
mechanisms involve in ROS accumulation, JNK activation,
nuclear translocation of NF-κB (Huang et al., 2020). Oridonin
also inhibits autophagy and survival in rheumatoid arthritis
fibroblast-like synoviocytes (He et al., 2020). In addition,
oridonin can also resist a series of inflammatory reactions
including LPS-induced inflammation in human gingival
fibroblasts (Yu et al., 2019), IL-1β-induced inflammation in
human osteoarthritis chondrocytes (Jia et al., 2019) and LPS-
induced endometritis (Zhou et al., 2019). These findings indicate
that oridonin may be served as a potential therapeutic agent for a
variety of inflammatory related diseases. A great deal of immune
cells including T cells plays an important role in the process of
inflammation. In recent years, studies on anti-inflammatory
effect of oridonin based on immune response have gradually
increased. Research showed that it alleviated the colitis induced
by trinitrobenzene sulfonic acid as represented by a decrease in
colonic interferon-/inteleukin-17 secretion and a consumption in
splenic Th1/Th17 cells and effector memory CD4(+) T cells
(Wang et al., 2015). In addition, oridonin inhibited
inflammatory graft rejection by depleting a great number of
T cells in spleen and peripheral blood (Guo et al., 2013).

Anticancer Activity
The efficacy of mainstay cancer therapies such as cytotoxics and
radiation, has reached a plateau in the treatment of multiple
cancers. In this regard, there is an urgent sense that
ameliorations must now come from fresh approaches. In recent
years, continuous attention is also shifting to the development of
natural anti-tumor agents. Oridonin has a variety of documented
anti-cancer activities such as its ability to against gastric cancer (He
et al., 2017), oral cancer (Yang Y.-C. et al., 2017), nasopharyngeal
carcinoma (Liu et al., 2021), esophageal cancer (Jiang et al., 2019),
ovarian cancer (Dong et al., 2018), leukemia (Li and Ma, 2019;
Zhang D. et al., 2019), and myeloma (Wu et al., 2020), etc. Its main
mechanism involves in inhibiting proliferation (Hao et al., 2016),
inducing apoptosis (Gu et al., 2015; Clayton et al., 2016; Qing et al.,
2016; Xu et al., 2016) and autophagy (Tiwari et al., 2015; Yao et al.,
2017), suppressing migration and invasion (Li Y.-C. et al., 2016),
reversing drug resistance (Kadioglu et al., 2018)] and so on.

As documented in literature, utilization of oridonin increased
the level of E-cadherin and ALP, reduced the vimentin, phospho-
FAK levels, snail, slug, and LDH in human small cell lung cancer
cell line H1688 with concentration of 2.5, 5, 10, 20, and 40 µM for
24 and 48 h in vitro. Of course, the author also confirmed the anti-
lung cancer effect of oridonin in the model of BALB/c nude mice
(Xu et al., 2020). Another study on the anti-lung cancer of
oridonin proved that, oridonin sensitized cisplatin-induced
apoptosis via AMPK/Akt/mTOR-dependent autophagosome
accumulation in A549 Cells (Yang et al., 2019a). Moreover, it

FIGURE 1 | Oridonin isolated from Isodon rubescens (Hemsl.) H.Hara.
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augmented the radiosensitivity of lung cancer cells by up-
regulating Bax and down-regulating Bcl-2 (Li C. et al., 2018),
underpinned radiation-induced cell death by accelerating DNA
damage in non-small cell lung cells (Park et al., 2018) and
promoted G2/M arrest in A549 cells by facilitating ATM
(Zheng et al., 2017). In the aspect of anti-breast cancer,
oridonin could synergistically enhance the anti-tumor effect of
doxorubicin on aggressive breast cancer by promoting apoptosis
and anti-angiogenesis (Li et al., 2019). Besides, this compound
could inhibit angiogenesis and EMT related to VEGF-A (Li C. Y.
et al., 2018), block Notch signaling pathway to inhibit the growth
and metastasis of breast cancer (Xia et al., 2017), and induce
autophagy to promote apoptosis (Li and Yang, 2015). In addition
to its above anti-tumor effects, there is growing evidences that
oridonin exhibits other anti-tumor activities such as colorectal
cancer (Bu H. et al., 2019), pancreatic cancer (Liu D. et al., 2020),
gallbladder cancer (Chen, et al., 2019), prostate cancer (Lu et al.,
2017) and so on. Given that pathway defects have been
recognized by most chemotherapies, oridonin may be a logical
botanical for future researches of tumor adjuvant therapy.
Figure 2 gives the antitumor mechanism of oridonin.

Hepatorenal Protective Activity
With the deepening of the research, the hepatorenal protective
activity of oridonin has been gradually recognized. In a report on
the research of LPS/D-galactosamine-induced acute liver injury
in mice, oridonin was used as a compound known to be effective
at improving the survival rate, alleviating histopathological
abnormalities, and suppressing plasma aminotransferases,
which the mechanisms may involve in the suppression of pro-
apoptotic cytokine TNF-α and JNK-associated pro-apoptotic

signaling (Deng et al., 2017). Oridonin also ameliorated
carbon tetrachloride-induced liver fibrosis in mice through
inhibiting the NLRP3 inflammasome (Liu D.-L. et al., 2020).
Mouse immortalized stellate cell line JS1 treated with oridonin at
the concentration of 5, 10, and 15 µM showed that it significantly
impede posttranslational modifications of IRAK4 in the TLR4
signaling pathway (Shi et al., 2019). In addition, the inhibition of
LPS induced apoptosis promoting cytokines IL-1 β, IL-6, and
MCP-1, as well as ICAM-1 and VCAM-1 observed in LX-2 cells
also appear to be able to validate the protective effect of oridonin
on liver (Cummins et al., 2018). In terms of kidney protection,
oridonin alleviated IRI-induced kidney injury by suppressing
inflammatory response of macrophages through AKT-related
pathways (Yan et al., 2020). Furthermore, oridonin at the
concentrations of 2.5, 5, 10, and 20 µM managed to alleviate
albuminuria, improve renal function and attenuate renal
histopathological injury, hinder inflammatory cytokine
production, down-regulate TLR4 expression and inhibit NF-κB
and p38-MAPK activation, with the effects augmented as the dose
increased (Li J. et al., 2018). These studies may provide a new
recognition of natural medicine for the treatment of liver and
kidney diseases.

Cardioprotective Activity
Diseases associated with cardiovascular diseases are an increasing
problem in most parts of the world and, as with many other
problems of today, are becoming more and more urgent for
people all over the world. Therefore, a reasonable and effective
strategy and approach is now essential to fight against this
malady. As reported by researches in recent years, oridonin
exhibited beneficial influences on cardiovascular disease. In a

FIGURE 2 | The antitumor mechanism of oridonin.
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myocardial ischemia-reperfusion injury mouse models, down-
regulation of oxidative stress and NLRP3 inflammation has been
shown to mitigative effect of oridonin to myocardial ischemia
reperfusion injury (Lu et al., 2020). Similar results have been
verified by researchers from the perspective of metabonomics
(Zhang J. et al., 2019). Oxidative stress, which has a critical link
with the development of cardiac hypertrophy and heart failure,
can reportedly be inhibited by oridonin via mitigating pressure
overload-induced cardiac hypertrophy and fibrosis, preserving
heart function, enhancing myocardial autophagy in pressure-
overloaded hearts and angiotensin II-stimulated cardiomyocytes
(Xu M. et al., 2019). In the respect of inhibition for vascular
inflammation, oridonin could reduce the endothelial-leukocyte
adhesion and leukocyte transmigration, inhibit the expression of
TNF-α-induced endothelial adhesion molecules, suppress the
penetration of the leukocyte, suppress the TNF-α-activated
MAPK and Nuclear factor kappa B (NF-κB) activation, as
described in the literature (Huang et al., 2018).

Lung Protective Activity
In recent years, oridonin, isolated from the plants of the genus
rubescens, has shown great potential in lung protection due to its
antioxidant and anti-inflammatory effects. Oxidative stress and
the resulting inflammation are significant pathological processes
in acute lung injury (ALI). According to the literature, oridonin
can exert protective effects on LPS-induced ALI through Nrf2-
independent anti-inflammatory and Nrf2-dependent anti-
oxidative activities (Yang et al., 2019b). It also protects against
chemical induced pulmonary fibrosis. Research shows that it
could markedly suppress the mRNA and protein expression of
α-SMA and COL1A1 in TGF-b1-induced MRC-5 cells as well as
undermine pathological changes, such as alveolar space collapse,
emphysema, and infiltration of inflammatory cells induced by
BLM (Fu et al., 2018). Immune regulation disorder and persistent
inflammatory injury are important mechanisms of ventilator-
induced lung injury (VILI). As research has shown, oridonin can
reduce VILI by blocking the interaction between NEK7 and
NLRP3 and halting the activation of NLRP3 inflammatory
bodies (Liu H. et al., 2020). In addition, post-exposure
treatment with oridonin was able to ameliorate lung
pathology, attenuate lung edema, abate MDA and TNF-α, and
elevate GSH and IL-10 in the lung, which indicate that it can
defend the lung against hyperoxia-induced injury in the model of
mice (Liu et al., 2017).

Neuroprotective Activity
Oridonin produced a conspicuous effect of neuroprotective in PC12
and N2a cells by rescuing IR, reducing the autophagosome formation
and synaptic loss and ameliorating cognitive dysfunction, halting IR-
induced synaptic deficits (Wen et al., 2020). In the Aβ1–42-induced
mouse model of Alzheimer’s disease (AD), oridonin sharply rescues
synaptic loss induced by Aβ1–42, lessens the alterations in dendritic
structure and spine density, augment PSD-95 and promotes
mitochondrial activity (Wang J. et al., 2016). The
neuropathological characteristics of AD are amyloid aggregation,
tau phosphorylation, and neuroinflammation. A study indicates
that different routes of administration of oridonin severely

attenuated-amyloid deposition, plaque-associated APP expression
and microglial activation, which suggest that this natural terpenoid
might be considered a prospective therapeutic agent for human
neurodegenerative diseases such as AD (Zhang et al., 2013).
Furthermore, available data suggest the potentiality of oridonin to
attenuate Aβ1–42-induced neuroinflammation and inhibit NF-κB
pathway (Wang et al., 2014).

Other Pharmacological Activities
Several lines of evidence suggest oridonin exerts its potential role of
amelioration lupus-like symptoms through suppressing BAFF
expression, improving serological and clinical manifestations of
SLE, lessening proteinuria levels, diminishing production of specific
auto-antibodies (Zhou et al., 2013). Besides, oridonin exerted its
protective effects against hydrogen peroxide-induced damage by
altering the profiles of mRNA in human dermal fibroblasts (Lee
et al., 2013). In the treatment of respiratory diseases, oridonin could
lessen protein quantification in bronchoalveolar lavage fluid and the
lung W/D ratio, mitigate inflammation and suppress the injuries, as
well as abate the TNF-α, IL-6 (Jiang et al., 2017). Oridonin could also
decrease the OVA-induced airway hyper-responsiveness and
eosinophil number, and suppress the eosinophilia and mucus
production, which confirms its great prospect in the treatment of
asthma (Wang S. et al., 2016). In addition, oridonin could effectively
ameliorate inflammation-induced bone loss in the model of mice by
inhibiting DC-STAMP expression (Zou et al., 2020), halt the growth
of methicillin-resistant Staphylococcus aureus (MRSA) (Yuan et al.,
2019), mitigate visceral hyperalgesia in a rat model of
postinflammatory irritable bowel syndrome (Zang et al., 2016),
and augment gamma-globin expression in erythroid precursors
from patients (Guo et al., 2020).

Due to the extensive biological effects of oridonin, its
application in aquaculture has been gradually discovered in
recent years. As reported in the literature, oridonin could
improve the antioxidant capacity of arbor acres broilers liver, as
evidenced by the decrease in MDA and the increase in total SOD
activities and mRNA expression levels of the liver antioxidant
genes (Zheng, et al., 2016). Adding oridonin to the diet of arbor
acres broilers could significantly improve the immune response
induced by Salmonella and protect the intestinal health (Wu et al.,
2018a), increase the relative weights of spleen and bursa, number of
proliferation peripheral blood T and B lymphocytes, the phagocytic
rate of neutrophils, as well as the IL-2, IL-4, and TNF-α (Wu et al.,
2018a). In addition, oridonin could also interfere with the effects of
Salmonella pullorum on immune cells and Th1/Th2 balance of
spleen in arbor acres broilers (Wu et al., 2018b). As discussed
above, oridonin is a natural active compound with therapeutic
potential for dozens of diseases. Additional details on the
pharmacological activities of oridonin were depicted as in Table 1.

PHARMACOKINETICS

In the process of innovative agent development, pharmacokinetic
research has become a pivotal part of preclinical and clinical
research of drugs. It not only plays a supporting role in drug
toxicity or clinical research, but also contributes to optimize the
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TABLE 1 | Pharmacology of oridonin.

Pharmacological effects Detail Cell lines/Model Dose Application Ref

Anti-inflammatory activity Reduce lung injury scores, cytokines, neutrophil infiltration, and exudate volume and exudate protein
concentration, decrease oxidative stress markers

BALB/c mice 5–20 mg/kg In vivo Yang et al. (2020)

Prevent ROS accumulation, attenuate RAW 264.7 cell chemotaxis toward LPS-treated HK-2 cells HK-2 cells 30 μg/ml In vitro Huang et al. (2020)
RAW 264.7 30 μg/ml In vitro

Suppress proliferation, increase apoptosis and Bax and cleaved caspase-3 but decrease the IL-1b, inhibit ATG5 and Beclin1 RA-FLSs 2–12 μg/ml In vitro He et al. (2020)
Inhibit inflammatory mediators PGE2, NO, IL-6, and IL-8, reduce phosphorylation of NF-κB p65 and IκBα, up-regulate PPAR-c Human gingival fibroblasts 10–30 μg/ml In vitro Yu et al. (2019)
Suppress IL-1β-inducedMMP1, MMP3, andMMP13, attenuate IL-1β-induced NO and PGE2, as well as iNOS and COX-2, reduce
IL-1β-induced NF-κB activation

Human chondrocytes 10–30 μg/ml In vitro Jia et al. (2019)

Alleviate LPS-induced endometritis and reduce the activity of myeloperoxidase, decrease TNF-α, IL-1β, and IL-6, inhibit LPS-
induced TLR4/NF-κB signaling pathway activation

BALB/c mice 40 mg/kg In vivo Zhou et al. (2019)
mEECs 10–100 μg/ml In vitro

Relieve hypoxia-evoked apoptosis and autophagy via modulating microRNA-214 H9c2 cells 1–20 µM In vitro Gong et al. (2019)
Inhibit pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, through the TLR4/MyD88/NF-κB axis BALB/c mice 10–40 mg/kg In vivo Zhao G. et al. (2017)

RAW264.7 cells 5–40 μg/ml In vitro
Inhibits IL-1β-induced proliferation and phosphorylation of MAPK, promote apoptosis and increase intracellular ROS. Primary human FLSs 5–40 µM In vitro Shang et al. (2016)
Protect HaCaT keratinocytes against hydrogen peroxide-induced oxidative stress by altering microRNA expression HaCaT keratinocytes 1–20 µM In vitro Bae et al. (2014)

Anticancer activity Increase the level of E-cadherin and ALP, reduce the vimentin, phospho-FAK levels,
snail, slug, and LDH, and inhibit tumor growth in mouse model

H1688 cells 2.5–40 µM In vitro Xu et al. (2020)
BEAS-2B cells 2.5–40 µM In vitro
HBE cells 2.5–40 µM In vitro
BALB/c mice 5–10 mg/kg In vivo

Enhance cisplatin sensitivity via pro-apoptotic activity mediated by AMPK/Akt/mTOR-dependent autophagosome activation A549 cells 5–30 µM In vitro Yang et al. (2019a)
B2b cells 5–30 µM In vitro
C57BL/6 WT mice 20 mg/kg In vivo

Inhibit the proliferation in a time- and dose-dependent manner, enhance the radiosensitivity of SPC-A-1 cells, increase Bax and
decrease the Bcl-2

HCC827 cells 10–80 µM In vitro Li C. et al. (2018)
SPC-A-1 cells 10–80 µM In vitro

Enhance radiation-induced inhibition of cell growth and clonogenic survival, facilitate radiation-induced ROS production and DNA
damage and enhance apoptotic cell death

NCI-H460 cells 1–5 µM In vitro Park et al. (2018)
BALB/c mice 15 mg/kg In vivo

Inhibit proliferation by inducing cycle arrest at G2/M through ATM-p53-CHK2 pathway A549 cells 16–64 µM In vitro Zheng et al. (2017)
Increase the intracellular accumulation of Dox, decrease proliferation, migration, invasion and tube formation, reverse Dox-induced
cardiotoxicity

MDA-MB-231 cells 0.6–20 µM In vitro Li et al. (2019)
HUVECs cells 2.5 µM In vitro
BALB/c nude mice 16 mg/kg In vivo

Suppress migration, invasion and adhesion, inhibit tube formation and EMT, decrease
N-cadherin, Vimentin and Snail, HIF-1α, VEGF-A and VEGF receptor-2 protein expression

BALB/c mice 2.5–10 mg/kg In vivo Li C. Y. et al. (2018)
MDA-MB-231 cells 2–64 µM In vitro
MCF-10A cells 2–64 µM In vitro

Induce cells apoptosis, inhibit cancer cell migration and invasion,
and decrease the expression of Notch 1–4 protein

4T1 cells 0.1–10 mM In vitro Xia et al. (2017)
BALB/C athymic mice 10–20 mg/kg In vivo

Inhibit proliferation, induce apoptosis, up-regulate Bax and down-regulate Bcl-2, increase cleaved caspase-9 and LC3-II. MDA-MB-436 cells 10–80 µM In vitro Li et al. (2015)
MDA-MB-231 cells 10–80 µM In vitro

Inhibit proliferation and induce apoptosis, reduce β-catenin, increase GSK3β and decrease phosphorylation of GSK3β, suppress
tumor growth

COLO205 cells 5–25 µM In vitro Bu H. et al. (2019)
BALB/c nude mice 10–20 mg/kg In vivo

Inhibit proliferation, induce cellular morphology changes and Bax translocation from cytosolic to mitochondrial compartments, and
suppress tumor growth

BxPC-3 cells 5–80 µM In vitro Liu D. et al. (2020)
PANC-1 cells 5–80 µM In vitro
BALB/c nude mice 40 mg/kg In vivo

Suppress proliferation, induce apoptosis and cell cycle arrest at the G0/G1 phase, down-regulate HIF-1α/MMP-9 GBC-SD cells 5–20 µM In vitro Chen et al. (2019)
BALB/c nude mice 15 mg/kg In vivo

Inhibit proliferation and induce G2/M cell cycle arrest and apoptosis, up-regulate p53, p21, proteolytic cleaved forms of caspase-3,
caspase-9, decrease B-cell lymphoma 2

PC3 cells 20–60 µM In vitro Lu et al. (2017)
DU145 cells 20–60 µM In vitro

Inhibit proliferation, invasion, and migration, down-regulate phosphorylation of EGFR, ERK, Akt, expression of MMP-12 and
CIP2A, inhibit tumor growth in vivo

A549 cells 40–90 µM In vitro Xiao et al. (2016)
NCI-H1975 cells 5–30 µM In vitro
Nude mice 30 mg/kg In vivo

Elevate cisplatin-caused reduction of cell viabilities and enhance cell apoptosis, inhibit autophagy A2780CP cells 5–40 µM In vitro Zhao and Xia, (2019)
SKOV3 cells 5–30 µM In vitro
DDP cells 5–30 µM In vitro

Suppress the proliferation and block the cell cycle in G1/S phage and induce apoptosis SKOV3 cells 5–50 µM In vitro Wang et al. (2019)
(Continued on following page)
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TABLE 1 | (Continued) Pharmacology of oridonin.

Pharmacological effects Detail Cell lines/Model Dose Application Ref

A2780 cells 5–50 µM In vitro
HL-7702 cells 5–50 µM In vitro

1Reverse cisplatin resistance, induce apoptosis and promote cell-cycle arrest, down-regulate Bcl-2 and up-regulate Bax protein,
decrease MMP-2 and MMP-9

A2780 cells 10–160 µM In vitro Ma S. et al. (2016)
SKOV3 cells 10–160 µM In vitro

Induce ROS accumulation and cell apoptosis via the c-Jun N-terminal kinase (JNK)/c-Jun pathway DLD1 cells 10–90 µM In vitro Zhang D. et al. (2019)
RKO cells 10–90 µM In vitro
LS174T cells 10–90 µM In vitro
SW480 cells 10–90 µM In vitro
SW48 cells 10–90 µM In vitro
HCT116 cells 10–90 µM In vitro
HCT-15 cells 10–90 µM In vitro

Inhibit proliferation, reduce Smad2, Smad3, Smad4, PAI-1 and the phosphorylation
of Smad2 and Smad3 induced by TGF-β1 in vitro and suppress tumor growth in vivo

LOVO cells 2–16 μg/ml In vitro Bu H.-Q. et al. (2019)
SW480 cells 2–16 μg/ml In vitro
HT29 cells 2–16 μg/ml In vitro
BALB/c nude mice 2.5,5,7.5 mg/

kg
In vivo

Inhibit proliferation and induce apoptosis, increase total and phosphorylated levels
of p53, increase the expression of BMP7, reduce the growth rate of tumors in mice

HCT116 cells 5–25 µM In vitro Liu R.-X. et al. (2018)
SW620 cells 5–25 µM In vitro
SW480 cells 5–25 µM In vitro
LoVo cells 5–25 µM In vitro
FHC cells 5–25 µM In vitro
Athymic nude mice 50–100 mg/kg In vivo

Inhibit the proliferation and induce the apoptosis, up-regulate BMP7 and increase the level of phosphorylated p38 MAPK. HCT116 cells 5–25 µM In vitro Ren et al. (2016)
Inhibit proliferation, induce cell cycle arrest and apoptosis and inhibit tumor growth, increase the total protein level of PTEN and
reduce the phosphorylation of PTEN.

HCT116 cells 5–80 µM In vitro Wu et al. (2016)
Athymic nude mice 50–100 mg/kg In vivo

Inhibit proliferation, induce apoptosis, arrest cell cycle, prevent migration, regulate EMT-related protein expression, and inhibit cell
tumorigenicity and EMT in nude mice

BxPC-3 cells 20–160 µM In vitro Lou et al. (2019)
PANC-1 cells 20–160 µM In vitro
BALB/C nude mice 10 mg/kg In vivo

Lead to a dose-dependent reduction of clonogenic survival and an increase in γH2AX, observe additive effects and a prolonged
G2/M-arrest

AsPC-1 cells 0.5–2.5 μg/ml In vitro Liermann et al. (2017)
BxPC-3 cells 0.5–2.5 μg/ml In vitro
MIA PaCa-2 cells 0.5–2.5 μg/ml In vitro

Inhibit proliferation, downregulate miR-200b-3p, inhibit migration, EMT and ZEB1, N-cadherin and fibronectin. In vivo, inhibit
migration in the nude mouse model

BxPC-3 cells 20–160 µM In vitro Gui et al. (2017)
PANC-1 cells 20–160 µM In vitro
BALB/C nude mice 10 mg/kg In vivo

Overcome PANC-1/Gem cells gemcitabine reistance by regulating GST pi and LRP1/ERK/JNK signaling PANC-1 cells 10–160 µM In vitro Wang and Zhu (2019)
PANC-1/Gem cells 10–160 µM In vitro

Inhibit proliferation and potentiate gemcitabine-induced apoptosis, up-regulate the pro-apoptotic genes Bax, cytochrome c (cyt c),
and caspase-3 and-9

PANC-1 cells 20–100 µM In vitro Liu et al. (2014)

105 mRNAs were differentially expressed BxPC-3 cells 87.8 µM In vitro Gui et al. (2015)
Cause a perturbation in mitochondrial redox status HepG2 cells 5–60 µM In vitro Liu X. et al. (2018)
Increase the anticancer effects L02 cells 4–40 µM In vitro Sun Y. et al. (2018)

HepG2 cells 4–40 µM In vitro
Increase the inhibitory effect on tumor cells and induce apoptosis SMMC-7721 cells 4–40 µM In vitro Xu et al. (2017)
Induce apoptosis and regulate expression and activity of apoptosis-related proteins, down-regulate nuclear translocation of p50
and p65, decrease the transcription activity of all NF-kappa B subunits

HepG2 cells 0.5–50 μg/ml In vitro Dong et al. (2016)

Induce tumor cell necroptosis by reducing GSH and enhancing ROS formation, enhance cytotoxic effect of 5-FU. 786-O cells 10–40 µM In vitro Zheng et al. (2018)
Nude mice 20 mg/kg In vivo

Suppress cell viability and inhibit cell proliferation by inducing G2/M arrest, induce caspase-dependent apoptosis HGC-27 cells 2.5–15 µM In vitro Ren et al. (2020)
Inhibit proliferation, migration, and survivability, enhance apoptosis and the anti-tumor effect of cisplatin, up-regulate mRNA and
protein expression of p53

SNU-216 cells 10–80 µM In vitro Bi et al. (2018)

Inhibit proliferation, induce apoptosis, down-regulate Bcl-2 and up-regulate Bax, induce the release of cytochrome c SGC-7901 cell 2–8 µM In vitro Gao et al. (2016)
Inhibit P300, GCN5, Tip60, and pCAF, inhibit proliferation and down-regulate p53, induce
apoptosis, increase activated caspase-3 and caspase-9, decrease the mitochondrial membrane potential

AGS cells 1–100 µM In vitro Shi et al. (2016)

(Continued on following page)
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TABLE 1 | (Continued) Pharmacology of oridonin.

Pharmacological effects Detail Cell lines/Model Dose Application Ref

Suppress proliferation and soft agar colony formation, induce ROS-dependent apoptosis by mitochondrial-dependent pathway HN22 cells 5–10 µM In vitro Oh et al. (2018)
Enhance the mitochondrial apoptosis through NF-κB, induce ROS production HEp-2 cells 12–36 µM In vitro Kang et al. (2020)

Tu212 cells 12–36 µM In vitro
Result in apoptosis and induce autophagy, increase the binding NF-κB family member p65 with the promotor of BECN 1 HEp-2 cells 24 µM In vitro Cao et al. (2019)

Tu212 cells 24 µM In vitro
Target caspase-9 to alter ROS production and autophagy to promote cell apoptosis HEp-2 cells 36 µM In vitro Kang et al. (2015)
Induce ROS-mediated cell apoptosis KYSE-150 cells 10–50 µM In vitro Pi et al. (2015)
Induce apoptosis, increase the t-Bid as a downstream target of MCL-1 and decrease mitochondrial membrane potential MC-3 cells 7.5–30 µM In vitro Han et al. (2020)

YD-15 cells 6.25–25 µM In vitro
Exhibit anti-RUNX1-ETO activity, and ERK2 kinase inhibitors, cause decrease of phosphorylated ERK1/2 Kasumi-1 cells 1–5 µM In vitro Spirin et al. (2017)

U937 cells 1–5 µM In vitro
Jurkat cells 1–5 µM In vitro

Inhibit EMT, prevent TGF-β1-induced EMT by inhibiting Smad2/3 pathway and osteosarcoma metastasis to lung in the metastatic
model

MG-63 cells 0.5–2 µM In vitro Sun Z. et al. (2018)
143B cells 0.5–2 µM In vitro
U-2OS cells 0.5–2 µM In vitro
Nude mice 15 mg/kg In vivo

Inhibit expression of protein that related to cell proliferation LP-1 cells 5–50 µM In vivo Zhao J. et al. (2017)
Exert its anticancer activity partially by targeting the Mdm2-p53 axis in NB cells SH-SY5Y cells 2–20 µM In vitro Zhu et al. (2019)

SK-N-SH cells 2–20 µM In vitro
SK-N-MC cells 2–20 µM In vitro

Suppress proliferation, induce apoptosis, downregulates the Wnt/β-catenin signaling pathway Neurocytoma cells 5–25 µM In vitro Liang et al. (2018)
Inhibit migration, invasion, adhesion and TGF-β1-induced EMT by inhibiting the activity of PI3K/Akt/GSK-3β signaling pathway A375 cells 5–40 µM In vitro Li J. et al. (2018)

B16-F10 cells 5–40 µM In vitro
Down-regulate VEGFR2-mediated FAK/MMPs, mTOR/PI3K/Akt and ERK/p38 signaling pathways HUVECs 2.5–20 µM In vitro Jiang et al. (2020)
Inhibit proliferation, migration, invasion, and tube formation and induce apoptosis,
decrease VEGFA, VEGFR2, and VEGFR3 expressions, while increase the TP53

HUVECs 39–312 μg/ml In vitro Tian et al. (2017)
Zebrafish 50–200 μg/ml In vivo

Hepatorenal protective activity Attenuate liver injury and reduce ALT levels, Sirius Red staining and the α-SMA, downregulate NLRP3, caspase-1, and IL-1β and
decrease the expression of F4/80

C57BL/6J mice 5 mg/kg In vivo Liu D.-L. et al. (2020)
LX-2 cells 1.25 µM In vitro

Impede posttranslational modifications of IRAK4 in the TLR4 signaling pathway JS1 cells 5–15 µM In vitro Shi et al. (2019)
Inhibit proinfammatory cytokines IL1-beta, IL-6, MCP-1, cell adhesion molecules ICAM-1 and VCAM-1, block LPS-induced NF-κB
p65 nuclear translocation and DNA binding activity

LX-2 cells 2.5–7.5 µM In vitro Cummins et al.
(2018)

Alleviate albuminuria, improve renal function and attenuate histopathological injury, decrease inflammatory cytokine, down-
regulate TLR4 and inhibit NF-κB and p38-MAPK activation

SD rats 10 mg/kg In vivo Li S. et al. (2018)
Rat mesangial cell 2.5–20 µM In vitro

Inhibit LX-2 and HSC-T6 proliferation, induce apoptosis and S phase arrest, decrease α-SMA and ECM protein type I collagen and
fibronectin, block TGF-β1-induced Smad2/3 phosphorylation and type I Collagen expression

LX-2 cells 2.5–30 µM In vitro Bohanon et al. (2014)
HSC-T6 cells 2.5–30 µM In vitro

Cardioprotective activity Alleviate myocardial injury induced via inhibiting the oxidative stress and NLRP3 inflammasome pathway C57BL/6 mice 10 mg/kg In vivo Lu et al. (2020)
Decrease infarct size and reverse abnormal elevated myocardial zymogram, regulate glycolysis, branched chain amino acid,
kynurenine, arginine, glutamine and bile acid metabolism

C57BL/6 mice 10 mg/kg In vivo Zhang W. et al.
(2019)

Mitigate pressure overload-induced cardiac hypertrophy and fibrosis, preserve heart function, and enhance myocardial autophagy NRCMs 5–50 µM In vitro Xu L. et al. (2019)
C57BL/6 mice 40 mg/kg In vivo

Reduce endothelial-leukocyte adhesion and leukocyte transmigration, inhibit TNF-α-induced endothelial adhesion molecules,
suppress penetration of the leukocyte, and suppress TNF-α-activated MAPK and NF-κB activation

HUVECs 0.5–1,5 µM In vitro Huang et al. (2018)
C57BL/6J mice 35 mg/kg In vivo

Lung protective activity Increase Nrf2 and HO-1, GCLM, inhibit LPS-induced activation of the pro-inflammatory pathways NLRP3 inflammasome and NF-
κB pathways

C57BL/6 mice 20–40 mg/kg In vivo Yang et al. (2019b)
RAW 264.7 cells 2.5–10 µM In vitro

Inhibit myofibroblast differentiation and bleomycin-induced pulmonary fibrosis by regulating TGF-beta/smad pathway Kunming mice 10–20 mg/kg In vivo Fu et al. (2018)
MRC-5 cells 2.5–20 µM In vitro

Neuroprotective activity Rescue IR, reduce the autophagosome formation and synaptic loss
and improve cognitive dysfunction, block IR-induced synaptic deficits

SD rats 5 mg/kg In vivo Wen et al. (2020)
PC12 cells 0.05–5 µM In vitro
N2a cells 0.05–5 µM In vitro

Rescue synaptic loss induced by Aβ1-42, attenuate alterations in
dendritic structure and spine density, increase PSD-95 and synaptophysin
and promote mitochondrial activity, activate BDNF/TrkB/CREB signaling pathway

C57BL/6 (B6) mice 10–50 mg/kg In vivo Wang J. et al. (2016)

APP/PS1-21 mice 20 mg/kg In vivo Zhang et al. (2013)
(Continued on following page)
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screening of candidate agents, which provides a novel approach
to study modern pharmacotherapy (Sun et al., 2020a). Up to
now, benefited from the continuous emergence of novel
analytical techniques, researchers have investigated the
pharmacokinetic parameters of oridonin in vivo by means of
MS-MS (Jin et al., 2010), LC-MS-MS (Du et al., 2010; Jin et al.,
2015) and other analytical methods with rats (Jian et al., 2007)
and rabbits (Mei et al., 2008), which partially interpreted the
kinds of events related to the efficacy and toxicity of relevant
herbal preparations in which this constituent is used. Following
rat oral administration of Herba Isodi Rubescentis extract
containing oridonin (1.68 mg/kg), the pharmacokinetic
parameters in rat plasma were obtained with the method of
LC-MS-MS, revealing AUC0-t at 78.45 ± 33.83 ng/ml/h and
AUC(0-infinity) at 79.29 ± 34.26 ng/ml/h, t1/2 at 0.19 ± 0.05 h,
Tmax at 0.69 ± 0.13 h, Cmax at 164.51 ± 58.42 ng/ml (Ma et al.,
2013). Determination of oridonin (40 mg/kg) in rat plasma after
intragastrical administration with determination of LC-MS-MS
suggested that it mainly metabolized in liver, and acquired main
pharmacokinetic parameters, such as t1/2 at 10.88 ± 4.38 h,
Tmax at 1.00 ± 0.12 h, Cmax at 146.9 ± 10.17 ng/ml, AUC(0–t) at
1.31 ± 0.29 mg h/L. At the same time, this project also told us
that verapamil could substantially alter the pharmacokinetic
profile of oridonin in rats, as well as it might exert these effects
via elevating the absorption of this terpenoid compound by
suppressing the activity of P-gp, or through hindering the
metabolism of it in rat liver (Liu et al., 2019). Figure 3
shows the main metabolites of oridonin.

A strategy of using ultra-high-performance liquid
chromatography-Triple/time-of-flight mass spectrometry
(UPLC-Triple-TOF-MS/MS) to identify metabolites and
evaluate the in vitro metabolic profile of oridonin corroborate
that, oridonin is universally metabolized in vitro, which the
metabolic pathway mainly consists of dehydration,
hydroxylation, di-hydroxylation, hydrogenation, decarboxylation,
and ketone formation. Meanwhile, 16 metabolites of I- and II-
phase were identified (Ma Y. et al., 2016). Another similar study
also indicated that 16 phase I and 2 phase II metabolites were
detected after oral administration of oridonin in rats, and the main
biotransformation pathways of oridonin were reduction, oxidation,
dehydroxylation and glucuronic acid coupling (Tian et al., 2015).
In addition, the treatment of HepaRG cells with oridonin at
concentration of 1, 5, 10, and 20 µM demonstrated that
oridonin induced the mRNA and protein expression and
enzyme activity of CYP450s, especially on the CYP3A4 and
CYP2C9 (Zhang Y. W. et al., 2018). Besides, studies have also
shown that oridonin could induce the expression of human
CYP3A4 mRNA and protein through pregnane X receptor-
mediated (PXR) pathway. Notably, there is no effect on the
expression of PXR-nnRNA and protein (Zhang Y.-w. et al.,
2014). In the aspect of interaction between oridonin and blood
protein, it could bind to human serum albumin (HAS) through
hydrogen bonding and van der Waals force, and induce
conformational changes of HSA, thus affecting its biological
function as carrier protein. The research provides an accurate
and full basic data for clarifying the binding mechanism of
oridonin with HSA and is beneficial for comprehending itsT
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activity on protein function and biological activity in vivo during
blood transportation process (Li et al., 2015). Other pharmacokinetic
studies on oridonin are shown in Table 2.

TOXICITY

When evaluating the efficacy of ingredients, the toxicity and safety of
them should be considered particularly (Sun et al., 2020b). For a long

time, traditional Chinese medicine (TCM) is well known for its
safety. But in recent years, the adverse reactions have been reported
frequently. Being a diterpenoids compound broadly distributed in
medicinal plants, oridonin has an extensive range of
pharmacological activities. However, several lines of evidence
indicated that oridonin may exhibit adverse effects, even toxicity
under specific circumstances, which sparked intense debate and
concern about security of oridonin. As discussed above, it was
discovered that oridonin showed antitumor activity on small cell

FIGURE 3 | The main metabolic pathways of oridonin.
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lung cancer (SCLC), but at the same time, HE staining revealed a
certain degree of cytotoxicity in hepatic tissue after treatment
with oridonin (10 mg/kg) (Xu et al., 2020). In addition,
intervention of oridonin induced abnormalities in zebrafish,
such as uninflated swim bladder and pericardial congestion at
an EC50 of 411.94 mg/L in vitro, as well as it also decreased the
body length of zebrafish. In this article, researcher relied on the
fact that the downregulation of VEGFR3 gene expression
probably be related to the occurrence of abnormalities
following oridonin exposure during embryonic development
(Tian et al., 2019). A 48 h exposure to oridonin (P25 µM)
sharply augmented cytosolic Ca2+ concentration, potentiated
formation of ceramide, and then triggered suicidal death of
erythrocytes (Jilani et al., 2011).

On the other hand, some reports suggested that oridonin
could induce the expression and activation of CYP2C and CYP3A
family (Zhang Y. W. et al., 2018), and appeared to be a potential
risk to herb-drug interactions as a result of its induction effects on
drug processing genes expression and activation (Zhang Y.-w.

et al., 2014). Therefore, these reports suggested that we should pay
attention to the safety issues caused by the combination of
oridonin in clinical practice. Generally speaking, there are few
adverse reports on the safety of oridonin, but the lack of reports
does not mean that there are no such potential risks. In view of
this, it is particularly important to explore the mechanisms
responsible for the adverse risk of oridonin under particular
circumstances. Other toxicity researches of oridonin are shown
in Table 3.

SUMMARY AND OUTLOOKS

Oridonin exists in considerable number of traditional herbal
medicines and possesses salient medicinal value. Numerous
researches have exhibited that it can regulate a variety of gene
and protein expression such as ALP, IL-6, TNF-α, Bcl-2, caspase-
3, PGE2, etc. It also shows extensive effects in the regulation of
NF-κB, PI3K/Akt/mTOR, and ERK1/2 signaling pathways. This

TABLE 2 | Pharmacokinetic information of oridonin.

Model Dose Administration
method

Quantitative method Detail Ref

Wistar rats 12.5 mg/kg Intravenous
administration

RP-HPLC method t1/2α � 0.12 h Jian et al.
(2007)t1/2β � 6.06 h

CL � 1.56 L/kg/h
AUC � 7.96 μg h/ml
Vd � 1.83 L/kg

Rabbits 2 mg/kg Injection
administration

HPLC method t1/2α � 0.11 ± 0.05 h Mei et al.
(2008)t1/2β � 2.12 ± 0.87 h

CL � 1.44 ± 0.61 h L/kg/h
AUC0–∞ � 3.53 ± 1.31 μg h/ml
Vd � 1.72 ± 0.16 h
MRT � 2.41 ± 1.07 h

SD rats 1.68 mg/kg Intravenous
administration

LC–MS-MS method t1/2 � 2.90 ± 0.87 h Ma et al.
(2013)CL � 1.08 ± 0.31 h L/kg/h

AUC0–∞ � 980.74 ± 287.15 ng/ml/h
Vd � 4.29 ± 0.54 h
MRT � 1.79 ± 0.77 h

SD rats 40 mg/kg Intragastrical
administration

LC-MS/MS method t1/2 � 10.88 ± 4.38 h Liu et al.
(2019)CL � 14.69 ± 4.42 h L/kg/h

AUC0–∞ � 1.31 ± 0.29 mg h/L
Tmax � 1.00 ± 0.12 h
MRT � 9.25 ± 1.10 h

Human liver
microsomes

100 µM Mixed system UPLC-Triple-TOF-MS/MS
and PCA method

The main metabolic pathways of oridonin include dehydration,
hydroxylation, dihydroxylation, hydrogenation, decarboxylation
and ketogenesis

Ma S. et al.
(2016)

Monkey liver
microsomes

100 µM

Rat liver
microsomes

100 µM

Mouse liver
microsomes

100 µM

SD rats 10 mg/kg Intragastric
administration

UPLC-Triple-TOF-MS/MS
method

The biotransformation of oridonin mainly includes reduction,
oxidation, dehydrogenation and glucuronic acid binding

Tian et al.
(2007)

HepaRG cells 1–20 µM Mixed system HPLC-MS/MS method Induce effects on the major member of CYP450s mRNA and
protein expression, as well as on the enzyme activity, especially
on CYP3A4 and CYP2C9

Zhang et al.
(2018b)

HepG2 cells 20 µM Mixed system UPLC-MS/MS method Induce the CYP3A4 reporter luciferase activity, and up-regulate
CYP3A4 mRNA and protein levels, up-regulate enzymatic
activities of CYP3A4

Zhang et al.
(2014b)LS174T cells 20 µM
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review summarized the mechanism by which oridonin is utilized
to treat related diseases (as shown in Table 1) and the related
parameters of the pharmacokinetics (as shown in Table 2), as well

as security problems in clinical practice (as shown in Table 3).
However, there are some issues that need further clarification in
future research.

FIGURE 4 | The structural modification of oridonin.

TABLE 3 | Toxicity researches of oridonin.

Model Dose Detail Ref

BALB/c mice 5–10 mg/kg HE staining revealed a certain degree of cytotoxicity in hepatic tissue Xu et al. (2020)
Zebrafish 100–400 mg/L Decrease heartbeat with IC50 of 285.76 mg/L at 48 h, induce malformation at 120 h with half maximal

effective concentration of 411.94 mg/L
Tian et al. (2019)

Erythrocytes 1 mM Trigger Ca2+ entry and ceramide formation as well as suicidal death of erythrocytes Jilani et al. (2011)
PXR-humanized
mice

25–200 mg/kg Induce the expression and activation of CYP2c and CYP3a family, which might contribute to potential
drug–drug interactions and appear to be a risk when co-administered with other clinical drugs

Zhang et al.
(2018b)

C57BL/6 mice 25–200 mg/kg Appear to be a potential risk to herb-drug interactions as a result of its induction effects on drug processing
genes expression and activation

Zhang et al.
(2014b)
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Although oridonin has been proved to possess assorted
pharmacological activities in vivo and in vitro, the specific
mechanism of its biological activity has not been fully
expounded. Hence, it is severely significant to further excavate
the mechanism of pharmacological activity at molecular level.

Additionally, as described herein, it has shown prominent adverse
effects, even toxicity under specific circumstances in vitro and in vivo.
Hence, the conduction of essential investigations and comprehensive
strategies to strike the balance between toxicological safety and
therapeutic efficacy, as well as the establishment of an all-round
research on the effect of dosage on pharmacological activity and
toxicity, is highly demanded in this field.

As described herein, oridonin has shown prominent adverse
effects, even toxicity under specific circumstances in vitro and
in vivo. It showed hepatotoxicity and hepatoprotective effects,
which the pair of pharmacological activities seems to be a
paradox. However, through the analysis, it is found that this is
mainly related to the concentration of oridonin and the time of
administration. Long-term administration and high dose
administration may cause liver damage. Therefore, it is
necessary to further investigate the effects of the concentration
of oridonin on pharmacological effects and toxicity. On the other
hand, according to the chemical structure of oridonin, it may
react covalently with the sulfhydryl group of some proteins,
which can partly explain the reason of adverse reactions even
toxicity of oridonin in specific environment. In addition, based on
the analysis of the existing literatures, we think that the current
researches are focus more on the toxicity of oridonin itself.
Nevertheless, the toxic process of oridonin metabolites is still
unknown. These aspects can be further interpreted in future.
Therefore, in view of the above reasons for the safety of oridonin,
we suggest that the conduction of essential investigations and
comprehensive strategies to strike the balance between
toxicological safety and therapeutic efficacy are necessary, as
well as the establishment of an all-round research on the effect
of dosage on pharmacological activity and toxicity, is highly
demanded in this field.

In recent years, structural modification of oridonin, including 1)
the derivatization of hydroxyl groups, 2) modification of A-ring, 3)
modification of the enone system, and 4) the transformation and
derivatization of the framework structure, has been conducted in
order to ameliorate the activity and amplify their application scope
(Zhang et al., 2020). In the past decades, great progress has beenmade
in structure activity relationship and mechanism of action studies of
oridonin for the treatment of malignant tumor and other diseases

(Figure 4). The structure and activity relation studies based on these
new derivatives have tremendously contributed to the comprehension
of their mechanism of actions and molecular targets.

According to the above literatures, we deeply realized that an
increasing number of reports indicate that oridonin has
miscellaneous positive pharmacological activities. However, on
the whole, the oridonin’s specific mechanism related various
diseases still remain to be clarified. On the other hand,
although this natural active ingredient can positively influence
the disease process by regulating multiple signal pathways or
targets, it is only utilized as adjuvant agents in clinical practice,
and rarely applied in the treatment of specific diseases. Therefore,
in consideration of the current scattered research, detailed
mechanism of oridonin in the treatment of specific diseases
should be systematically integrated in the future.
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