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Epidemiological models of infectious diseases are essential tools in support of risk
assessment, surveillance design, and contingency planning in public and animal health.
Direct pathogen transmission from host to host is an essential process of each
host–pathogen system and respective epidemiological modeling concepts. It is widely
accepted that numerous diseases involve indirect transmission (IT) through pathogens
shed by infectious hosts to their environment. However, epidemiological models largely
do not represent pathogen persistence outside the host explicitly. We hypothesize that
this simplification might bias management-related model predictions for disease agents
that can persist outside their host for a certain time span.We adapted an individual-based,
spatially explicit epidemiological model that can mimic both transmission processes.
One version explicitly simulated indirect pathogen transmission through a contaminated
environment. The second version simulated direct host-to-host transmission only. We
aligned the model variants by the transmission potential per infectious host (i.e., basic
reproductive number R0) and the spatial transmission kernel of the infection to allow
unbiased comparison of predictions. The quantitative model results are provided for the
example of surveillance plans for early detection of foot-and-mouth disease in wild boar,
a social host. We applied systematic sampling strategies on the serological status of
randomly selected host individuals in both models. We compared between the model
variants the time to detection and the area affected prior to detection, measures that
strongly influence mitigation costs. Moreover, the ideal sampling strategy to detect the
infection in a given time frame was compared between both models. We found the
simplified, direct transmissionmodel to underestimate necessary sample size by up to one
order of magnitude but to overestimate the area put under control measures. Thus, the
model predictions underestimated surveillance efforts but overestimated mitigation costs.
We discuss parameterization of IT models and related knowledge gaps. We conclude that
the explicit incorporation of IT mechanisms in epidemiological modeling may reward by
adapting surveillance and mitigation efforts.

Keywords: indirect transmission, wildlife surveillance, wild boar, FMD, simulation model, contingency planning,
environmental transmission, individual-based R0

INTRODUCTION

Host–pathogenmodels play an essential role in epidemiology (1). Epidemiologicalmodels arewidely
used to support risk assessment, surveillance design, and contingency planning (2–5). The driving
force of any infectious disease is the transmission of the pathogen to susceptible hosts (6, 7), and its
adequate representation in epidemiological models is therefore of crucial importance (8, 9).
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The relevance of indirect transmission (IT) without a vector or
reservoir, but through contaminated environment, was demon-
strated for pathogenic viruses, bacteria, prions, and macropara-
sites. Examples include highly contagious diseases of wildlife and
livestock like foot-and-mouth disease [FMD (10), reviewed in Ref.
(11, 12)], classical swine fever [CSF; (13, 14)], bovine tuberculosis
[bTB; (15, 16)], brucellosis (17), avian influenza [AIV; (18)],
porcine reproductive and respiratory syndrome [PRRS; (19)], and
chronic wasting disease [CWD; (20)]. Zoonotics and diseases
of man with IT mode include infections with influenza viruses
(21), cholera bacteria (22, 23), hantaviruses (24), and Salmonella
bacteria (25). For several pathogens, longevity outside the hostwas
investigated under experimental conditions [see, e.g., Ref. (26)
for FMD, CSF, BVDV, and PPV; (27) review FMD; (28) review
poultry diseases; (29) review CSF; (30) CSF; (31, 32) AIV; (33)
Influenza A, B; (34) cholera].

The necessity to incorporate indirect environmental transmis-
sion in epidemiological models was already claimed by several
authors (20, 35, 36). Despite this fact, only recent modeling stud-
ies considered this transmission mode explicitly [(18) AIV; (20)
CWD; (37) cholera; (38) brucellosis]. Instead, the majority of
epidemiological models follow a century-old postulate by mod-
eling transmission proportionally to both the current number
of infectious and the current number of susceptible individuals
(39). Using this approach, Breban (40) elaborated the theory of
incorporating IT in epidemiological models. It is not always nec-
essary, indeed, to explicitly model all possible routes of pathogen
transmission. One may argue that, for example, infectiousness
of environmental contamination being short compared to the
host infectious period, and then nothing is lost by summarizing
everything in increased estimates of direct transmission (DT)
(40). However, if empirical evidence suggests a more fundamental
role of pathogen transmission through an environmental pathway,
then the previous model paradigm does circumvent the explicit
consideration of the biologically independent mechanisms. Such
mechanisms may respond differently to interference, e.g., to mea-
sures or treatments. Summarizing transmission models, hence,
do not allow inferences to be made concerning the role of
pathogen stages that can persist outside of their host. Interest-
ingly, studies assessing the impact of IT on disease dynamics
or disease mitigation are rare [see, e.g., Ref. (18), for example,
Ref. (41–43)].

Explicit consideration of an indirect environmental transmis-
sion mode may not only be of serious relevance to understand
experimental results or the dynamics of host–pathogen systems
[e.g., Ref. (40, 43, 44)]. We claim that the explicit inclusion of
environmental transmission in models of wildlife diseases may
be necessary for adequate predictions in the context of man-
agement activities, e.g., surveillance, mitigation, and contingency
planning. Further, IT is particularly relevant in socially organized
wildlife species, where direct contact is mainly restricted to the
social group, and for multi-host pathogens, where direct contact
between species is rare (45, 46). We addressed this hypothesis
using a parameterized stochastic spatially explicit, individual-
based model (SEIBM) designed for studying infectious diseases
in landscape-scale populations of social (47–50) andmulti-species
wildlife hosts (51, 52).

We used the host–pathogen system of FMD in large wild boar
(Sus scrofa) populations as a biological example. The wild boar
is a social species, widely distributed in many parts of the world.
It is the most abundant large mammal species in Europe (53)
with increasing geographic range and population densities (53,
54) maintaining a number of infectious diseases (55, 56). FMD is
one of the economically most important livestock diseases, which
can be devastating in case of an incursion, like in the outbreaks in
the UK in 2001 with more than 6.5 million animals culled and
economic losses estimated at 5 billion £ (57, 58). FMD affects
approximately 70 species of cloven-hoofed domestic and wild
animals including wild boar (59). However, epidemiology of FMD
in European wildlife populations is largely unknown. The FMD
virus (FMDV) can survive outside the host for hours to months,
depending on the environmental conditions. In pig slurry, FMDV
was detectable for 14 days at 20°C and more than 100 days at
5°C in an experiment by Bøtner and Belsham (26). In a recent
outbreak of FMD in wildlife and livestock in Bulgarian Thrace in
2011, wild boars were detected as being virus- and seropositive for
FMD, suggesting the potential involvement of the species in FMD
epidemics (59, 60).

The objective of this study was to evaluate whether infections
with IT may require different surveillance and mitigation efforts
than predicted by models based on DT. To this end, we extracted
from the SEIBM seroprevalence time series as obtained under
surveillance conditions and compared measures important for
outbreak mitigation such as time to detection and the minimum
sample size needed for disease surveillance.

MATERIALS AND METHODS

Model Description
Overview
The FMDwildlifemodel was based on a spatially explicit, stochas-
tic, individual-based demographicmodel for wild boars (S. scrofa)
in a geographic area with suitable habitat. Superimposed is a
transmission and disease course model for the FMDV. Epidemi-
ological data on FMDV infections in wild boar are available from
the field (59) and laboratory experiments (61, 62). The model is
documented following the ODD protocol [Overview, Design, and
Details; (63, 64)].

Purpose
The aim of the modeling study was to provide an experimen-
tal environment to test the hypothesis that neglect of pathogen
persistence outside its host is an inappropriate simplification
from the perspective of surveillance or contingency planning.
The model was designed to compare the predictions between
explicit IT and equivalently parameterized DT. For this purpose,
two model variants were constructed only differing by the exclu-
sion (DT) or inclusion (IT) of an environmental transmission
model. Hence, the following model documentation is represen-
tative for all simulations performed with the submodels of direct
and IT substituting each other (see Virus Transmission in Section
“Details”).
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State Variables and Scales
Themodel comprises twomajor components: spatial habitat units
and wild boar individuals. All processes take place on a raster
map of spatial habitat units. Each cell represents a functional
classification of the landscape denoting habitat quality and a scalar
value denoting environmental pathogen load. The cells of the
model landscape represent 4 km2 (2 km× 2 km), encompassing
a boar group’s core home range (65). State variables comprise
boar habitat quality of the grid cell. At run time, habitat quality is
interpreted as breeding capacity, i.e., the number of female boars
that are allowed to have offspring [explicit density regulation;
(66)]. Furthermore, an FMDV state of the habitat cell represents
environmental virus load and accumulates infection pressure as
shed by viremic animals.

State variables of host individuals are the wild boar’s age in
weeks [where 1week represents the approximate FMD infec-
tious period in wild boar; (61, 62)], resulting in age classes:
piglet (<8months± 6weeks), sub-adult (<2 years± 6weeks),
and adult (67). Each host individual has a location, which denotes
its home range cell on the raster grid as well as its family group.
The individual host animal comprises an epidemiological status
(susceptible, infected, or immune after recovery or due to transient
maternal antibodies). Sub-adult wild boarmay disperse during the
dispersal period (i.e., early summer).

Process Overview and Scheduling
The model proceeds in weekly time steps and processes are exe-
cuted in the following order (see Figure 1): virus release, infec-
tion, dispersal of subadults, reproduction, death, and aging. In
the first week of each year, mortality probabilities are assigned
stochastically to represent annual fluctuations in wild boar living
conditions, and female wild boars are assigned to breed or not,
according to the carrying capacity of their home range cell.

FIGURE 1 | Flow chart of the scheduling of submodels.

Design Concepts
Wild boar population dynamics emerge from individual behavior,
defined by age-dependent seasonal reproduction and mortality
probabilities and age- and density-dependent dispersal behavior,
all including stochasticity. The epidemic course in the DT model
emerges from virus transmission within and between groups and
wild boar dispersal. The epidemic course in the IT model emerges
from virus excretion by infectious hosts, survival dynamics of
infectious virus outside the host, contact to infectious doses, and
wild boar dispersal.

We included stochasticity by representing demographic, behav-
ioral, and pathogen parameters as probabilities or probability
distributions. Annual fluctuations of living conditions are realized
by annually varying mortality rates.

Details
Initialization
The model landscape represents 60 km× 60 km of connected
wildlife habitat without barriers. The specified extent ensures that
the epidemic wave does not reach the edge of the landscape before
detection in any simulation. The 900 grid cells were randomly
initialized with integer values of local breeding capacity in range
0, . . ., 3. Breeding capacity was scaled to result in an average wild
boar density of 5 hosts/km2 in January, i.e., before the reproduc-
tive season (68, 69). The average population size in January was
18,000 individuals.

One boar group was released to each habitat cell, where group
size is six times breeding capacity. Initial age distributions were
taken from the results of a 100 years model run [see Table S1 in
Supplementary Material; (48)].

Input
The applied model setup does not include any external inputs or
driving variables.

Submodels
Submodels are described where essential to understand the study.
The Supplementary Material contains the complete descriptions
of all submodels. A list of parameters with their values and sources
is given in Table S2 in Supplementary Material.

Virus Release
The virus was released to the population by infection of five
wild boars, randomly selected from the nine most central habitat
cells. Release takes place in the sixth year of each simulation
(see Simulation Experiments) to allow population dynamics to
be established. Introduction was chosen in the season of most
likely establishment of the infection according to the increasing
population numbers, i.e., at the start of the reproductive season of
wild boar.

Disease Course
The disease course following infection is modeled for each
infected individual. The infectious period of a host tinf is 1 week.
After the infectious period, hosts achieve lifelong immunity. We
assumed minimum case lethality (61, 62).
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Virus Transmission
Direct Transmission. Direct transmission in the model is a
stochastic process. Parameters determine the probability of con-
tracting the infection from an infectious group mate P(i)

inf and the
probability of contracting the infection from an infectious animal
in a neighboring group P(e)

inf (3× 3 neighborhood) during 1week.
For each susceptible animal, the probability of becoming infected
accumulates over all infectious animals within the group and in
the neighborhood:

Πi = 1 − (1 − P(i)
inf )

Ii
(1 − P(e)

inf )
Σj Ij

, (1)

where Ii is the number of infected individuals in the home group i
and Ij is the number of infected individuals in wild boar groups of
the eight neighboring cells j∈ {1, . . ., 8}. The model iterates over
all individuals and stochastically sets each susceptible individual
to infected if a uniformly distributed random number r drawn
from U(0, 1) is smaller than Πi of its home cell.

Indirect Transmission. We modeled indirect virus transmission
via excretion of infectious material, decay of infectious material
by time in the environment (i.e., outside of host individuals), and
contact of hosts to infectious material in the environment. At
contact, we modeled the effective infection stochastically with the
event probability derived from a standard dose–response relation.

The weekly dynamics of the pathogen pool used in the model
are based on parameters available from literature on a daily basis.
Temporal evolution of the pathogen pool C of each cell is an
exponential decay process and the term of pathogen load added
to the cell:

dC
dt = −λC + s, (2)

with λ being the decay constant λ = ln(2)/T1/2, s being the
pathogen added to the cell per time unit, and t being time inweeks.
Solve

C (t) =
(
C0 − s

λ

)
e−λt +

s
λ

. (3)

Within one time step, s is constant. Thus, the pathogen pool can
be calculated analytically as

Ct+1 =
(
Ct −

s
λ

)
e−λ +

s
λ

(4)

The average available dose for uptake during the weekly time
step is

C̄ =
∫ t+1

t
C (t) dt =

Ct

(
1 − e−λ

)
+ s

λ
+

s
(
e−λ − 1

)
λ2 . (5)

The pathogen source s for a cell is determined from the number
of infectious hosts in the cell and in neighboring cells. Hosts
in infectious state excrete infectious material with constant daily
rate (parameter g; i.e., 7g is the weekly excretion), measured in
tissue culture infective dose 50% (TCID50) per day. A host animal
spends a portion of daytime (parameter pt) in contact areas,
i.e., areas subsequently reached by neighboring animal groups.
Accordingly, excreted infectious material is distributed to differ-
ent cells: g(1− pt) doses adding to the pool of the home cell of the

host, while 1/8g pt doses are added to each of the eight neighboring
cells. Therefore, the pathogen added to a cell on a weekly basis is:

s = 7g
(

(1 − pt) Ii + 1/8 pt
∑

j
Ij
)

. (6)

Per host, individual contact to infectious material in the envi-
ronment is determined as constant share (parameter u on a daily
basis; i.e., 7u corresponds to the weekly share) of the available dose
C̄ in its home range cell. The weekly contact dose CD is

CD = 7uC̄. (7)

Effective infection after contact to a particular dose of infec-
tious material is modeled stochastically as a binomial chance
process so that the individual’s weekly probability of becoming
infected follows an exponential dose–response relation:

PCD = 1 − (1 − PTCID50)CD, (8)

with PTCID50 being the probability of infection after contact to
one TCID50 dose. Figure 2 shows the dose–response curve for
PTCID50 = 0.003 (70, 71).

Parameters, Simulation Experiments, and
Analysis
Parameters
A complete list of all parameters with their values and sources is
shown in Table S2 in Supplementary Material.

Parameterization of Transmission
In the DT model, the transmission is defined by scaling the two
parameters P(i)

inf and P(e)
inf . In the IT model, an analog to Pinf can be

calculated from Eq. 8 and the dose available from one infectious
host. To calculate the available dose, Eq. 5 is applied for 1week
after infection (i.e., parameter infectious period) including the
excretion into the environment (i.e., s> 0) and for infinite time
without further excretion. The total available dose over time is

C̄∞ =
∫ 1

0
C+ (t) dt +

∫ ∞

0
C−(t) dt, (9)

FIGURE 2 | Dose–response curves for wild boar (PTCID50 = 0.003). Inset:
linear ordinate.
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whereC+(t) is the pathogen poolwith pathogen excretion starting
with C0 = 0 (Eq. 3). C−(t) is the pathogen pool without pathogen
excretion for an initial pool equal to the value after the first week
[i.e., C0 =C+(1)]. Solve

C̄∞ =
s
λ

(10)

or, without stressing mathematics, it is the product of added
material s and average lifetime of the pathogen in the environment
τ = 1/λ.

With Eqs 7 and 8, this gives

P(i)∗
inf = 1 − (1 − PTCID50)7usi/λ (11)

P(e)∗
inf = 1 − (1 − PTCID50)7use/λ , (12)

with newly added pathogen si = 7g(1− pt) for within-group
transmission and se = 7g(1/8)pt for between-group transmission.

By choosing P(i)
inf = P(i)∗

inf and P(e)
inf = P(e)∗

inf , both models
produce the same basic reproductive number R0 (for validation,
see Figure 3).

Parallel of R0 in DT and IT Models
TheDTmodel was parameterized tomimic the ITmodel in terms
of the basic reproduction numberR0. Accounting for transmission
within and between groups, R0 was calculated for both scales of
spatial transmission separately. This gives the expected number of
infections from one case to its group-matesR(i)

0 and to the animals
of neighboring groups R(e)

0 , summing up to R0 = R(i)
0 + R(e)

0 .
In the DT model with an infectious period of 1week, R0 is a

linear function of Pinf:

R(i)
0 = SiP(i)

inf (13)

R(e)
0 = SeP(e)

inf (14)

FIGURE 3 | R0 measured in simulations for the DT model and for the IT
model with different pathogen half-life, in total, within-group and
between-group component (average of 500 simulations). Black: without
population dynamics, white: with population dynamics. Lines indicate the
theoretical values, R(i)

o = 1.653 and R(e)
o = 0.606. Numbers indicate

p-values of two-sided Mann–Whitney U tests of total R0 without population
dynamics against DT model (H0: not different from DT).

Si is the number of susceptible hosts in the group of the infectious
individual. Se is the number of susceptible hosts in its neighboring
groups.

We can calculate R0 from the parameters of the IT model using
Eqs 11 and 13 for within-group transmission and Eqs 12 and 14
for between-group transmission:

R(i)
0 = Si

(
1 − (1 − PTCID50)7usi/λ

)
(15)

R(e)
0 = Se

(
1 − (1 − PTCID50)7use/λ

)
(16)

The exponent in Eqs 15 and 16 can be transformed to
7us/λ = 7usT1/2/ln(2). Thus, R0 in the IT model can be kept con-
stant over arbitrary pathogen half-life T1/2 by compensatory scal-
ing of the uptake u, i.e., u×T1/2 is constant (see Figure 4). With
pathogen half-life approaching 0, the IT model becomes equiva-
lent to the DT model as pathogen uptake becomes instantaneous.

Independent Variables
The primary independent variable was the pathogen half-life T1/2.

Simulation Experiments
We performed simulations for the IT model with environmental
pathogen half-lifeT1/2 ∈ {1/8, 1/4, 1/2, . . ., 32, 64} days (Figure 4).
To keep R0 constant over all IT simulations, we scaled u accord-
ing to u= 4× 10−6/T1/2. All parameter combinations resulted in
R0 = 2.259. For comparison, we repeated the simulations with the
DT model. To achieve the same R0 as the IT model, transmission
parameters were scaled to P(i)

inf = 0.087 and P(e)
inf = 0.00379. Each

parameter set was repeated 500 times.
We performed supplementary simulations to measure an

individual-based equivalent of R0 (20) in order to verify accor-
dance of the transmission model with the theoretical calculations
for the basic reproduction number. This was achieved by allowing
only the first disease case permodel run to be infectious and count
of the number of secondary infection in the initially infected cell

FIGURE 4 | R0, depending on the environmental pathogen half-life T1/2

and on the uptake rate u. Circles along the diagonal line show the
realizations of T1/2 and u used in the simulation experiments
(u×T1/2 = 4×10−6), resulting in R0 = 2.259.
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and in its neighboring cells. The theoretical calculations neglect
population turnover, therefore in the third set of simulations,
reproduction and mortality were deactivated from the week of
pathogen introduction onward. The model runs for 100 times the
pathogen half-life after the initial infection to make sure that the
environmental reservoir completely decayed and no secondary
infections were missed in the analysis.

Dependent Variables
We recorded seroprevalence time series for each run on a weekly
basis as the first order dependent variable. These prevalence time
series were then used to determine second-order dependent vari-
ables: (1) time to detection for fixedweekly sample sizes, (2) size of
the outbreak at the time of detection, and (3) sample sizes needed
to detect the disease within an a priori specified time frame. For
second-order dependent variables, see Section “Analysis.”

Analysis
We mimicked systematic surveillance on the seroprevalence out-
come p of the DT and the ITmodel deriving the following second-
order dependent variables from prevalence time series.

Time to Detection
Given a weekly sample size n and seroprevalence p, the probability
to not find any seropositives in a particular week t is

P̂0 (t) = (1 − p (t))n. (17)

The probability of not finding any seropositives until the given
week can be determined as

P0 (t) =
∏t

i=0
P̂0 (t). (18)

Hence, the probability to detect the disease until the given
week is

PD (t) = 1 −
∏t

i=0
P̂0 (t). (19)

For each model run, the first week of PD(t)≥ 0.95 determines
the time of detection. Subtracting the week of virus incursion, this
gives the time to detection tD of the individual run. The geometric
mean of the distribution over the runs gives the time to detection
tD with 95% confidence.

Sample sizes for the underlying surveillance schemewere deter-
mined on a monthly basis according to the following equation
(72):

nmonth =
(
1 − (1 − CL)

1
N×p

) (
N − N × p − 1

2

)
, (20)

with true population size N. Parameters of interest were
CL= 95%, p= 5% and 1%. The required sample size was 58.3 per
month (14 per week) for p= 5% and 295.6 per month (69 per
week) for p= 1%.

Outbreak Size
The area affected by the disease (area of cells infected) before
detection Aaff was determined as a measure of the spatial extent
of the outbreak.

Required Sample Size
The probability to detect the disease before the given week is
calculated according to Eq. 19. This gives the weekly sample size
needed to detect the disease in a given time frame t for a given
seroprevalence time series:

nD =
ln(1 − CL)

ln
∏t

i=0 (1 − p(i))
. (21)

We calculated the required weekly sample sizes for each
model run.

Statistical Analysis
For each simulated value ofT1/2 in the ITmodel, we compared dis-
tributions of time to detection tD and weekly sample size needed
nD to the outcome of the DT model using the Mann–Whitney U
test (H0: distribution with IT not greater than distribution with
DT). Similarly, distributions ofAaff were compared to the outcome
of the DT model using the Mann–Whitney U test (H0: distribu-
tion with IT not less than distribution with DT). Significance was
defined as p-value< 0.01.

RESULTS

Basic Reproduction Number
The individual-based equivalent to R0 did not differ systemati-
cally from the theoretical calculations (compare points to lines in
Figure 3). Differences between IT andDTmodels were not signif-
icant (Mann–Whitney U, without population dynamics: p≥ 0.3,
black fill and numbers in Figure 3; with population dynamics:
p≥ 0.35, white fill in Figure 3).

Seroprevalence
Seroprevalence increased most rapidly in the DT model
(Figure 5). The first maximum was reached after less than
40weeks. In the IT model with equal R0, the increase of
seroprevalence slowed down with increasing pathogen half-life
(Figure 5, numbers).

FIGURE 5 | Average seroprevalence over the first year after virus
incursion for the DT model and for the IT model with different
pathogen half-life (numbers, in days).
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Time to Detection
In the first experiment, i.e., detection of 5% seroprevalence with
95% confidence within one month of sampling, the surveillance
design required 14 samples per week. Applying this sample size
to the time series of the DT model, the disease was detected
13.3 weeks after incursion with 95% confidence (geometric mean,
Figure 6A, left-most box). With the IT model, time to detection
depended on the half-life of pathogen T1/2 (Figure 6A). Already
at T1/2 > 1 day, detection times were significantly longer than
in the DT model (Mann–Whitney U test, p< 0.01). For half-
life of 16 days, time to detection increased to 23.9 weeks. When
half-life was 64 days (maximum simulated), time to detection
more than doubled compared to the DT model and reached
36.6 weeks.

In the second experiment (detection of 1% seroprevalence
with 95% confidence within 1month of sampling, 69 sam-
ples per week), the DT model resulted in detection within
8.6 weeks (Figure 6B, left-most box). Increase of time to detec-
tion was significant for T1/2 > 1 day (Figure 6B). T1/2 = 16 days
resulted in 15.1 weeks and T1/2 = 64 days in 22.2 weeks to out-
break detection.

Outbreak Size
In both experiments (design prevalence of 5 and 1%), the spatial
extent of the outbreaks Aaff in the IT model decreased signifi-
cantly compared to the DT model for T1/2 > 1/2 and T1/2 > 1 day,
respectively (Figures 7A,B).

Required Sample Size
We calculated the weekly sample size for detection within 9weeks
with 95% confidence. In the DT model, an average of 69 sam-
ples per week was necessary for detection with 95% confidence
(Figure 8, left-most box). With the IT model and for pathogen
half-life T1/2 > 1/2 day, the required sample size increased expo-
nentially (Figure 8). With T1/2 = 16 days, the required sample size
was 406 per week. For the maximum half-life of 64 days, 828
samples per week were required for detection within 9weeks.

DISCUSSION

For a wildlife host–pathogen system with a social host species,
we investigated the consequences of an a priori assumption of
direct host-to-host transmission inmodels for surveillance design.

FIGURE 6 | Time to detection for monthly design prevalence of 5% (A) and 1% (B) for the DT model and for the IT model with different pathogen
half-life. Outlier symbols (+) show 5 and 95% quantiles. Text shows geometric means. Asterisks show significance of Mann–Whitney U test against DT model (H0:
not greater than DT; *p<0.05, **p<0.01, ***p<0.001).

FIGURE 7 | Outbreak size at the time of detection Aaff for monthly design prevalence of 5% (A) and 1% (B) for the DT model and for the IT model with
different pathogen half-life. Outlier symbols (+) show 5 and 95% quantile. Asterisks show significance of Mann–Whitney U test against DT model (H0: not less
than DT; *p<0.05, **p<0.01, ***p<0.001).
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FIGURE 8 | Required sample size to detect the disease within 9weeks
for the DT model and for the IT model, depending on pathogen
half-life. Outlier symbols (+) show 5 and 95% quantiles. Text shows the
average, i.e., the expected sample size for detection with 95% confidence in
9weeks. Asterisks show significance of Mann–Whitney U test against DT
model (H0: not greater than DT; *p<0.05, **p<0.01, ***p<0.001).

We show that the simplified, DT model underestimated necessary
sampling efforts by up to one order of magnitude, but overesti-
mated the outbreak area that would receive control or mitigation
measures. Thus, simplifying transmission risk as being propor-
tional to the abundance of infectious and susceptible individuals
hindered estimation of the most appropriate surveillance and
contingency parameters.

The outcomes of a DT model were compared to results from
equivalently parameterized ITmodels with different environmen-
tal pathogen persistence. In abstract models, the DT model is
a special version of IT assuming persistence time of infectious
pathogen in the environment being 0 (40). Here, we are talking
about explicit process models tailored to surveillance design in
the field. In the field, direct and IT modes correspond with dif-
ferent biological mechanisms that need adequate representation
in a model to allow targeted manipulations (see model docu-
mentation). The inclusion of environmental transmission is no
longer a matter of model re-parameterization but corresponds
to a structural change in the model. In this sense both models,
the direct and the IT model become fundamentally different.
Our results pinpoint the relevance of a decision on whether
environmental transmission needs to be represented in a model
or not already prior to making predictions. In the logic of our
analysis, however, it was necessary to allow seamless transition
between models in spite of two alternative transmission mecha-
nisms involved. We have achieved the virtual equivalence of the
models while keeping the transmission potential per infected host
unchanged.

Environmental transmission in a diseasemodelmight be repre-
sented assuming prolonged infectiousness of infected hosts along
with prolonged half-life of the pathogen in the environment. Log-
ically then, prolonged pathogen persistence in the environment
leads to increased transmission potential of the average infected

host in turn changing disease dynamics [see, e.g., Ref. (40)]. Here,
we were not interested in theoretical variation of the infectious
potential of infected hosts across alternative pathogens. Rather,
wewere addressing alternativemodels of the same infection, e.g., a
pathogen with R0 established in experiments. This approach was
fundamental to the presented comparative assessment of model
predictions on a particular disease, i.e., when the DT and the IT
version of the model are aligned by the R0 value.

We focused the comparative assessment of the different trans-
mission models on three measurements for two surveillance
schemes: (1) time to detection of an outbreak tD, (2) spatial extent
of the outbreakAaff at the time of detection, and (3) the sample size
required for outbreak detection within a prescribed time frame.

Indirect transmission slowed down the increase in seropreva-
lence compared to DT with equal R0. An IT route through the
environment results in prolonged infectiousness beyond the infec-
tious period of the host. This causes delayed infections compared
to the DT mode, where the infectious period of the hosts limits
the time span for new infections. Outbreaks governed by IT may
progress much slower and hence less obvious.

Time to detection tD is a central measure to be minimized by a
surveillance scheme (73). The underestimated time to detection
in the DT model will impede the realized probability of detection
of a given surveillance design. Therefore, a surveillance scheme
based on the estimates from the DT model [e.g., Ref. (74)] would
not meet its aim of detecting an outbreak within the time horizon
it was designed for. The pathogen would circulate undetected in
the wildlife population longer than expected, therewith increasing
the risk of infection of other hosts, e.g., livestock, and the risk of far
range spread by transportation or airborne aerosols [e.g., reviewed
for FMD in Ref. (75)].

The spatial extent of the outbreak Aaff reflects the area under
intervention measures to be implemented after outbreak detec-
tion. Aaff was overestimated by the DT model. With IT but equal
R0, the disease spread slower than with DT and also hasmore time
to spread due to later detection. Due to the continuous surveil-
lance scheme with accumulation of chance of detection over time,
the longer period of undetected pathogen circulation could not
completely compensate the slower spread, thus outbreak size at
detection was smaller. Control and restriction zones would be
oversized if designed on estimates of undetected spread from aDT
model. Thereby, the applied measures would be overly expensive
and an unnecessary burden for the livestock sector (76).

The DT model underestimated the required sample size per
time unit for disease detection within a given time frame. This
measure quantifies the effort that is actually necessary to achieve
the original aim of the surveillance program, namely, outbreak
detection within a prescribed time horizon with given confidence.
The extreme increase of the sample size for long pathogen persis-
tence suggests that other methods than testing host individuals
for seropositivity may be necessary for the surveillance of certain
diseases (77, 78).

Remarkably, time to detection and required sample size differed
from the predictions of the DT model for pathogen half-life as
short as 1 day. This time span is by almost one order of magnitude
shorter than the infectious period of 1week. This fact emphasizes
the relevance of IT, even in absence of extreme pathogen longevity.
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The model used in this study has been previously applied
for risk assessment (47), for assessment of disease control mea-
sures (79), and to contribute to the understanding of wildlife
host–pathogen systems (48, 49, 51). In this study, we extend our
previouswork by the integration of IT and compared surveillance-
related predictions of different model versions.

We restricted the model versions to either DT or IT, but did
not combine both. Although DT is likely to play a role in most
host–pathogen systems with IT mode, we were interested in the
differences between the two modes. As the IT model with short
pathogen half-life resembles the DT model, we nonetheless exam-
ined a continuous transition between the aggregation to DT and
the explicit IT model.

Numerous empirical andmodeling studies dealt with the quan-
tification of indirect, particularly airborne transmission of FMD
and other diseases between domestic livestock holdings [e.g., Ref.
(71, 80–84), reviewed for FMD in Ref. (85)], but IT of FMDV in
wildlife animals has, to our knowledge, not yet been quantified.
We developed a modeling approach that breaks down IT into
components that are accessible to experimental measurements,
namely pathogen shedding, survival/decay in the environment,
contact with infectious material, and infection according to a
dose–response relationship. Although some experiments quan-
tified pathogen excretion and secretion of FMDV [reviewed in
Ref. (12)] and other pathogens [see, e.g., Ref. (86) for CSF] by
domestic animals, knowledge for wildlife is rare (87). The large
differences between domestic animal species regarding the shed-
ding rates of FMDV (12, 75) call for further attention to this
issue. The same applies for the susceptibility of different species,
i.e., the dose–response relation (12, 75). Some quantification for
domestic animals can be found in the literature [e.g., Ref. (70,
88) for FMD], but the qualitative relation between dose in the
environment and probability of infection is often unclear (89,
90). Survival outside the host has been investigated for several
pathogens in animal products and excrements under laboratory
conditions (for references, see INTRODUCTION), but further
research is necessary for environmental factors that influence
pathogen survival. The contact of animals with viral contamina-
tion in the environment remains the most uncertain parameter.
Here, an inverse parameter fitting approach could aid the quan-
tification. Given assumptions for the other parameters, contact
to viral contamination could be estimated from the probability of
infection.

Experimental investigations of virus survival outside the host
depict striking dependence on temperature and humidity [see,
e.g., Ref. (26) for FMD, CSF, BVDV, and PPV; (91) for PRRS virus;
(92) for influenzaA]. This fact gives rise to seasonal fluctuations of

themagnitude of IT. Indeed, for several viral diseases, fluctuations
of their transmission were associated with climatic seasonality,
partly related to virus survival outside the host [see, e.g., Ref. (92,
93) for influenza viruses; (94) for hepatitis A]. Therefore, climatic
factors are expected to play a role in regional variations of the
epidemiology of infectious diseases with an IT mode.

With this work, we contribute to the research on IT, which
is still in an early stage but attracting increasing attention. Pre-
vious work focused on the impact of IT on key figures of
host–pathogen systems such as the basic reproductive number
(20), disease persistence (41), and formal conditions of relevance
for modeling (40).

Our results resemble findings byWearing et al. (1) andAlmberg
et al. (20), which show that a neglect of prolonged infectiousness,
e.g., through environmental pathogen stages or inappropriate
assumptions about the infectious period, may result in an under-
estimate of R0, if derived from the prevalence growth rate. Recip-
rocal, in our study prevalence growth rates decreased under IT
despite equal reproductive potential (R0). Thus, we transferred the
findings regarding the relevance of IT from a theoretical underes-
timation of infection dynamics, i.e.,R0, to the application-oriented
context of designing surveillance of any particular wildlife disease,
i.e., R0 being fixed.

We conclude that a simplified aggregation of transmission pro-
cesses, particularly a neglect of environmental pathogen stages,
may considerably bias model predictions of the performance of
disease surveillance and mitigation strategies. We state that this
applies even for pathogenswith an average environmental survival
time that is comparatively short compared to the infectious period
of the host.
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